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CoroLLaRY 53. The spaces B, (F,F) and By, (F,, X) are not (DF)-
spaces.

30 J. Taskinen

Corollaries 5.3 and 5.2 give an answer to Question non résolue 7 in [4].

Remark. After this paper was submitted, Gilles Pisier noticed that an
analogue of Proposition 2.1 is valid for C(0, 1) instead of our (E, p). The
proof for this case 1s more elementary; it uses only a form of Grothendieck’s
theorem.
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The Wold-Cramér concordance problem
for Banach-space-valued stationary processes

by
GRAZYNA HAIDUK-CHMIELEWSKA (Szezecin)

Abstract. The problem of the concordance of the Wold decomposition and the spectral
measure decomposition of Banach-space-valued stationary processes is studied. We give a
sufficient condition for the concordance in terms of the representation of the process as a
process in the space of square Bochner integrable functions on the circle.

0. Introduction. The problem of the Wold—Cramér concordance for g-
variate stationary processes was extensively studied (cf. [4]-[6]). In the case
of stationary processes with values in a Banach space the only result was
given by F. Schmidt. He proved that every such process X admits a unique
orthogonal decomposition

X (k) = Y (k)+ U (k) + V'(k)

where ¥ is regular, both U and V are singular and the spectral measures of
¥. U are absolutely continuous, while the spectral measure of V' is singular
with respect to the Lebesgue measure (cf. [7], Theorem 5). In particular, the
question of whether there exists a nonsingular process with nonzero U part
in the Schmidt decomposition remained open.

In this paper we present a sufficient condition for the concordance of the
Wold decomposition and the spectral measure decomposition for Banach-
space-valued stationary processes. The proof is based on the isomorphism
theorem {cf. [8], Theorem 3.3) which yields a representation of the process
under considerstion as a process in the space [*{K, u, H) of all u-square
Bochner integrable functions from the circle K to a Hilbert space H. Our
condition is formulated in terms of this representation. In Section 2 we
establish some properties of this representation we need in the proof of the
main theorem. Finally, we give in Section 4 several examples related to our
theorem. One of them (Example 4.1) answers positively the question formula-
ted above.

1. Preliminaries. In this paper we use the following notation:
Z — the set of integers,
C — the set of complex numbers,
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K — the unit circle of the complex plane C,

m — the normalized Lebesgue measure on K,

A{K) — the family of Borel subsets of the unit circle K.

For any two normed spaces X and ¥ let L(X, Y) denote the space of all
continuous linear operators from X into Y. We use the letters G, H to denote
complex Hilbert spaces, and B will denote a complex Banach space. The
space of all continuous linear functionals on B is denoted by B*. By
L7 (B, B*) we will denote the space of all antilinear nonnegative continuous
operators from B into B*,

let i be a finite nonnegative measure on #(K). By L*{K, i, H) we
mean the set of all strongly measurable functions f on K with values in H
such that || f(z)li3 is printegrable. L*(K, u, H) with the inner product

gy =2 9(2))m puldz)
: K

is a Hilbert space, where -, >y and |||l denote the inner product and the
norm in H. The norm in L*(K, u, H) will be denoted in the sequel by [1-]|.
By T we shall denote the operator in L*(K, u, H) given by

(1) Tf{z) = zf (2).
Clearly T is a unitary operator,
A stationary process with velues in B is a mapping X: Z — L(B, G) such

that the correlation function R(k, I) = X*(k) X (/) depends only on [—k. It is
known (cf. [1]) that R has the representation

X*(k)X () = R(l—k) = {#7*F(dz)
X

where F is an additive and weakly countably additive measure on 2 (K) with
values in L* (B, B*¥). The measure F is called the spectral measure of the
process X.

We shall use the notation

M, (X)=sp{X(Ob: I<k, beB),
My (X)=sp{X()b: IeZ, beB), M. _(X)= () M,(X),
ke Z

where EI;A denotes the closed linear space spanned by 4 = G, A process X is
singuiar if M, (X) = M_ .(X) and regular if M., (X) = {0\

Recall that to any stationary process X one associates the unitary shift
operator U: M (X} —> M, (X) defined by

UX(k)=X({k+1), keZ.

Moreover, if E is the spectral measure of the operator U then E and F are
related by the formula

F(4)=[X(OT* E(4) X(0), 4e#(K).
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Next, we shall need the following special case of the Wold decomposi-
tion theorem (cf. [1], Theorem 8.6).

L1. Tueorem. Let X: Z ~L(B, G) be a stationary process with the shift
operator U. Then there exist two processes X* and X* with the same shift
operator U so that:

1) X{k)y= X"(k)+X°(k).

(i) M (X7} and M (X") are orthogonal.

(ii) For each keZ, M, (X", M, (X") = M, (X).

(iv) X" is regular and X* is singular.

The above decomposition is unique.

Further, we suppose that the spectral measure F of the stationary
process X satisfies the following condition:

(2)  There exists a finite nonnegative measure u on %(K) such that F
is absolutely continuous with respect to u (notation: F < ).

In particular, (2) always holds when M, (X) is a separable subspace in G (cf.
[2]. Remark 1).
The following theorem is proved in [3] (even with weaker assumptions).

1.2. TueoreM. If F satisfies (2) then there exist a Hilbert space H and an
operator Qe€L(B, L*(K, u, H)) such that for all by, b,eB

d{F(@)b )by | :
ﬂ_(“{;’ul)# = <Qb1 (Z)z le (Z)>H!

where d(F(z)b,)(b,)/du denotes the density of the scalar measure (F()by){bs)
with respect to p.

The following isomorphism theorem is a consequence of Theorem 1.2
(cf. [8], Theorem 3.3).

Let Q and H be as in Theorem 1.2 and let E denote the spectral
measure of the operator T (T as in (1)}, i.e.

3 (EN N =140 1@, [el*(K, p, H),
where 1, is the indicator of the set 4 c#(K).

1.3. Tueorem. Let F satisfying (2) be the spectral measure of a stationary
process X: Z — L(B, G). The Hilbert spaces M ,(X) and M(F) = sp {E(4) Qb:
deB(K), beB) = L*(K, u, H) are isomorphic. This isomorphism takes
X(k)b to z*Qb(z) = T*Qb.

2. Representations of stationary processes. Suppose that X: Z — L(B, G)
is stationary and its spectral measure F satisfies (2). Let ¥: Z
- L(B, L*(K, i, H)) be a stationary process such that Y{k)=T*Q for T

3 — Studia Mathematica 91.1
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and O as in 1.3. We shall refer to Y as representation of X in L"'(K u, H).
Obviously F is also the spectral measure of the process ¥.

21. ProposiTion. If X is nonsingulor, then m <€ p. Moreover,
@) ‘ m(d)y = {IIf @DNapudz), deB(K),
. K

Jor some function [ from the innovation space
W=My(Y)eM_,(Y)
of the process Y.
Proof. By the assumption there exists f e W such that ||f]} = 1. Since T

is the shift operator of the process ¥, the spaces W and T* W are orthogonal
(cf. [17). Hence (T*f,f> =0 for k+# 0 and

0 k%0,
(5) i@V@ﬂDMW)fMWMMM*% e

1f we define v(d) = L, IIf @ik p(dz) for A28 (K) then v is a finite nonnega-
tive measure on # (K} and

0, k=0

k — 3 k)

}[z v(dz)—{l, O,

By the Herglotz theorem, v = m, which gives (4) and m < .
Let heH, ||Hiz =1 We put

= {fel?(K, i, H): f(z)esp {h} for each zeK }.
Clearly, if @(z)eLZ(K, u, O then f(z) = @p(z)heW, and

If @ = j"llf,a hllfm(dZ)=£|¢(2)|2#(d2)=II¢(Z)[|2-

On the other hand, it is obvious that every function f e W, has the form f(z)
= ¢(2) h, where ¢ eL?(K, p, C). Hence W, is isomorphic to L*(K, u, ).

Choose now an orthonormal basis {e};.4 of the space H. We show that
every function f eL?(K, p, H) has a representation

(6) fley=% el2e

ied
where @; 6 L?(K, u, C) and the orthonormal series on the right is convergent
in L2(K, u, H). In fact, for fixed z €K, let (6) be the Fourier series of f(z) eH
in the basis {e};.4. Since every function f e L2(K, u, H} is separable-valued,
we can assume that there exists a sequence {i,}s, <A such that

9 1= % a6,

icm

Wold—Cramér concordance problem 35

for each zeK. For any n, we have

(Pi"(](z) <Z (Pt (‘ 1 ’ ln0>H = <f : 1"0>H

n=1
Hence Py is integrable. Since [(pino(z)!2 <@, iy eL*(K, pu, C). Moreo-
ver. the series (7} is convergent in L*(K, p. H). We have

N
lim f”f(z)— Z fPe"(Z)ei,,Hisz#(d ) = llm H @i"(z)ei"“:lzfﬂ(dz)
o K n=1 N+t

mKﬂ

= _[ (im | Y o (2e]|iudz) =0
+

N=w p=

because ||} y. s @i (26 ||k < IS (@)} for zeK and we can use the Lebes-
gue theorem. We have shown (6). Hence

LK, 1 H) = ®W, = DL(K, 1. 0.
feA icd
Denote now by P; the orthogonal projection from H onto W, . Clearly,
if £(z) is as in (6), then P, f = ¢;¢;. Let
Y(k) = P Y (k).
Since W,, reduces T, the operators T * and P, commute. Then
Yi(k) =P, Y(k) = P, T* Y (0) = T* %(0)
which proves that ¥;: Z - L(B, L*(K, u, ()) is a stationary process with the

shift operator T. Note that if ¥ =0, then Wﬁ'n is orthogonal to M, (Y) and

hence for every f € M, (Y) the vector ¢ is orthogonal to f(z) for y-almost
each z €K. Thus we may pass to the subspace of H obtained by removing.&;,

from the basis of H. By this remark we may assume that ¥ = 0 for each
icAd

The following lemma gives a connection between the process ¥ and the
family (¥} = (P, YL

2.2. LemMa. (1) P M (Y) =M (Y), ied, keZ or k=

(ll) M*m(Y) = ®It.=.& (Y) .

(i) P,M_ () € M_(Y). S ‘

(iv) If the process Y is singular then Y; is singular for each i€A,

(v) If Y, is regular for each icA then Y is regular.

Proof. M (Y)=Pisp{Y()b: 1<k beB}csp{P,Y(Db: I<k
beB! = M, (Y), thus P; M, (Y) < M, (Y) for each k€Z or k = co. Conversely,
Y. ()b = P, Y(l)b e P, M,(Y)for each b eB and | < k. Hence M, (¥) < P; M, (Y),
which gives (i). This implies that ' g

M (Y) = @P M (Y) = @ Mn(Y)
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If we take the intersection over all keZ on both sides we get

M_ (YY) N{@M (1) = D(N M (X)) = B M_(X).
keZ icd ied kel fed
Thus we have shown (ii). Conditions (iii} and (v) are immediate consequence
of (ii).
We shall prove (iv). If M_ {Y)= M, (Y), then
Yo =P Y(kbeP,My(Y) =P M_,(Y) s M_,(Y)

for each beB and keZ. Hence M (¥) & M_,(Y), which implies the sin-
gularity of ¥. The lemma is proved.

3. A concordance theorem. Now we show that if the spectral measure of
a stationary process satisfies (2) then it decomposes into an absolutely
continuous part and a singular part with respect to .

3.1. LemMa. Let F be a weakly countably additive measure on #(K) with
values in LT (B, B*) and suppose F <y for a finite nonnegative measure [ on
B(K). Then there exists a unique decomposition F = F - F_, where F, and F,
are weakly countably additive measures on 9 (K) with values in L™ (B, B¥)
such that F, <m and F, is singular with respect to m.

Proof Tet 4, be the support of the measure gu,, the absolutely
continuous part of p with respect to m. Define

F(4) = F(dndg),  F(d)=F(dn4f),

where A% denotes the complement of the set A e (K). It is obvious that F, is
singular with respect to m and F = F,+ F,. We show that F, < m. Let g,(z)
denote the density of the nonnegative measure (F(4)b)(b) with respect to u.
For 4 e #(K) we have -
(Fo(b) = (F(Adg)b)(B) = | g5(2) p(de) = ,/Egb (2) u, (dz).
Amdg

Hence for each b eB, (F,(-)b)(h) is absolutely continuous with respect to m,
Moreover, the condition F{d) = 0 is equivalent to (F{d)b,)(b,;) = 0 for all
by, b, €B and equivalent to (F(4)b)(b) =0 for each beB. This implies F,
< m. The uniqueness of the Lebesgue decomposition of the scalar measure
(F(-}b)(b) implies the uniqueness of the decomposition F = F,+ F,.

Now we prove the concordance of the Wold decomposition and the
spectral measure decomposition for the process ¥, = P, Y.

3.2. LemMa. Suppose that T is the shift operator of a stationary process
X: Z—-L(B,L*K, u, C) and X = X"+ X* is the Wold decomposition of X.
If X is nonsingular, then F, is the spectral measure of X* and F, is the spectral
measure of X*.
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Proof. Let E denote the spectral measure of the operator T (E has the
form (3)). By F y (resp. F s) we denote the spectral measure of X' (resp. X*).
For each b B we have
(8) (F (4)b)(b) = ||E(4) X (0)b]|> = [|X (O)b]*dp,

A

hence F <€ u and

() (Fy (A)B)(b) = [1X" (0B dp,
(10) (Fs(4)b)(b) = [1X°(0) b|* dp.
We define

S1 = {fELz(K3 lu'J C): Suppf gAO}s SZ = {fELz(Ks ‘U., Q: suppfg.dg},

where A, is as in the proof of Lemma 3.1. It is obvious that S, @S,
=I*{K, u, C) and S,, S, reduce the operator T. By Theorem 10.2 in [1] we
know that F,. <m. This implies that X"(0)b€S,. Indeed, otherwise there
exists a set A; = A5, u(4;) > 0, such that X" (0)b # 0 on 4,. Then m{A;} = 0
and by (9), (F,-(4,)b)(b) > 0, which contradicts the absolute continuity of

F,. Since §; reduces T, X'(k)b= T*X(0)beS, for all beB. Hence
M (X)) <8§,.
Next, we shall show that M_(X')=S;. Since M_{X") also reduces T,

there exists a set oo £#(K) such that
M, (X7) = (feL?(K, u, C): supp f <oy}

because only subspaces of this form reduce the operator T in L2(K, u, O).
The inclusion M, (X"} = 8, says that o, = d,. To prove the equality it is
sufficient to show that suppf = 4, for some function feM ,(X"). The
existence of such a function follows from Proposition 2.1. In fact, if
JeMy(X)oM_(X) then feM_(X"). By the equality
m(4) = [1f @) p(dz)
4
fdoes not vanish on a set of positive Lebesgue measure, thus also f does not
vanish on a set of positive p -measure. Therefore M, (X') =S, and
M, (X*) ©8§,. Hence for all b €B, supp X*(0)b = A5 and (10) implies that F s
is singular with respect to m. Furthermore, for all b€B we have
(F (4)b) () = [|E(4) [X" (Q) b+ X* (0) 2]II> = ||E(4) X" (0) bl|* + | E () X* (0) bI|*
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because E(4) X (Vb eS,, E(4) X*(0}beS, and the subspaces S, and §, are
orthogonal. Consequently, F = F +F,s and from Lemma 3.1 we have F .

=F,and F.=F.
Now we prove our main result.

3.3. THEOREM. Let X: Z — L(B, G) be a stationary process, X' the regu-
lar part and X* the singular part of X. Suppose that the spectral measure F
of X satisfies (2) and there exists a representation Y: Z — L(B, L*(K, ut, H)
of X such that for some orthonormal basis \e;c.q in H

(11)  The process P;Y is nonsingular for each i€A.
Then F, is the spectral measure of X* and F, is the spectral measure of X*.

Proof. As above we denote by S, the set of all functions from
L2(K, u, H) with supports in 4, and by §, the set of all functions with
supports in A§. The equalities analogous to (8)}10) are also true, ie.

(F(A b)) = [IY O blGdu, {F, (b)) = [IIY (O blZdu,
4 . A
{F,.(4)b)(B) = [lIY*(O) bl dn.
A

Since F,, <m (cf. [1]) the argument used in the proof of 3.2 gives
M, (Y") < 8;.By Lemma 2.2(iii) it follows that P, ¥*(0)b e M _ ,,(Y) = M ().
Since Y, = P;Y is not singular, by Lemma 3.2, P, Y*(0)beS, in L*(X, u, C)
for all ieA. heB. Hence Y*(0)heS, in L*(K, u. H) (because by (6), Y*(0)b
=Yiea P, Y (0))) and Fs is singular with respect to m. Since S, reduces T,
we have M, (Y*) €85,. Again as in 3.2 we get F = F :+F s, which implies
Fu=F, F,s=F. Obviously F,r=F, and F = F,s, which completes
the proof.

34, Remark. The assumption (11) depends on the choice of the ortho-
normal basis in H (cf. 4.2). We may formulate the condition independently of
the choice of the basis in the following way:

(12)  For each hcH there exists a function f, e M, (Y) such that P, f, # 0

and P,f, is orthogomal to P, M,(Y) (P, denotes the orthogonal
projection onto W)

The condition (12) is equivalent to the fact that (11) holds for any choice of
the basis. An example of a nonregular process satisfying (12) is given in 4.3.
Notice that P, f{z) == {f{z), hdgh for every fsL*{(K, u, H), heH, |H| = 1.

3.5. CoroLLARY. If there exists a representation of X satisfying (11), then
Jor all beB, X*(“)b is the regular part and X*(-)b is the singular part of the
one-dimensional process X () b.
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Proof. For each heB, X{-)b is a univariate stationary process and
(F(-)b)(h) is its spectral measure. Moreover, X (-)b = X"(-}b+X*(-)b. If
X'(-}b =0, then X(-)b=X*(-)b is singular since by Theorem 3.3 its
spectral measure is singular with respect to m. Suppose now that X" (-)b # 0.
By Theorem 3.3 its spectral measure is (F,(-)b)(b). Lemma 838 in [1] implies
that X" (-)b is regular, hence (F,(-)b)(b) as the spectral measure of a regular
process satisfies

Since (F,(-)b)(b) is the absolutely continuous part of the measure {F () b)(b),
(13) implies that X ()b is nonsingular. As for a one-dimensional nonsingular
process its decompositions are concordant, (F,( -)b)(b) is the spectral meas-
ure of the regular part and (F,( -)b)(b) is the spectral measure of the singular
part of X ()b, which completes the proof.

3.6. CoroLLary. If T is the shift operator of a process X: Z
- L(B, L*(K, p, €)) and X(-)b is regular for all beB, then X iz either
singular or regular.

Proof. In this case the nonsingularity of X means that the condition
(11) holds. Coroilary 3.5 implies that X (k) = X" (k), hence X is regular.

3.7. CoROLLARY. If the spectral measure of a stationary process Y: Z
—L(B, L*(K, u, H)) is absolutely continuous with respect to m, then either Y
is reqular or for any choice of an orthonormal basis {€}ica in H there exists
icd such that P;Y is singular. ‘

Proof. This follows immediately from Theorem 3.3.

4. Examples. In this section we will give several examples related to
Theorem 3.3. The first shows that the nonsingularity of a process X is not
sufficient for the concordance of the Wold decomposition with its spectral
measure decomposition.

4.1. Exampie. Let B =sp |2 k> 0] = I*(K, m, ). B is a Hilbert space
with the orthonormal basis iz*: k= 0l Lef X,(0)(z9 =z7% k= 0. Clear-
ly X, (0) uniquely extends to a linear isometry X, (0): B—=L*K,m, C). Let
X, (0 f =f, feB. If we put X,(k) = T X, (0), X,(k) = T* X,(0), keZ, then
both X X are stationary processes. It is easy to show that M (X))

M (X)) =L*(K, m, C) and .

Mk(X1)=5'{TI “mlgk, n20} _p gk, nz0]
=sp {2t 1<k},

M,(X,) =sp iz I<k, n20} =sp{z™ meZ} = L}(K, m, )
= M (X5).
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Hence X, is regular and X, is singular. Now we put

Xik) f =(X1(k)f, X,(k) f), [feB.
Then X: Z - L(B, L*(K, m, CH), X(k) = T*X(0). We have

M(X)=sp iz " 2" 1<k, n2 0}

Hence all functions of the form (0, z'—z"2), e Z, (z!~2z""2, 0), | € k, belong
to M, (X). We claim that

14) sp {z¥—2¥"2; keZ) = I*(K, m, C).
( p j

Suppose that feL*(K, m, C) is orthogonal to z*—2z*"2 for all keZ.
Then

(15) [feFdm = | f= 2 dm,
F.4 K

Let f =32 ., &z" be the Fourier series of f. Then a; = [ fZ*dm and (15)
implies that

..:H_2=a0=a3=a4=.4., ___=(;]__1z{,11=a,3='H

Since || 11 =Y -, lad?, @ =0 for all keZ. Hence f = 0, which gives (14).
This implies M, (X)=L*(K,m, C*) and M_,(X)= {0} xL*(K, m, C).
Therefore X is nonsingular, X" (k) = (X, (k}, 0) and X*(k) = (0, X, (k)}. It is
easy to show that both X" and X* have absolutely continuous spectral
measures, hence this yields the example we were looking for. Notice
that for this process the condition (11) does not hold.

The next example shows that the condition (11) depends on the choice
of an orthonormal basis in H.

4.2. Exampie. We define the measure u on #(K) by
m(d) if 1¢4,
4) =
wd {1 it 4 =13,
Let
1 fz#1,
fol@) :{ 0 ifz=1.
The system of functions {1 —fp, z%fy: keZ} is an orthonormal basis in
L*(K, p, €). Let B=sp{l—f,, 2fp: k > 0}. We define a pair of stationary
processes with values in B. Let X,(0)(1—f,) =0, X {0y (2"fo) = z7% 1,
X201 =fo) = 1=f5, Xy (0)("fo) =z7*f, for all k2 0. X,(0) and X,(0)
uniquely extend to linear continuous operators from B into L*(K, i, C). As
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above, X, (k) = T* X, (0), X,(k) = T*X,(0) for each keZ. If we put X (k) f
= (X1 (0 /. X2() f), f€B, we get
Mi(X) =5p {(0, 1), (z"fo, 2'fo): n< k)

(notice that T'(1—f,) =1—f,) and hence M_ ,(X)=sp {0, I—fy)! = 10}
x8,, where S5, is as in the proof of Lemma 3.2. Therefore, for each k 6Z,

KR —fo) ==(0,1—=fo).  X'()(z"fp) =(0,0), =m0,
XK (I=fo) =(0,0, X (k) z"fe) =("""*fo, 27" ), nz=0.
Let feB. Then f=a(l—fo)+ 3 &oa fo2* and

o

(F)F)S) = ED X O fIP = ||ED) [X O a1 ~f) + X O T a fo2]|?

=0

k=0

= §1T afor™ P+ X afor™P)dm+ 1o [dn
A k=0 A
=2 [l dm+ (£ (1) 1 (4),

where f;(z) =Y 2 oar foz " In the same way we get

(Fu (U = 2{1fi1Pdm,  (F (A} 1)) = If (D w(4),

1
where g, denotes the singular part of u with respect to m. Hence F,, =F,,
Fy=F,.
Consider now the following orthonormal basis in CZ:

1 1 :
e, =——=(—1,1), e;,=—+=(1,1).
LT 7
Then

X~ =5~ =fo), T=Foh  Poy XOFES) = (0, 0

- 1 . N -
P, X(O)(1—~fo) = 5(L—fo, 1=fo)h  Pu, X(O)(2"fo) = (=" "fo, 27*f3).
This shows that the projection of X onto W., 1s a singular process. Hence
(12) is not satisfied in spite of the concordance of the decomposition.
Finally, we show an example of a nonregular process satisfying {12).

4.3. Exampie. Suppose that i, B and X, (k) are the same as in 4.2. We
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put X, (0)(2*f) = 2" *fy, X, (0)(1—fo) = 1—fo. As above, X, (k) = T* X, (0)
and X (k) = (X, (k) f, Xo(k) ), f €B. We have
(X)—SP M1 ~fo, L=Ffo), (22" fo, 2"t fo): 1€ Z, n <0},

It is easy to verify that all functions of the form (f5{z*~z57"), 0) and (0, fy (z*
*71)), keZ, belong to M, (X). As in 4.1 one can prove that sp {fy(z*

—z¢"Yy: keZ) =L (K, m, C) =§,. Hence
M, (X) = (S, xS)@sp {(1~fo, 1=fa)]
In the same way we get
Mo(X) = SP 2 for k

(‘BSP (1 =fo, 1=fo))
and M_ . (X)=sp (1—fo, 1 —fo)}. Therefore X is nonregular.
Let (a, eC? {a*+|h* =1, and [ =(f,. L M, (X). The projection
P, onto the subspace W, has the following form:

Py [ =(a®f, +abf,, abfy +b2[5)

(in the generﬁl case in L.?. (K1 s H)n th(z) = <f(z)! h>Hh! h‘EH7 Hh!l = 1)' If
we take f(z) = (zfy, 2%/5) €M (X)), then Py, f # 0. The formula for M,(X)
easily implies that

Pun f =(azfo+abz?fy, abzfy +b* 2% f)

is orthogonal to P, M(X) for every (a, b)eC? |a|*+|b? = L.
Similarly to 4.2 one can verify that for this process the concordance of
its decompositions holds.

42 G. Hajduk-Chmielewska

—l}xggizkfo: kg — EBSP (fo, fo)}
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Added in proof (March 1988). It turns out that Lemma 3.2 is a special case of Corollary 3.8
of the recent paper by A. Makagon and H. Saleht, fafinite dimensional stutionary sequence
with multiplicity one, Ann. Acad. Sci. Fenn. Ser. AT Math. 1 (1987), 135-150.



