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Added in proof (March 1988). In a recent paper by A. F. M. ter Elst, On the connection
between a symmetry condition and several nice properties of the space Ses and Ty, preprint,
Findhoven University of Technology, 1987, it is proved that Assumption II {3.2) is equivalent
to a lot of topological properties of the spaces Ty, and Sg, constructed in [4].
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Geometrical properties of Banach spaces and
the distribution of the norm for a stable measure

by
MICHAL RYZNAR (Wrodaw)
Abstract. Let 4 be a symmetric p-stable measure, 0 < p < I, on a locally convex separable

metric linear space £ and let 4 be a lower semicontinuous seminerm on E which is finite p-a.s.
We prove that the density of F(1) = ulg <! is bounded. If { € p <2 and (E, ) is a Banach

space containing [7's uniformly, then for every n > 1 we find & symmetric p-stable measure on E

and a norm § which is »-equivalent to the norm ¢ such that the density of F() = pig <t} is
unbounded.

1. Let x4 be a symmetric p-stable measure, 0 < p < 2, on a locally convex
separable metric linear space E, with a measurable seminorm g. Then the
distribution Tunction F (1) = uig <t} is absolutely continuous apart from a
possible jump (for p == 2, ie, for the Gaussian case see [3], and for 0 <p
<2, see [2]).

In this note we examine whether the density of F(#) is bounded. This
information is very essential to estimate the rate of convergence in CLT. It is
well known that if E is a Hilbert space and g is the standard Hilbertian
norm then, in the Gaussian case, the density is bounded [6]. However, as
was shown by Rhee and Talagrand [14], a small change of the Hilbertian
norm may spoil the boundedness. This result was recently generalized to all
separable Banach spaces by Rhee [13], She proved that for anmy infinite-
dimensional Banach space (E, g) and every n > 1 there exists a new norm §
which is #-equivalent to ¢ and a Gaussian measure x such that the density of
the p-distribution of § is unbounded.

In the first part of this note we consider the case of symmetric p-stable
measures, O < p < 1. Applying the explicit formula for the density proved in
[8] we show that it is bounded whenever ¢ is lower semicontinuous.

For 1 < p <2 we constructed in [157] some examples of p-stable meas-
ures u on ¢ such that the density of F(¢) = u{||'{lo <t} is unbounded. In this
note we provide such examples in Banach spaces in which /* is finitely
representable. If (E, ¢) is a Banach space of this type, then for every function
S RT = R* with lim _ ., /(&) = co, we are able to find an equivalent norm

g, and a symmetric p-stable measure u such that the density F'(t) of F (i)
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= !§ <t} is unbounded, and moreover F'(t;) 2 f(t;) for some sequence ¢;
—07. Also, it turns out that the last property characterizes Banach spaces in
which /? is finitely representable. To carry out our construction we modify
some arguments of Rhee [13].

2. Let E be a locally convex separable linear metric space. By g we
denote a measurable seminorm on E, ie. a measurable function ¢: E
~ [0, co] such that g{x+ ) < g{x)+4q(y) and g(ox) = j«|g(x) for all x, yeE
and all xR

A probability measure y on E is called p-stable, 0 <p < 2, if for any
independent random vectors X, ¥ with distribution g and for all o, f >0
with «”+ B = 1, the distribution of aX +fY¥, after a suitable translation, is
identical with . If u is a symmetric measure ihen there exists a symmetric o-
finite measure v on E with v(U®) <oz for every neighbourhood U of the
origin, such that y = limexp(v|) for U, [0}. The measure v is called the
Lévy measure of u. Suppose that g is a lower semicontinuous seminorm
which is finite p-as. Then o = pv ig > 1} < co and for every Borel subset A
of RT and every ¢ > 0 we have [2]

{1) Vigse1gedl =0 | 1,070+,
1

Now, suppose that (E, g} is a Banach space. We say that it is of
Rademacher type r, 1 <r < 2, if there exisis a positive constant K such that
for all x4, ..., x,€E ‘

n ]
Eqr(z X)) € K Z q"(xy),
i=1 I=1
where {r;} is 2 Rademacher sequence. It is obvious that every Banach space
is of Rademacher type 1. A theorem of Maurey and Pisier [11] and Krivine
[5] states that a Banach space E is of Rademacher type r for some r,
22 r>p>21,if and only if ¥ is not finitely representable in E. We recall that
I is finitely representable in (E, q) if for every & > 0 and every n€N one can
find x,, ..., x,€E such that for all f;,..., f,eR

i

" L3
(T I8P < (X Bixy < (L+a) (L IBIMT.
i=1 i=1 =1
The following result about the behaviour of densities of stable semi-
norms is taken from [15].

Lemma 1. Let (E, q) be a separable Banach space of Rademacher type r,
and let i be a symmetric p-stable measure on E, 0 <p <r 2. Then the
density F{1) of F()=ulq <t is bounded on every halfline (t,, o0), tp >0,
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and
2) Frih=oa(t™) as t =0,

where « > L+ pr/(r--p). Moreover, if E is a locally convex separable metric
vecior space then the same is irue (with r = 1) whenever 0 < p <1 and ¢ is a
lower semicontinuous seminorm which is finite p-a.s.

Remark 2. Corollary 3.5 in [13] states that there exists o > 0 such
that (2) holds but if we put t, =(1/2)¢t in formula (3.7) of [15] and analyse
the behaviour of the function R(¢) defined t‘before the formulation of Lemma
33 in [15] we see thal o can be taken as in Lemma 1.

We will also need one more result [8]:

LimmMa 3. Let B be a locally comvex separable linear metric space and let
W be a symmetric p-stable measure on E, 0 < p < 1. If q is a lower semiconti-
nuous seminorm which is finite pt-a.s. then the density F'(1) of F(f) = plg <t)
exisis for all + >0 and

(3) Fi(0) = (p/r) [ (n(U ) — (U, + x)) v (dx),

where U, == lg <t} and v is the Lévy measure of .

By {8,} we denote the standard p-stable sequence, i.e. the sequence of
independent identically distributed random variables with the characteristic
fanction exp(—[¢*).

let (E, ¢) and (F, g;) be two Banach spaces. For « > 1, a linear
isomorphism T from E to F is called an a-isomorphism if for xeE we have
q(x)/o € g, (Tx) € g (x). We say that two norms ¢, § on E are a-equivalent if
the identity is an e~isomorphism from (E, ¢) to (E, g). '

3. In this section we prove the boundedness of the density for 0 < p < 1.
Let E be a locally convex separable linear metric space with a lower
semicontinuous seminorm g, Let x4 be a symmetric p-stable measure, Q < p
<1, such that ¢ < o u-a.8. Now, we are ready 1o prove

ProrosirioN 4, Suppose thar the linear span of suppunlg=> 0} is infi-
nite-dimensional. Then the density F'{1) of F(t) = plq <t| is bounded on R*
and for every neN, F'(t) = o(") as =0 '

Prool In view of Lemma 1| we can assume that 0 <t < /2. By {(2)
there exist o > (1—p)~! and M, > 0 such that

(4) Fiy<M,t™% 0<t<l/2,
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Using formula (3) we have for every positive integer m

Fo =00 [ (@U)-pU+x)vdx)

g™

+{p/t) [ (M(Uz)“H(Ur"l‘x))v(dx) =1 +1,.

q>tm

Assume that m > 2 is fixed; we specify it later. When g(x) <™ <{1/2)1 we
obtain by (4)

W(U) = p (U + %) < p{Ug)— u(U} . gi)
= lf Fs)ds < 2 M, t ™% q(x).

t=g(x)
Therefore by (1) the following estimate holds for I,:
8 I <2M,pr~®"D [ g(x)v{dx)

g€

3m

= 2 Ma pa.t—(a+1} j r P dr = g% Mdp(l __p)~1 Im(lmp)—(oﬁl)’
0

where ¢ =pvig= 1.
Applying once more (1) we get

(6) I, S(p/u(U) v ig > ") = poF () "1,

By the result of de Acosta [1], F(1) =o(*), ¢ =0, for every keN, hence
taking m sufficiently large the conclusion follows from (5) and (6).

Remark 5. Denote by E, the linear space spanned by
supp un {g > 0}, If E, is n-dimensional then examining F () we may assume
that u is concentrated on R" and g is a norm on R" Denote by 4, the
Lebesgue measure on R". Then A,{g <t} =const-t". Since the density of u
with respect to A, is bounded, F'(1) = O(#""1) as t —0,

4. Suppose that (E, ¢} is a separable Banach space such that /", 1 < p
< 2, is finitely representable in E. In this section we find for any # > 1 a
norm ¢ which is #-squivalent to the norm ¢ and a symmetric p-stable
measure y on E such that F(¢) = u{g <t} has a density which is unbounded.
In our approach we adopt methods developed in [13], where a similar result
for Gaussian measures on Banach spaces was obtained by Rhee, Let us recall
that by Dvoretzky’s theorem [* is finitely representable in every infinite-
dimensional Banach space. '

Now we state two facts which are crucial for our construction. The first -

one i§ the following lemma which is a direct consequence of the Weak Law
of Large Numbers (see also [16]).
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Lemma 6. Let {0} be a standard p-stable sequence, 1 < p < 2. Then for
every a > b >0, every ¢ > 0, and every ny > 0, there exists a positive integer
n>ny and a positive number m satisfving the condition

Pla<|l/m Y a0, <b}> 1z
i=1

where le;} is the standard basis in I and || ||, is the standard norm on IP.
The second fact is the following Banach space result:

Prorosition 7. Let (E, q) be a Banach space such that 1P is finitely
representable in E, 1 € p < 2. Let F be a finite-dimensional subspace of E, and
let 7> 1, neN, n>dimF. Then there is an n-dimensional subspace G of E
which is t-isomorphic to 12 and for xeG, yeF we have q(x) < tq(x+y).

Remark 8 The above proposition for p = 2 was proved by Rhee [13]
with the help of Dvoretzky’s theorem. In our proof of Proposition 7 we use
the ideas of Pisier [12], where he applied random methods to select
subspaces of a Banach space which are very close to If.

Before proving Proposition 7 we recall some facts needed in the proof.
Let {o;} be a sequence of i.id. exponential random variables, ie. P{o > i}
= ¢~ * for any A > 0. Write ['; = ) .., ;. The next lemma is a special case of
the series representation of stable vectors in Banach spaces (for details, see

[10] or [7D.

LemMa 9. Assume that 0 <p <2 and that (8, is a standard p-stable
sequence. Let E be a Banach space, and let xy, ..., x,€E. Then there is a
number C, > 0 depending only on p such that )

h
n_llﬂ Z f)i X;

i=1
has the same distribution as
o]
Cp le r i ? Vj

where (V) is o sequence of iid. random vectors independent of the sequence
lw)), and the distribution of V is (1/(2m) 1 1y (85, 0-s).

Now, we state some basic inequalities from Pisier’s work [12]. Note that
they were established in a more explicit form than the one presented here,
but the latter is sufficient for our purposes.

Lemma 10. Let (E, q) be a Banach space and let 1< p < 2. Assume that
(W), II,) are two sequences with the properties as aboye with ¢ (V) < 1. Write

Ay = (Eq”(i ey,

=]

5 — Studia Mathematica 91.1
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where r =1/2 for p=1, and r =1 for p>1. There exist two functions
¥ ,(8, 5), ¢,(8, s) depending only on p, and a sequence $X.) of E-valued random
vectors depending only on {V} such that:

(i) For 0 <68 <1/2, img..,¥,(8, s) =00 and lim,_.,,(5, 5)=0.

(i) If k< v,(6, Ay) then for B=(Bs, ..., BIER: Al = L

k
P{|q(§1,8,v )= Ay > 84,} < 9,08, 4)).

Proof of Proposition 7. Let 0 <8 <1/2 be fixed. Let H be a
complement of F. We introduce a new norm § on H: g(x)=inf {g(x
+y): yeF}. Of course, g and § are equivalent on H, so ng < § < g for some
0 <y < 1. Let L be a finite é-net on the unit sphere of [f. Then by Lemma
10 we can choose s, > 0 so large that for s = s,

(™ ﬁ% Y,(8,8), cardL-@,(d,s) <1/2.
Now, consider a p-stable random vector in ¥ of the form

1 m
za 2,00 = T

Since E((1/k) Y5 1647} — o0 if p> 1 and E((1/k) 3= 110))"> 20 if p=1,
it follows that for some meN
(BNl 2 207 54 C,.

Next, let us note that ¥ is finitely representable in (H, g). Therefore we can
pick x,, ..., x,,€H such that

gy <1, 1<ism, (Egm Y x6)" 217" C,s0.

i=1

Now, let {¥;} and {I'} Be as in Lemma 9. Then

® aR) <1, 4, (Eq(z IV 20 s > so,
and conseguently
©) q <t A =(EF(T ) 5.

’ i=1

Therefore we can apply Lemma 10 for both norms g and g, and for g
_(ﬁls cra ﬁn)GL we get

P{|q Z Bth Pl o> 5A } p(é, AF)’

P{g (231 BiX)— Ay > 84} < 0, (0,4
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The last two inequalities together with (7)—(9) imply

P {iu;?'q(z BiX)— A, > 84, } < card L-¢,(8, 4,) <

Plsupla(Y, %)~ 4| > 61,} <4

PeL =1

Writing ¢ = A,,/ff,, we infer that there is @ such that for any felL

- <a($ AlXOVA) < 145,

1=3 < (3 A(Xilo)A,) < 146,

By the well-known argument (cf. eg. [4], Lemma 2.5) we can extend the
above inequalities to the whole unit sphere of /£. Namely, there exist
&(d) > 0 with £(6) =+ 0 as § -0 such that for any gelf

(10) (1+2)7 Al < Q(,Z Bixi) < (1+o)Bl,.

(11 (L+a)" IAl, < (Z Bix) <

where x; = X,(w)/4,.

Let G =span |x;: i =1, ..., n}. The inequality (10) states that (G, g) is
(1+¢g)-isomorphic to [, Now, we estimate the constant ¢ Since
dim & > dim F it follows from [9], Lemma 2.8 C, that there exists x, G with
g{xg) = §(xo) = 1. Hence by (10) and (11} we get ¢ < (1+¢)* and finally

(1+e) 1B,

qix) <(1+e*4(x), for all xeG.
By the choice of an appropriately small § we obtain the conclusion.

Now, we are ready to formulate and prove the main result of this
section.

Tueorem 11. Let (E, g) be a separable Banach space, and let 1< p < 2.
The following conditions are equivalent:

(i)  is finitely representable in E.

(i) For every n > 1, and every function f: R* —R*, there exist a symmet- |
rie p-stable measure w on E, a new norm § on E which is n-equivalent to q,
and two sequences of positive numbers a;, 6; =0 as j = o0, such that

(12) {aJ q < aj+6j} > f(aj)ﬁj, j= 1.
It is worth while to notice that if we take f such that lim, . f () = o
then (12) yields that the density of F(r) = u{g <t} is unbounded.
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Proof. (i) = (ii). Let {§,} be a sequence with f, >1 and [Tz B <
< 2. By induction on & we shall construct subsets By of E, positive integers
n,, p-stable symmetric measures g, on E, and two positive sequences a,
8, < 27% 1 satisfying the following conditions:

(A) B, is convex and balanced; B, is the unit ball of (E, g}, and for k = 2,
By, =B, = BByt

(B) ¢ is supported in a finite-dimensional subspace of E and g, (g >
27k <27k for k2 1.

(C)  If =g *...%0, and g, is the Minkowski functional of By, then we
have
(13) I fa; < a <+ 65 > f (@)

We begin with the first step of the construction. Let a, = 1/4, and let
0 <8, < 1/4 be such that f(a;)d; <1.If a > 1 is close enough to 1, then by
Lemma 6 there exist n; and a symmetric p-stable measure v, on If, suclg that

1<j<k

(14) vita e <, < ot @y +8;)) > max {fla)dy, 274,

Since I? is finitely representable in E, there exist a subspace G of E and an a-
isomorphism T from i}, to G. Therefore, if we take o, to be the image of the

measure v, by T, we have from (14)
01 iay < g <a;+8,) > f(a))dy, Q1{q>2_l}€2_1-

Since g = g,, this completes the first step of the construction.

Now, assume that we have carried out our construction up to step k.
There exist positive numbers o, b satisfying
(15 i fa;+b)o < g < a;+6;—b} > fla)d;(1+5),
We can also assume that 1 <o < B, and b <271 Let us choose &,
81 > 0 such that gy +8,.; <b/2 and
(16) melg <@—127 api1} > 2 (@4 1) prr

Let © = {(o+1)/2)'/*. If F = supp g, then F is finite-dimensional. By Lemma
6 there exist #,.; > dimF and a symmetric p-stable measure v,4; on I,
such that

1<j<k.

(17) Vit {ak+1 S '||p <ak+l+5k+1} > 1/(1+b).

To construct the set B,,, we repeat the reasoning of Rhee [13]. We
apply Proposition 7 for (E, g;), so there exist an n,, -dimensional subspace
G of E and a t-isomorphism T from [, , to G such that for x €G, yeF we
have

(18) 4 (x) < 15 (x+ ).
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We define B, ., as the closed convex hull of the set

Byw ix+y: xeG, yeF, |T™! Xl = %, q(y) < (—1)/2).
It is rather easy to notice that
(19) By = Byyy < uBy.

NO‘:V, we use the following property which follows from (18) and can be
proved in exactly the same way as Fact in Construction in [137]:

(20 ey (x4 m'CWZHT_l’C”p provided xeG, yeF and

q) < (la~1)2) > 177" x,.

Next, if we choose the measure g,,, as the image of v, by the
isomorphism 7 we can restate (17) as

(21) Qo1 1@t STEITT ), <ty +00 ) > L1 +b).

Since ©* <2 and Gy q +84, < b/2 <2752 the inequality (21) implies
(22) Ot T Xl S b1} > LA+ B),

(23) Gerr 1 2 27T < 27F0L

Let us now assume that 1 €/ <k and define

Ajm iy eFraly+b) < q(y) < ay+8,~b},
B={xeG: t|T " x|, < b},

Cy=lzeE: ;< gy (2) < a;+ 8},
D= yeF: g <(w—1)/2)a.q},
D=

X €G: apyy ST ENT ™ Xl < @y + a1}
For yeA; and xeB, since g4y () < g, (x) € b, we have by (19)
Gev 1 (X1 € g () +q, (V) <a;+9;,
Goar (X Y) 2 @ =g (¥ 2 077 g, (1)~ 4 (%) = gy
These two inequalities together with (15) and (22) give
F (O = gt 0 () 2 1 (A gay (B) > [{ay) 5.

We now suppose that yeD and xeD. Then we have g(v)
< ((—=1/2)c" 2| T  x||, and (20) implies that g (x+y) =t 2| T™ x,.

Therefore by virtue of (16) and (21) we have

By st S i g < iy + Oy ) 2 14 (D) iy (D)

2 200407 (e Vst > [ (@e1) sy

This completes our construction.
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Let X, be a sequence of independent random vectors and suppose each
X, has distribution g,. Then by (23) the series 3 ez1 Xy is convergent as. to a
symmetric p-stable randem vector §. Denote by u the distribution of §. Of
course u = limy . fi. If § == Himy . g then from (A) we have n”lg <G <q.
It is also easy to notice that limy ., 4:{Sk) = ¢(5), where S, = >k, X, This
fact together with (13) implies (12). The proof of (i} = (ii) is complete.

(i) => (i). If I” is not finitely representable in (£, g), then one can find r,
> p, such that (E, ) is of Rademacher type r. Let g be any norm on B
equivalent to g. It is clear that (E, §) is again of Rademacher type r. If p is
any symmetric p-stable measure on E then by Lemma 1 the density of the p-
distribution of § is o(t™* as t —0, for any o > 1 +rp/(r— p). Therefore, the
renorming like in (ii) is impossible for E.

Until now we do not know of any example of a Banach space (E. g) of
Rademacher type ¥, p <r < 2, and a symmetric p-stable measure u on E with
the property that the density of F(t) = u {g <t} is unbounded. In view of the
preceding theorem we conjecture that this is not possible. Since any Banach
space is of Rademacher type 1, Proposition 4 says that our conjecture is
valid for p < 1.
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