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A proof of Pelczyiski’s conjecture for the Haar system
by
DONALD L. BURKHOLDER (Urbana, 111}

Abstract, Let JJ be u real or complex Hilbort space with norm [+]. Let 1 < p < oo and p*
= max ip pAp- D} Suppose that [and ¢ belong to the Lebesgue-Bochner space L4 [0, 1) and
{(Fhyeo 38 the sequence of Haar funetions on [0, 1), Let

g 2]

,4 - 2: ”‘khk- S Z bk hk

K d) ke O
where ay, by &l and the two series converge in L4 [0, |). The main result of the paper is: If
[bl % leted Tor all & =0, then

gl < (0"~ DA,
and the constanl p* -1 i best possible. Strict inequality holds if p#2 and || f)], > 0.

This result yields Pelezyniski's conjecture: The classical inequality of Paley and Marcinkie-
wicz for the Haar system holds with the same constant if the multiplier sequence of signs + | is
replaced by a sequence of unimodular complex numbers.

1. Introduction. We begin with an inequality for Haar peolynomials with
coefficients in a real or complex Hilbert space H. If n is a positive integer, let
L, be the left hall and R, the vight half of the ath interval I, in the sequence
[0, 1), [0, 1/2), [1/2, 1), [0, 1/4), [1/4, 1/2), ... So, for example, L, = I, and
R, =1I,. Here it is convenient to define the nth Haar function as follows: A,
=1 on L, hy= -1 on R, and h, =0 on I$ =[0, )\[,. Furthermore, hq
=1 '

We shall denote the norm of x&H by |x/ and the maximum of p and
plip=—1) by p*. Note thal p*—1 = max [p—1, 1/{p—1)}.

TuroreM 1 Ler 1« p <o, If a, byeH and |by| <lal, then, for all n

I n
(1) |5 byl = =1 3 i,
k) P
and the constamt p* 1 s best possible, Strict inequality holds if and only if (i)
h % 2 ﬂmd (a'(): naay au) "}"é (0, ey 0) or (ii) p =1 2 and Z}{"—’D |bkt2 < ZE:O Iaklz.

Paley [8] and Marcinkiewicz [7] assumed that H = R. Their proof did
not yield the best constant. We gave a proof in [3] that did yield the best
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constant for the case H = R and a shorter such proof in [4]. Pelezynski [9]
observed that with the aid of the general theory of the complexification of
operators our resuli implies that p* —1 is also the best constant for the case
g, «C and by, = g; a, where g, € {1, —1}. In addition to implying these results,
Theorem 1 gives Pelczyfiski’s conjecture: keeping the same constant, the ¢’s
can be replaced by unimodular complex numbers.

Suppose that B is a Banach space that is not isomorphic to a Hilbert
space. If H is replaced by B in the above theorem, then (1) does not hold for
any constant. This rests on a result of Kwapien [6]; see Section 5 of [1].
Nevertheless, for the special case b, = g, a,, there is a large class of Banach
spaces such thal, for some constant, the inequality (1) does hold; see [1] and,
for a more recent discussion, [5].

2. Proof of Theorem 1. Define v: HxH - R by
(2) v(x, y) =y —(p*=1)7|x)"

and assume there is a function u on H x H such that if a, b, x, yeH and
|6] < |al, then '
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(3) v(x, y} S ulx, y),

“) u{x, yy =ul(—x, —y),

(5) u(0, 0) =0,

(6) ulx+a, y+b)tu({x—a, y—b) < 2u(x, ). ‘

let f, = Z;:zoﬂk h, and g, = Z£=0 by h.. Then, by (2) and (3), the integral of
v{f,, go) on [0, 1) satisfies

lgull5—@* =D ILANE = o, 9. < fulf. g0
We show now that
(7 . Fu(fs g < Julfac i gu-1) <00 < Ju(fo, g0) <0,
which gives (1). The inequality on the right follows from (4)—(6):
[u(fos go) = ulan, bo) = [ulag, be)+u(—ag, —bo)]/2 < u(0, 0) =0.

The inequality on the left follows from (6) and the fact that f,_, and g, are
constant on I,, the support of &,

Jlu(f;u gn) = ,ru(j;u—b gn—l)u

Ic In
n "

Iu(ﬂa gn) = ”(ﬁz—~1+am gn-—l"l_bn)"' j‘ u(f;l—l“‘am gnvl—bn)

Iﬂ LPI Rn

[u(f;:-1+ana Gn-1 +bn)+u(f;1~1 sy Fum1 “brl)]/z

I

< f[ u(fn—la gn“l)'

n
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~To complete the proof of (1) we must find a function u on H x H
gatisfying (3}-{6), ot show that one exists, This is the key step. Here is such a
function:

(%) s yh = o {16+ 19D (1= (p* — 1))

where % mp('lf-l/p*)””. Clearly, (4) and (5) are satisfied. If x| +jy = Q,
then (3) is satisfied. Therefore, to prove (3) we may assume that x| +[y >0
and, by homogeneity, that |x/+]y = 1. Letting s = |x/, we see that the proof
of {3} reduces to showing that

F(s) m o, (1o p* 8) = (1 = 5P 4 (p* — 1) g¥

is nonnegative for 0Ly 1. If p=2, then F =0. If p > 2, then there is a
number sq satislying 0 = s, < {/p* such that F is concave on [0, s5] and is
convex on [sq, 1. Thercfore, it follows from F(1/p*) = F/(1/p*) = 0 that F is
nonnegative on [y, 1]. Since F(0) 2 0, concavity implies that the function F
is also nonnegative on (0, 5y). If 1 <p <2, the argument is similar: F is
convex on an interval containing [0, 1/p*], F is concave on its complement,
and F(1) = 0.

To prove (6), we may assume, by conlinuity, that x and ¢ are linearly
independent over R and the same for y and b, The case H =R can be
handled by thinking of R as a subspace of €. Then G: R — R defined by

oy G{O) = u(x+at, y--bt)

is infinitely differentiable and, as we shall show, G” is nonpositive. Therefore,
G(l)-if G(—1) = 2G(0), which proves (6). By translation, it is enough to prove
that G"(0) < 0. Lelling x' = x/jix| and y" = y/|y|, we have, for 2< p < oo,

9) G"(0) == = p(p 1) {Jed*~ |B{*) (|x] +[y))7~ >
—plp=2)[161* =y, BT Iy (ol [ ypy2 !
=p{p=1{p=2)[(x', a}-+-{", 613 [x| (1x]+(y))r 3

where (x, a) denotes the real part of the inner product of X' and a. Using the
assumption that |# € |4 and the Cauchy~Schwarz inequality, we see that
GO =0 I 1 = p <2, a similar expression for (p—1) G"{0) can be obtained
from (9} by intecchanging x and y, @ and b, and then multiplying the right-
hand side by - 1. This follows from

(p=Dulx, p) = —o, |y +[xD"* {Ix] —(p—1)[y)

and completes the proof of (1),

The constant p*— | iy best possible since it is best possible for H = R;
see [27] or [3].

To prove the strictness of the inequality (1) in the nontrivial case (i), let
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m be the least integer k satisfying 0 <k < nand g, # 0. Then g, (OF < £, (0],
t€[0, 1), and | f,ll, > 0. Therefore, by (8),

_ U Sy @) € 0 LSl M Sl = (* = D1Sd)
and, by (7}
fulfu g0 < Sl fr G) < 0y 2= pOUILIE <0
So
(10) gl < (= D Lfll5 +o, (2= p¥) LSl
and this implies the strictness of the inequality (1).

3. Remarks. Under the conditions of Theorem L, if the series 3 i% g o by
converges in LY [0, 1), then, by (1), the sequence of partial sums of the series
> itaby hy is a Canchy sequence so the latter series must also converge in
1410, 1). In this case, by (1),

12 buhel, < (=1 2 a
=0 K=o

If p#2 and (ag, @y, --) #(0, .0, ...), then, by (10), strict inequality holds.
Now, if B is a Banach space, every f eL5[0, 1} is the limit in L3[0, 1} of a
series of the form Y 7%, a, by where the coefficients o, €B. (The original proof
of Schauder [10] for the case B = R carries over) Thus, we have the
following theorem.

TueoreM 2. Let 1 < p <o and f, gLy [0, 1). Suppose that
f= Zakhka g= Zbkhk
k=90 k=0

where a,, by, € H and the two series converge in L [0, 1). If |b| < |ay for all k
=0, then

llgli, < (p* = 11IA,

and the constant p*—1 is best possible. Strict inequality holds if and only if {i)

p#2 and ||fll, >0 or (ii) p=2 and S oibl? <Y olal? In fact, if (i)
holds,

sup]lgll;, <{p*-DlfIl,
[

where the supremum is taken over all such g as above,

The discovery of the function u also makes possible the proof of sharp
inequalities for differentially subordinate martingales and stochastic integrals
taking values in a Hilbert space. These inequalities and their proofs will
appear in Astérisque (Collogue Paul Lévy).
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