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Spectral trajectories, dwality and
inductive-projective limits of Hilbert spaces

by
8. J L. van EJJNDHOVEN (Eindhoven) and P. KRUSZYNSKI (Delft)

Abstract. An explicit representation of the topological dual of the inductive limit space
“ , generated by a colllection # of s.a. operators, has been found in the form of a space of
spectral trajectories. i.e. vector-valued measures with the orthogonal scattering property. This
paper is a continuation of [5] completing the previous theory. Ilustrations of this type of
spaces can be derived from distribution theory and Gel'Tand triples theory. At the end of Section
5 we give a short summary on these matters.

Introduction. Let H be a separable Hilbert space. Let £ be a semiring of
Borel sets in a locally compact topological Hausdorff space 4, and let o (X)
be the g-algebra generated by X. In general, ¢(ZX) is essentially smaller than
the field of Borel sets in A. As a model may serve the s-algebra of Borel
sets generated by cylinders in a Tikhonov product space [[ A,, xel. Let E
be defined on ¢(Z) as a projection-valued o-additive set function. Exam-
ples of such a “spectral measure” can be obtained from the joint spectral
measure of a strongly commuting family of (unbounded) s.a. operators in a
Hilbert space {cf. [1]). In particular, we shall consider generating families of
operators and their strong commutants in the sense of [5], and in the sense
of commutative group theory.

The basic notion of this paper is the notion of “spectral trajectory™
(controlled by a projection-valued measure E), 1., an H-valued set function &
defined on the semiring X such that for any 4, 4'eX

(0.1) E(AyS(4) = (4 na).

For a given measure E the collection of all E-trajectories forms a linear
space over C'. Moreover, this space is a maximal biorthogonal family of
countably addilive orthogonally scattered measures over A and its unique
propagating spectral measure coincides with E {cf. [9]).

In our previous paper we have constructed an inductive limit &, of
Hilbert spaces, originating from the generating family # of bounded s.a.
positive operators in H. In the present paper we characterize the topological
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dual of the space &, in terms of spectral trajectories controlled by the joint
spectral measure E of the family #. However, some of the results are
interesting on their own. So we begin with a slightly more general setting.

The idea to represent the dual space of a given topological vector space
&, by means of a space of measures (vector measures in this case) is in fact
suggested by the Riesz representation theorem for continuous functionals
over Banach spaces of continuous functions.

We believe that the present approach provides an interesting global
point of view on the notion of duality in the theory of generalized function
spaces.

The main reference is our paper [5], some technicalities come from [4],
[9], and [6]. An extensive study of the theory and its bacground can be
found in the book [3]. We use freely the general results and facts from the
theory of locally convex topological vector spaces, for which the monograph
[11] is the most appropriate reference.

The paper is organized as follows.

In Section 1 the basic noticn of A-bounded trajectory is intreduced and
its basic properties are discussed. In Section 2 the essential decomposition of
an A-bounded E-trajectory is proved, also assumptions are formulated which
link the present approach to our previous results on 5 spaces [5]. Section
4 contains considerations on topological duality between the space of #-
bounded trajectories and the topological dual to the space . There the
main result of the paper is formulated establishing a topological identifica-
tion between the space Ty and the topological dual of the space #y. It is
closely related to distribution theory and Gel'fand triples discussed in [4-8].
Examples are presented in Section 3.

1. A-Bounded trajectories. Let us recall the definition of spectral trajec-
tory (cf. [4]). ' ‘

Let H be a separable Hilbert space, and let X be a semiring of Borel
subsets of a locally compact topological (Hausdorff) space 4, i.e.. a family of
sets which is closed under the operation of finite intersection and which is
such that the monotone difference of any two of its members is a finite
digjoint union of elements of X. Let ¢(X) denote the c-algebra generated by
X and let E: o(Z) — Proj H be a projection-valued g-additive measure over
¢(X), Without loss of generality, and in the light of applications, we can
assume that the set [E(d)x; 4e€ZX, xeH) is dense in H.

Derinrmion 1.1, A set function &: I — H is called a speciral tr.ajeémry
controlled (or propagated) by the spectral measure E if for any A, 4’
(1.2) E(A)E(A) = E(4 n 4.

For brevity’s sake we shall say that ¢ is an “E-trajectory”. The collection
of all E-trajectories will be denoted by Mg.
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The simplest example of an E-trajectory is
{1.3) E(dy=E(d)x with xeH.

Observe that the spectral trajectories thus defined are precisely the
countably additive orthogonally scattered (c.a.0.s.) measures in the sense of P.
Masani [10], ie, for any 4, 4'€X such that A nd’ = @, £(4) LE(4), and
E(Uid) =3 ¢(4) whenever 4, nd; =@ for i#j and |J 4, €X. Moreover,
M; is a maximal biorthogonal family of ¢.a.0.s. measures, ie, for any
£, FeMp and 4, 4'€Z with 4 nd" = @, we have £(d)..&(4). However,
our terminology (i.e, spectral trajectory) is justified by the explicit use of the
spectral measure E.

A spectral trajectory is called bounded if sup {}|(4)]: 4€Z} < co.

Dermvition. 1.4, Let 4 be a normal (not necessarily bounded) operator
in H, commuting strongly with E(4), 4X. An E-trajectory & is called A-
bounded if: ’

1) For any 4 €Z, E(A)eF(A).

2) sup {[{AE(4)||: e} < co.

In other words, the set function Z24 — A£(A) e H is well defined and it
i1s a bounded E-trajectory.

If # is a collection of normal operators strongly commuting with all
projections E{d), 4 X, then we put:

(1.5) Ty = {EeMgpi E'ts A-bounded for every Ac#}.

Lemma 1.6, Let ¢ be a bounded E-trajeciory. Then there exists xeH
such that for every AeX '

.

E(4) = E(4)x.

Proof. Consider the net {&(4)} ., where Z is directed by set inclusion.
It is uniformly bounded in H, thus it admits weak cluster points. Let xeH be
one of them. Then ||xi| < sup {Ji¢(4)]]; 4€Z). Let 4eX. Then for every ¢ >0
and ze€H there exists A'=X such that 4 = 4" and
[(E Az, x—& (A'))[ <§.
Thus |(z, E(4)x—E(A)) <& Since zeH and &3>0 are arbitrary, E(4)x

c=£(4) for every A€Z. a

Although x is not unique, we can force it to bé by taking its projection
onto the closure of the subspace 7, = [£(4): 4 €X7, and then lifting it back
to H. The vector so constructed will be denoted by x,.

DermviTioN 1.7. x, is the unique vector in H such that for every A X
E(d)xy=¢(4), xseDP¢.

MNow the next result follows easily:
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ProposiTioN 1.8. Let & be a family of normal operators which commute
strongly with the spectral measure E over the semiring X. Then for each Ae
and & & Ty (cf. 1.5) there exists a (unique) vector &, €H such that Jor any A€Z

(19) E(4) &4 = AE(A).
Remark 110,
€.l = sup {|AE (M 4€Z].
Let us introduce the following seminorm on the linear space Ty:

(1.11) Tp2é = lElla = IE4ll-

The locally convex (possibly non-Hausdorff) topology over T, generated
by the family of seminorms || |4 will be denoted by 7.
Now let us define for every A< the space

(1.12) H,= &4 LTyl

For every Ac#® the space H, is a Hilbert space in which the norm is
induced by the norm from H. On the other hand, for any Ac# we can
introduce a scalar product in the space T, by the formula:

(1.13) (8, 8Na=(C4, € Tor &, STeTy

Clearly [i£l1Z = (£, 8-

Let us denote by A7+ H the Hilbert space resulting from the comple-
tion of Ty/Ker| |4 with respect to the norm induced by the canonical map
T — Ty/Kerl ||, (to make the notation compatible with the one-used in
Section 3).

Remark 1.14. The Hilbert spaces H, and A~ ' -H are isometrically
isomorphic.

Remark 1.15. Let 4 be a normal operator strongly commuting with £
over 2. Let

Tu, = £ eMg: & is A-bounded).
Then the set @r, = f£(d): deZ, €Ty, is dense in H.

Proof. Let E, be the spectral measure of A. Then for every bounded
Q<= C* and for every xeH, E,(2)xeZ(A). Hence the c.a.0.s. measure

34 =E(4)=E(4)y, with y=E, (Q)x,

is A-bounded. However, all E(4) commute with E,(G). Thus E, () E (4} x
=&,(d4). Suppose now that for some zeH, {z, E,(Q) E(4)x)=0 for all
bounded Borel sets @ and all 4 eZ. Since x&H is arbitrary, for each @ we
have E {2}z =0. Hence z = 0 and the result follows. @
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CoroLLary 1.16. If a normal operator A commutes strongly with the
spectral measure E over X, then for every bounded Bovel set @ < C' the
mapping X224 = E(AYE,(Q}x is an A-bounded E-trajectory for each xeH.

2, Factorization theorem. It has been proved in [9] that every (bounded)
H-valued c.a.0.5. measure & over a semiring X can be represented in the form
£(4} = E«(4) x, where xeH and E; is a projection-valued ¢-additive measure
over o(Z). However, in the case of E-spectral trajectories this statement
reduces to a trivial one, since the measure E, is simply given by the
controlling spectral measure E. We shall show that for an E-trajectory £
which may not be bounded, but merely A-bounded, there is still an analo-
gous representation, however for the price of “smoothing” by means of an
“A-bounded” operator L.

For this we need to introduce a class of #-bounded operators.

Dermvmion 2.1 (ef. [53, Def. 2.1). Let # be a family of normal operators
in a Hilbert space H. A densely defined operator L is #-bounded if the
operator LA is densely defined and bounded in H for every Ae#. The
collection of #-bounded operators will be denoted by #B(H). If 22 = {A},
then we say that L is A-bounded.

Dermaition 2.2 (cf. [5], Def. 2.4). Let # be a family of normal operators
in H with a joint dense domain. Let 2% < #%(H). The set

#° = {K eRB(H): for each K'e X and AeR,
KK', K'K e®#B(H) and KK'A = K'KA)

is called the B-commutant of X , and the set ™ = (X"F is called the %-
bicommutant of X

To prove the main result of this section we have to strengthen the
previous assumption that the set {E{4}x: A eZX, xeH} is dense in H. Also
the semiring X should be endowed with some additional structure, which
imitates the properties of bounded Borel sets in R". This provides a possibili-
ty to control the “asymptotic” behavior of unbounded operators. Here we
follow our previous paper [5].

(23) . AssumprioN 1. In X there exists a countable family Z, = {4,} & ¥
such that: '
(a) The family ¥ is locally X,-finite, ie., for every 4 €X there exists ng
< oo such that 4 < {2, 4,.
(b) The set {E(4,)x: 4,e%,, x€H} is dense in H.

This apparently natural assumption is nor automatically satisfied, not
even in the case that ¥ origihates from the spectral sets of an {uncountable)
generating family # in the sense of [5].

4 ~ Studia Mathematica 91.1
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Remark 2.4. If Assumption I is satisfied then sup E (d4,) = 1. thus we
can assume that E(4,)E(d,)=0 for n#m, and Y, E(d,) = 1,.

Proof. Ifsup E(4,) # 1y, then there exists z € H such that E{4,)z = 0 for
evety n. Thus z L{E(4,)x: xeH, 4,eZ,}, and hence z=0. The result
follows. =

Suppose now that the family # consists of (not necessarily bounded)
operators related to the semiring & with properties analogous to the ones for
a generating family of operators in the sense of [5]. These properties form
the operator-theoretic counterparts of the properties of a semigroup of
functions with a well-defined asymptotic behavior (see [6]).

(2.5)  Assumerion II. 1) For every Ae# there exists Bes# strongly
commuting with 4 such that for all fe%(4)n ¥ (B)

If, AN <IBAI>  (or |42 F1) < IBf1D).
2) For every n=1,2,..., and every xeH, E(4,)xe(A4) for each
AeR,
3) For every n=1, 2,..., and every A e#, there exists Be# and a
constant ¢ > 0 such that

n2|AE(4,)l < ¢ inf ||BE(4)¥.
lyll=1

4) For every n= 1, 2, ..., there exist A =# and a constant ¢’ > 0 such
that for every fe@(AY?) with 4AYV2f =0

IE(4.) £l < ¢'|| A1
5} For every n=1,2,..., E(4,) €4

The above Assumption II 13 a generalization of the notion of generating
family of operators in the sense of [5] to noncommuting unbounded s.a.
operators. In [5] all members of the family # are assumed to be bounded,
positive and commuting. In general, it follows from (2,3) and (2.5) that for
every 4 eX the operator E(4) is #-bounded. In fact, the strong Assumption
I1.5 is satisfied in all interesting cases. Without this assumption, however, we
should extend the family % by {E(4,}}. We could as well assume that all
E(4,) belong to the center of the von Neumann algebra 2 generated by the
spectral projections of the elements of . However, this condition would be
more difficult to check.

LemmMA 2.6. Let f % (A) for every AeR. Then Af =0 jfor every He# if

and only if f = Q.

Proof. Since by (2.5) for every n =1, 2, ... there exists A €4 such that
IE(4,) FII* < |(f, A), we bave E(4,)f =0 for every n. Thus, by the density
assumption (2.3), f=0. = : : :
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LEMMA 27, Let the semiring X have the property that for each AeX and
each xeH, E(d)x & Z(A) for all AR, and let A, BeR be two s.a. operators

which strongly commute (i.e., their spectral projections commute). Then for
every ¢ €T,

AfB = BfA

Proof. First we note that both sides of the above equality make sense,
le, {4€2(B) and Iz (A). Indeed, for every 4 X, E(4)¢, = AE(4) and
E(d)eZ(A4) n7(B). Thus BE(4){, = BAE({A) = ABE(A).

Consider the linear functional on the set D= WE(A): EeTy, AeXl:

${d) = (AL (4), L) = (E(A) AL (4), $p) = (AE'(4), BE(4))
= (£'(4), ABE(4)).

This functional is bounded on the whole space H = %y , (cf. Remark 1.14).
Hence &gze%(A). Similarly &, €% (B).
For any 4d€X, zeH, we have

(E{A)z, ALp) = (E(d)z, ABE(4)) = (E(d)z, BAE(A))
= (E(d)z. BE(4)&,) = (E(d)z, BE,).
Since the set |E(A)z: A€X, zeH) is dense in H, the result follows. =

Cororrary 2.8. If Assun.tp-_tions I and IX are satisfied, then & €@ (A) for ‘
all Ac® and all €T,

THECREM 2.9. Let Assumptions 1 and 11 hoid for a family of normal
operators # which strongly commute with the measure E over Z. Let £ be a
c.o.0.5. measure over L, Then & € T, if and only if there exist a s.a. operator L
in # and an x€H such that for every 4e€X, £(4) = LE(4) x.

Proof. By the assumption, E(d) e # for every 4 €. So by (2.5), £(4)
= LE(d4)x is an E-trajectory. Since L is #-bounded, so 1s £, ie, £eT,.

Conversely, let £eT,. Consider the sequence y, = ¢(4,) with A4,eX,,
d,nd,, =@ for m# n and y, E(4,) = 15 (see Remark 2.4). Define », = ||yl
Since

5 |t v < 3 < co

the series

(2.10) }; (147 ) Y
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converges in H, and so y eH. Define

o
@11) L= w,E4,).

n=1
We shall show that L is #-bounded. Let Ae%. Then LA is densely defined
(on {E{4,)H: neN}). We have

sup(nr,,HAE )< ¢ sup((l/n)r (1B E(4)™*)

where Be## and ¢ > 0 are chosen as in Assumption IL3. Further, we have
rp== (1B E(4,) Egll < [1B™1E(A,) 114l
This makes sense by virtue of Proposition 1.8. Thus, by {2.11), we have
ILAll < ¢[|all < o0,

ie., L is #-bounded. It obviously belongs to #* {even to #*,). Now an easy
computation shows that E{A)=LE(d)y. &

Remark 212, If the family # does not satisfy Assumption 1I, we still
obtain the formula £(d4) = LE(A)x, however, the operator L given by (2.11)
will not be #-bounded, which makes the results much less interesting.

3. Locally convex topologies on T,. As in Section 1 let # be a family of
normal operators in H strongly commuting with the spectral measure E over
the semiring Z. Let T} be the space of %#-bounded trajectories in H as before.
We consider T, as a locally convex topological vector space endowed with
the topology 7, generated by the family of seminorms || |i,, A€# (cf.
{1.11)). To make the topology t,,; Hausdorff it is enough to assume that the
family # is separating, ie., for every feH, if fe2 (4 (4) and Af =0 for all
Ae, then it follows that f = 0. So, if Assumptions I and II are satisfied,
this condition holds and 1, is Hausdorff (cf. Lemma 2.6). Under the
assumption that £ is separating, we have the following easy observation,

ProrositioN 3.1. The space T, with the (Hausdorff) lc. topology Tproj 19
homeomorphic to the projective limit space of the family of the Hilbert spaces
H,, ie., to the projective limit of the family {H } ;.4 With respect to the family
of projecrions iy Ty —H,y, where n, (&) =¢,

The main result of this section is the representation of the space
(Ta Tpo) 88 an inductive limit of a family of Hilbert spaces. However, to
obtain meaningful results we have to assume that the semiring £ and the

family 2 satisly not only Assumptions I and II, but also the following one.

{Let as before £ denote the bicommutant of the family % in B(H), ie., the
von Neumann algebra with unit generated by the spectral projections of the
elements of 2.
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(3.2)  Assumprion HI. Let
A = {Le#": for every L' e ™, I Le®"}.

Then for every Qe#'™ there exist Ae# and a number ¢ > 0 such that
0* 0 < cA? (weakly, on a suitable domain).

Elements of #'" can be seen as “smoothing operators” which behave
“nicely” at infinity with respect to the spectral measure E and the semiring Z.
Thus, owing to Assumption I14, the elements of #™ map T, into &,.

Using the factorization theorem 2.9 we can represent the space T}, as the
union of the linear spaces L-H, Le#*, (#°, = {Leg® Lz 0}), defined as
follows:

32) L-H={{eTy {(d)=LE(d)y for all 4eX and some ycH}.

Let, for Le##(H), p(L) be the orthogonal projection in H onto the
closure of the linear span of the set {LAH: A&}

Prorosirion 3.3. Let & &el-H for some Le®#™.,. Then the formula
(&, &) =y, ¥)g. where £(4) = LE(A)y and £ (4) = LE(A)y', defines a Her-
mitian scalar product in the space L-H. Thus L-H becomes a Hilbert space.

Proof. It is easy to observe that if £(4) = LE(d)v, = LE{4)y, for all
AeZ, then p(L)y, = p(L)y,, ie., the scalar product (¢, &), is well defined.

To show that L-H is complete we note first that by virtue of (2.5) for
every LeZ#*, and AeZ, LE(4) is a bounded operator in H. For each
fe%(LE(4)) we have

ILE(d) fll = lE(Q) LE(4) f1] < ¢'[|AY2 LE(4) f
s ('[|BLE(4) fl < 'IILBYIif1).

Thus for every x€H the mapping 234 - LE(4)xeH is a well-defined -
bounded E-trajectory. In particular, if a sequence {&,} in L-H is convergent
in the norm || ||, then {(4) = LE (4)limy (p (L) ys), where & (4) = LE({d) y, is
its || |[o-limit, and the result follows. =

Now using the (algebraic) identification
Tg= U L H
Led™,

we can introduce in Ty an inductive limit topology t,,, induced by the
family of canonical embeddings of the Hilbert spaces L-H inte T, directed
by the usual ordering of s.a. positive operators from %, Recall that a convex
circled set O « Ty is open in the inductive limit topology t,,, if and only if
the set O ~L-H is open in the Hilbert space L-H. Since for every 4 e# and
LegF®, the operator LA is bounded, the seminorms  Tz3¢ -»||&]|, are
continuous in the iopology 7,,4. Thus 1,,; is stronger than 7. To prove the
converse we need the following crucial result.
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Prorosition 34 (cof. [7], Proposition 2.2). Let Assumptions 1-111 hold,
and let O © Ty, be a convex null neighborhood such that for every Le #%, (H)
the set O L H is open in L-H. Then there exist A€ and a number 6 >0
such that the set

Vsa = &€y 184 <)
is contained in Q.

Proof. We give here only an outline of the rather technical proof which
in main lines coincides with that in [4-7] (eg. ¢f Lemma 5.5 in [7]).

Our aim is to construct a suitable element A .4 and to find § > 0 such
that ¥; 4 < O. Notice that O n L-H is open for every Leg#*, . It follows that
for every 4,6€X,, O nE{A,)H is alsc open, where we identify E(d4,)H with
its image E(4,)'H in T, under the natural embedding Hzx —¢&,eT, (cf.
1.3). Let #, denote the radius of the largesl open ball in E(4,) H contained in
ONnE(4,)H, ie.,

r,=supio=0:if {eE(4,)H and sup|lE(4,) ()i <g, then &0},

Now let us define the operator

s

Q=2 2(n*/r)E(4

1

1

]

After easy calculation and extensive use of Assumptions [ and IL, it can be
proved that Qe &' (of. Lemma 3.5 in [5]). Now, owing to the “ad hoc”
Assumption III, we can find 4 €4 such that Q < ¢4 (in the weak seuse on a
suitable domain). Define § = 1/c and take

Via= {ﬁf ETgt 1l = IS4l < 5}-

Observe that since

nlsulgllE(A,,)c’f(A)ll =47, supllQE{A) E(A)| € deralEllq <7

de de X

we have, for every neN, n*E(4,) ¢ €0. Thus, once again using the standard
method originating from [8] (cf. [4]), we can prove that every ¢ eV, splits
for each nyeN into the convex combination of elements of O:

[4]

&= 3 (1A2n)) 202 E(4,) ¢,

n=1

and the rest £, which tends to 0 in L-H as ny 200, Since ONL-H is a
convex neighborhood of zero, the result follows, ie, {0, &

Taking into account Proposition 3.4 and the previously stated fact that
Tig = Tproj WE Can formulate the following result.
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 THEOREM 3.5 (cf. Theorem 5.19 in [5]). The lc. space (T, Toro) 1S
homeomorph!c to the inductive limit of the directed family of Hilbert spaces
{L-H veg. provided Assumptions I-1II are satisfied.

Now we present another useful result which follows from Theorem 3.5:

THEOREM 3.6. Let # be a generating family of operators satisfying As-
sumptions =111 A set # < Ty is bounded in . if and only if there exists
Le#* such that # <= L-H and # is bounded in the space L-H.

Proof. The idea of the proof is roughly the same as of the proof of
Theorem 2.3 in [6]. Therefore we present only its main steps.

Suppose first that a set 4 in T is contained in L-H for some Le#*, .
Then # is 7,4-bounded in T, whenever it is bounded in L-H, because the
embedding L-H - T}, is 7,-continuous. Thus, to prove the theorsm it is
enough to show that every bounded set # in T, is contained in L-H for
some Le#°,. For every neN we define the numbers

5, = siugi!A;lE(dn)fA,,“,

where the A4, are chosen as in Assumption [14. Now we define the un-
bounded operator L by

L= Z ns, E(4,}.
n=1

It follows from Assumption’ [.3 that Le#2(H), and hence Le#™..
For every £ €# the series

o0

Y (Yns)) A7 E(4,)E,,

n=1
5,70

is convergent in H. Denote its limit by x,. Since [[x/| < 1/n% the set &,
= {x,eH: {4} is uniformly bounded in H. It is easy to sce that &
= L‘%O = L'H. -]

4. The inductive limit space ', and dmality. At the beginning of this
section we shortly recall our construction of the inductive limit space Fg.
Here # is a given generating family of commuting bounded positive opera-
tors satisfying Assumption II with respect to a given semiring Z. In our
previous paper [5] the semiring I consisted of measurable subsets of the
joint spectrum A of the family 2, with the following property: for every 4 X
there exists 4 €2 such that E(4) < ¢” A, for some positive number c¢”.

In the present paper the measure E is the joint spectral measure of the -
family #. Tet us recall the precise definition of a genera.tmg famlly of
operators:
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Derinrion 4.1 (ef. [5], Sect. 1} Let # — B(H) consist of bounded
seifadjoint operators in the Hilbert space H. £ is called a generating family of
operators if:

1) The above-defined semiring £ satisfies Assumption I

2) # satisfies Assumptions I and JII with respect to the semiring X.

3} All members of # mutually commute, are positive and bounded by 1,,.

4) # is directed by the usual ordering relation in the cone of positive
bounded operators.

If # < B(H) is a generating family of operators then we can construct

an inductive limit of Hilbert spaces
=9091 == U AH;
Ae®

where AH = {Ax: xeH} is a Hilbert space with norm given by AHss
—+|Isll.s = ljr(A4) xI|. Here r(A) is the right support of the operator A (cf. [5]).
The present notation is not misleading since we can embed ¥, into T
putting emb(s)(d) = E(MN)r{d)x for any se5, of the form s= Ax,
Ae#, xeH. -

In view of the results of [5] it is enough to consider %, as a locally
convex topological vector space with the lc. topology given explicitly by the
family of seminorms ||s||; = ||Ls||, Le#=. (#* is a GB*-algebra, ¢f. [5]). The
space .9, thus constructed is bornological, barrelled, sequentially complete
and reflexive.

In this section we discuss the duality between the spaces %, and Ty, In
first instance, only under Assumptions I and II, we show an algebraic
identification of the space T, with the strong dual space &, of the space
4 and vice versa.

However, to prove the topological identification of these spaces we have
to strengthen the assumptions by imposing also Assumption IIT on the
family 2 and the ring Z.

Now let us define the following pairing between the spaces %, and T,.

DerFinrion 4.2, Let £eT, and se &, with 5 = Ax for some 4&# and
xeH. Define

&, 8 =S4 Dus
where £, is given by Proposition 1.8.

It is easy to see that the numbers (£, s> are well defined and do not
depend on the decomposition s = Ax,

Prorosition 4.3. The fimction
T.‘Q X y.‘ﬂa(é: S) - <£> S>EC'1
is a nondegenerate sesguilinear form.

We omit the rather technical proof based on the fact that the vectors of
the form E(4)x, 4 €Z, x €H, constitute a dense set in H.
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Now we shall formulate a result which is an analog of the Riesz theorem
concerning the representation of continuous linear functionals on spaces of
continuous functions by (Radon) measures.

THEOREM 4.4. Let & be a generating family of operators (as defined in
Def. 4.1) satisfying Assumptions 1 and II. Then the spaces 5, and T, are
algebraically isomorphic. The same holds for the spaces Ty and F4.

Proof., We shall prove the existence of the following antilinear injec-
tions:

45) ti S T
(4.6) tr: T = P

@n Be: Ty S,

(4.8) B2t Fa = T

and the identities

(4.9 _ ayoy =idg, wpe; =idg,,
(410 BBy =ide, Bafy =idr,,

let se &y £cTy Define
oy (S)(é) = <§1 S>* = (x: éA)H:

where s = Ax, Ac®, xcH. It is easy to see that the antilinear mapping
Fa2s ou(si(-)elf

is well defined, where Tj is the algebraic dual of the space T. It is obvious

that for every se %, the mapping T,3¢ —a,(5)(£) is 1,,-continuous, hence

o, (8) €T, _ '

To construct o, let us consider ¢ €T;. There exists A € such that for
all £eTy,, lo(é) <clléllsy for some constant ¢ >0. The formula &(£.)
= (&) defines a bounded linear functional on the pre-Hilbert space H,4
={¢,eH: £€Ty). H, is dense in r(4)H and thus there exists xer(4}H
such that G(¢,) = (x, E)p = @(&). Put a,(@) = Ax. It is well defined and
2 {p) € Fg. ) .

Now the identities (4.9) can be directly verified.

Let us construct ;. Take €T, and s€ 5. Define

B1()(s) = <&, 5)-

Then f; (§)(-)€ . |
Now let [ &.%,. Embedding E(4) H into AH for a suitable A £, we can

represent I|p,u by means of a unique vector ®(d)eE(4)H such that
H{E(4)x) = (®(4), E(4) X)a.



@
58 $. J. L. van Eijndhoven and P. Kruszynski Im“

Evidently, the H-valued set function @ is an FE-trajectory. To see that T,
let us pick out an 4 in % Then

supilAcb(A)ll sup sup |[{(E () Ax) < lanll:

Adef ||x]=1

Now put f£,(I) = &. Since
(ﬁz(”(d), Ax)H = I(E(A)Ax),

we have fi;:1 %y — T, A straightforward computation shows the identities
4.10). =

To prove the last (and main) result of this section we recall

ProrosiTion 4.6 (¢f. [5], Lemma 5.8). Let the family # satisfy Assump-
tions 1-11I. Then a set # < %, is bounded if and only if there exists Ac#
such that # is a bounded subset of the Hilbert space AH.

Now the main result of this section easily follows:

Trreorem 4.7. If the family # satisfies Assumptions 1-III, then the
spaces S5 and T, are topologically isomorphic, and moreover the same is
valid for the spaces /4 and Ty. The isomorphisms are given by the duality
defined in Definition 4.2.

Proof. The proof is based on the explicit characterization of the
topology in % in terms of the seminorms || ||,, Led#*,, on Theorem 3.5,
and on the above Proposition 4.6. &

5. Examples. Choosing different families of sets X and related spectral
measures we can easily produce a wide variety of classes of examples, such as
sequence spaces (cf. [2]), generalized function spaces and Gel'fand triples.
The most useful method of the construction of these examples is based on
the following idea.

1. Let ¢ be a generating famlly of Borel functmns on R! in the sense of
[5 7] and let A4 be a s.a. positive operator in a Hilbert space H. We set

{f(A): f®). Then every element ¢ of the trajectory space Ty can be
1dent1ﬁed with the following H-valued measure over R':

E(d) = [T, () f A (A dv(d),

where dv is the spectral measure of the operator A, y €Ly (RY, dv), f e®?, and
%4 s the characteristic function of the bounded Borel set A.

More tangible examples are provided in [4] and [2]. Here are some of
them:

2. Let H = L,(R') and A4 = }(x*—d?/dx?. The family & is now defined
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by means of the generating family of functions

P =1 supl/ (AL +2%] <o, neN],

e, &= f(A) fed}. Now ¥, =, and T, = & (Schwartz spaces). Thus
for every £eT, we have the formula

E(A) = [P K (4, ) uly) dydi,

where ucH, ged' (cf. [6]), and K, is the suitable kernel representing the
spectral family of A. Eventually, representing H as the direct integral H

|@H )dv{A), where v is the spectral measure of the operator 4, we obtain
the elegant symbolic formula:

48, 8> = [(s(), EW)mey dv () = [(s(4}, £(dA),

where s % and e

3. If the spectrum of the operator A4 involved in the construction of Ex. 1
is discrete, then we obtain as the space g @ certain sequence space (for
instance, if the family @ consists of characteristic functions of bounded Borel
sets we can obtain the space ¢ of all finite complex numerical sequences).
Thus the spectral measure gives rise to the counting measure (possibly with
some weight). The presented theory provides us with an explicit fopological
representation of the dual space of Py . An interesting observation found
in [2] is that the completeness of the involved sequence spaces is equivalent
to Assumption 11T (3.2).
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Geometrical properties of Banach spaces and
the distribution of the norm for a stable measure

by
MICHAL RYZNAR (Wrodaw)
Abstract. Let 4 be a symmetric p-stable measure, 0 < p < I, on a locally convex separable

metric linear space £ and let 4 be a lower semicontinuous seminerm on E which is finite p-a.s.
We prove that the density of F(1) = ulg <! is bounded. If { € p <2 and (E, ) is a Banach

space containing [7's uniformly, then for every n > 1 we find & symmetric p-stable measure on E

and a norm § which is »-equivalent to the norm ¢ such that the density of F() = pig <t} is
unbounded.

1. Let x4 be a symmetric p-stable measure, 0 < p < 2, on a locally convex
separable metric linear space E, with a measurable seminorm g. Then the
distribution Tunction F (1) = uig <t} is absolutely continuous apart from a
possible jump (for p == 2, ie, for the Gaussian case see [3], and for 0 <p
<2, see [2]).

In this note we examine whether the density of F(#) is bounded. This
information is very essential to estimate the rate of convergence in CLT. It is
well known that if E is a Hilbert space and g is the standard Hilbertian
norm then, in the Gaussian case, the density is bounded [6]. However, as
was shown by Rhee and Talagrand [14], a small change of the Hilbertian
norm may spoil the boundedness. This result was recently generalized to all
separable Banach spaces by Rhee [13], She proved that for anmy infinite-
dimensional Banach space (E, g) and every n > 1 there exists a new norm §
which is #-equivalent to ¢ and a Gaussian measure x such that the density of
the p-distribution of § is unbounded.

In the first part of this note we consider the case of symmetric p-stable
measures, O < p < 1. Applying the explicit formula for the density proved in
[8] we show that it is bounded whenever ¢ is lower semicontinuous.

For 1 < p <2 we constructed in [157] some examples of p-stable meas-
ures u on ¢ such that the density of F(¢) = u{||'{lo <t} is unbounded. In this
note we provide such examples in Banach spaces in which /* is finitely
representable. If (E, ¢) is a Banach space of this type, then for every function
S RT = R* with lim _ ., /(&) = co, we are able to find an equivalent norm

g, and a symmetric p-stable measure u such that the density F'(t) of F (i)



