

A proof of Pelczyński's conjecture for the Haar system

by

DONALD L. BURKHOLDER (Urbana, Ill.)

Abstract. Let *H* be a real or complex Hilbert space with norm $|\cdot|$. Let $1 and <math>p^* = \max\{p, p/(p-1)\}$. Suppose that f and g belong to the Lebesgue-Bochner space $L_H^n[0, 1)$ and $(h_n)_{n\geq 0}$ is the sequence of Haar functions on [0, 1). Let

$$f = \sum_{k=0}^{\infty} a_k h_k, \quad g = \sum_{k=0}^{\infty} b_k h_k$$

where a_k , $b_k \in H$ and the two series converge in $L_H^p[0, 1)$. The main result of the paper is: If $|b_k| \le |a_k|$ for all $k \ge 0$, then

$$||g||_p \le (p^* - 1)||f||_p$$

and the constant p^*-1 is best possible. Strict inequality holds if $p \neq 2$ and $||f||_p > 0$.

This result yields Pelczyński's conjecture: The classical inequality of Paley and Marcinkiewicz for the Haar system holds with the same constant if the multiplier sequence of signs ± 1 is replaced by a sequence of unimodular complex numbers.

1. Introduction. We begin with an inequality for Haar polynomials with coefficients in a real or complex Hilbert space H. If n is a positive integer, let L_n be the left half and R_n the right half of the nth interval I_n in the sequence [0, 1), [0, 1/2), [1/2, 1), [0, 1/4), [1/4, 1/2), ... So, for example, $L_1 = I_2$ and $R_1 = I_3$. Here it is convenient to define the nth Haar function as follows: $h_n = 1$ on L_n , $h_n = -1$ on R_n , and $h_n = 0$ on $I_n^c = [0, 1) \setminus I_n$. Furthermore, $h_0 = 1$.

We shall denote the norm of $x \in H$ by |x| and the maximum of p and p/(p-1) by p^* . Note that $p^*-1 = \max\{p-1, 1/(p-1)\}$.

THEOREM 1. Let $1 . If <math>a_k$, $b_k \in H$ and $|b_k| \le |a_k|$, then, for all $n \ge 0$,

(1)
$$\left\| \left| \sum_{k=0}^{n} h_{k} h_{k} \right| \right|_{p} \leq (p^{*} - 1) \left\| \sum_{k=0}^{n} a_{k} h_{k} \right\|_{p}$$

and the constant p^*-1 is best possible. Strict inequality holds if and only if (i) $p \neq 2$ and $(a_0, \ldots, a_n) \neq (0, \ldots, 0)$ or (ii) p = 2 and $\sum_{k=0}^{n} |b_k|^2 < \sum_{k=0}^{n} |a_k|^2$.

Paley [8] and Marcinkiewicz [7] assumed that H = R. Their proof did not yield the best constant. We gave a proof in [3] that did yield the best

constant for the case H = R and a shorter such proof in [4]. Pełczyński [9] observed that with the aid of the general theory of the complexification of operators our result implies that p^*-1 is also the best constant for the case $a_k \in C$ and $b_k = \varepsilon_k a_k$ where $\varepsilon_k \in \{1, -1\}$. In addition to implying these results, Theorem 1 gives Pełczyński's conjecture: keeping the same constant, the ε_k 's can be replaced by unimodular complex numbers.

Suppose that B is a Banach space that is not isomorphic to a Hilbert space. If H is replaced by B in the above theorem, then (1) does not hold for any constant. This rests on a result of Kwapień [6]; see Section 5 of [1]. Nevertheless, for the special case $b_k = \varepsilon_k a_k$, there is a large class of Banach spaces such that, for some constant, the inequality (1) does hold; see [1] and, for a more recent discussion, [5].

2. Proof of Theorem 1. Define $v: H \times H \to R$ by

(2)
$$v(x, y) = |y|^p - (p^* - 1)^p |x|^p$$

and assume there is a function u on $H \times H$ such that if $a, b, x, y \in H$ and $|b| \le |a|$, then

$$(3) v(x, y) \leq u(x, y),$$

(4)
$$u(x, y) = u(-x, -y),$$

$$(5) u(0, 0) = 0,$$

(6)
$$u(x+a, y+b) + u(x-a, y-b) \le 2u(x, y).$$

Let $f_n = \sum_{k=0}^n a_k h_k$ and $g_n = \sum_{k=0}^n b_k h_k$. Then, by (2) and (3), the integral of $v(f_n, g_n)$ on [0, 1) satisfies

$$||g_n||_p^p - (p^* - 1)^p ||f_n||_p^p = \int v(f_n, g_n) \leq \int u(f_n, g_n).$$

We show now that

(7)
$$\int u(f_n, g_n) \leq \int u(f_{n-1}, g_{n-1}) \leq \ldots \leq \int u(f_0, g_0) \leq 0,$$

which gives (1). The inequality on the right follows from (4)-(6):

$$[u(f_0, g_0) = u(a_0, b_0) = [u(a_0, b_0) + u(-a_0, -b_0)]/2 \le u(0, 0) = 0.$$

The inequality on the left follows from (6) and the fact that f_{n-1} and g_{n-1} are constant on I_n , the support of h_n :

$$\int_{I_{n}} u(f_{n}, g_{n}) = \int_{I_{n}} u(f_{n-1}, g_{n-1}),$$

$$\int_{I_{n}} u(f_{n}, g_{n}) = \int_{L_{n}} u(f_{n-1} + a_{n}, g_{n-1} + b_{n}) + \int_{R_{n}} u(f_{n-1} - a_{n}, g_{n-1} - b_{n})$$

$$= \int_{I_{n}} [u(f_{n-1} + a_{n}, g_{n-1} + b_{n}) + u(f_{n-1} - a_{n}, g_{n-1} - b_{n})]/2$$

$$\leq \int_{I_{n}} u(f_{n-1}, g_{n-1}).$$

To complete the proof of (1) we must find a function u on $H \times H$ satisfying (3)-(6), or show that one exists. This is the key step. Here is such a function:

(8)
$$u(x, y) = \alpha_p(|x| + |y|)^{p-1} (|y| - (p^* - 1)|x|)$$

where $\alpha_p = p(1 - 1/p^*)^{p-1}$. Clearly, (4) and (5) are satisfied. If |x| + |y| = 0, then (3) is satisfied. Therefore, to prove (3) we may assume that |x| + |y| > 0 and, by homogeneity, that |x| + |y| = 1. Letting s = |x|, we see that the proof of (3) reduces to showing that

$$F(s) = \alpha_n (1 - p^* s) - (1 - s)^p + (p^* - 1)^p s^p$$

is nonnegative for $0 \le s \le 1$. If p = 2, then $F \equiv 0$. If p > 2, then there is a number s_0 satisfying $0 < s_0 < 1/p^*$ such that F is concave on $[0, s_0]$ and is convex on $[s_0, 1]$. Therefore, it follows from $F(1/p^*) = F'(1/p^*) = 0$ that F is nonnegative on $[s_0, 1]$. Since $F(0) \ge 0$, concavity implies that the function F is also nonnegative on $(0, s_0)$. If 1 , the argument is similar: <math>F is convex on an interval containing $[0, 1/p^*]$, F is concave on its complement, and $F(1) \ge 0$.

To prove (6), we may assume, by continuity, that x and a are linearly independent over R and the same for y and b. The case H = R can be handled by thinking of R as a subspace of C. Then $G: R \to R$ defined by

$$\alpha_p G(t) = u(x + at, y + bt)$$

is infinitely differentiable and, as we shall show, G'' is nonpositive. Therefore, $G(1)+G(-1) \le 2G(0)$, which proves (6). By translation, it is enough to prove that $G''(0) \le 0$. Letting x' = x/|x| and y' = y/|y|, we have, for $2 \le p < \infty$,

(9)
$$G''(0) = -p(p-1)(|a|^2 - |b|^2)(|x| + |y|)^{p-2}$$
$$-p(p-2)[|b|^2 - (y', b^2)]|y|^{-1}(|x| + |y|)^{p-1}$$
$$-p(p-1)(p-2)[(x', a) + (y', b)]^2|x|(|x| + |y|)^{p-3}$$

where (x', a) denotes the real part of the inner product of x' and a. Using the assumption that $|b| \le |a|$ and the Cauchy-Schwarz inequality, we see that $G''(0) \le 0$. If 1 , a similar expression for <math>(p-1)G''(0) can be obtained from (9) by interchanging x and y, a and b, and then multiplying the right-hand side by -1. This follows from

$$(p-1)u(x, y) = -\alpha_n(|y|+|x|)^{p-1}(|x|-(p-1)|y|)$$

and completes the proof of (1).

The constant p^*-1 is best possible since it is best possible for H=R; see [2] or [3].

To prove the strictness of the inequality (1) in the nontrivial case (i), let

m be the least integer k satisfying $0 \le k \le n$ and $a_k \ne 0$. Then $|g_m(t)| \le |f_m(t)|$, $t \in [0, 1)$, and $||f_m||_p > 0$. Therefore, by (8),

$$u(f_m, g_m) \le \alpha_p |f_m|^{p-1} (|f_m| - (p^* - 1) |f_m|)$$

and, by (7),

$$\{u(f_n, g_n) \leq \{u(f_m, g_m) \leq \alpha_p(2-p^*) ||f_m||_p^p < 0.$$

So

$$(10) ||g_n||_p^p \le (p^* - 1)^p ||f_n||_p^p + \alpha_p (2 - p^*) ||f_m||_p^p$$

and this implies the strictness of the inequality (1).

3. Remarks. Under the conditions of Theorem 1, if the series $\sum_{k=0}^{\infty} a_k h_k$ converges in $L_H^p[0, 1)$, then, by (1), the sequence of partial sums of the series $\sum_{k=0}^{\infty} b_k h_k$ is a Cauchy sequence so the latter series must also converge in $L_H^p[0, 1)$. In this case, by (1),

$$\left\| \sum_{k=0}^{\infty} b_k h_k \right\|_p \le (p^* - 1) \left\| \sum_{k=0}^{\infty} a_k h_k \right\|_p.$$

If $p \neq 2$ and $(a_0, a_1, \ldots) \neq (0, 0, \ldots)$, then, by (10), strict inequality holds. Now, if B is a Banach space, every $f \in L_B^p[0, 1)$ is the limit in $L_B^p[0, 1)$ of a series of the form $\sum_{k=0}^{\infty} a_k h_k$ where the coefficients $a_k \in B$. (The original proof of Schauder [10] for the case B = R carries over.) Thus, we have the following theorem.

THEOREM 2. Let $1 and <math>f, g \in L_H^p[0, 1)$. Suppose that

$$f = \sum_{k=0}^{\infty} a_k h_k, \quad g = \sum_{k=0}^{\infty} b_k h_k$$

where a_k , $b_k \in H$ and the two series converge in $L_H^p[0, 1)$. If $|b_k| \leq |a_k|$ for all $k \geq 0$, then

$$||g||_p \leq (p^*-1)||f||_p$$

and the constant p^*-1 is best possible. Strict inequality holds if and only if (i) $p \neq 2$ and $||f||_p > 0$ or (ii) p = 2 and $\sum_{k=0}^{\infty} |b_k|^2 < \sum_{k=0}^{\infty} |a_k|^2$. In fact, if (i) holds,

$$\sup_{q} ||g||_{p} < (p^{*}-1)||f||_{p}$$

where the supremum is taken over all such g as above.

The discovery of the function u also makes possible the proof of sharp inequalities for differentially subordinate martingales and stochastic integrals taking values in a Hilbert space. These inequalities and their proofs will appear in Astérisque (Colloque Paul Lévy).

References

- [1] D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997-1011.
- [2] -, A nonlinear partial differential equation and the unconditional constant of the Haar system in LP, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 591-595.
- [3] -, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647-702.
- [4] -, An elementary proof of an inequality of R. E. A. C. Paley, Bull. London Math. Soc. 17 (1985), 474–478.
- [5] -, Martingules and Fourier analysis in Banach spaces, in: C. I. M. E. Lectures, Varenna, Italy, 1985, Lecture Notes in Math. 1206, 1986, 61-108.
- [6] S. Kwapień, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583-595.
- [7] J. Marcinkiewicz, Quelques théorèmes sur les séries orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84-96.
- [8] R. E. A. C. Paley, A remarkable series of orthogonal functions. I, Proc. London Math. Soc. 34 (1932), 241-264.
- [9] A. Pełczyński, Norms of classical operators in function spaces, in: Colloque Laurent Schwartz, Astérisque 131 (1985), 137-162.
- [10] J. Schauder, Eine Eigenschaft des Haurschen Orthogonalsystems, Math. Z. 28 (1928), 317-320.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS Urbana, Illinois 61801, U.S.A.

Received May 7, 1987

(2322)