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BMO estimates for biharmontc
maultiple layer potentials
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JONATHAN COHEN (Pitisburgh, Penn.)

Abstract. In this paper BMO estimates are obtained for the trace of the bibarmonic
multiple layer potential on C' domains in the plane. The methods extend to singular integral
operators acting on compatibie triples which satisfy the appropriate L* boundedness, reprodu-
cing properties and kernel estimates. In particular, the estimates extend to homogeneous fourth
order real constant coefficient elliptic partial differential equations in the plane.

Agmon introduced multiple layer potentials in [1] in order to study
elliptic boundary value problems. These potentials are of interest not only
because of their widespread applicability (see Agmon [1]) but also because
they give integral representations for solutions of elliptic p.d.e’s. From the
analyst’s point of view the explicit form of the kernels of these integrals
permits the extension of boundary estimates to minimally smooth domains
(sec Fubes, Jodeit and Riviére [9], Verchota [12], and Cohen and Gosselin
[3]) via the singular integral estimates of Calderén [2] and Coifman,
Meclntosh and Meyer [6]. Multiple layer potentials also provide a nice way
to characterize harmonic functions with BMO data {see Fabes and Kenig
[8], p- 11) and suggest a way to construct a Hardy space theory connected
with adjoint boundary value problems (see [8], [4] and [5]). N

In this paper we obtain BMO estimates for the gradient of the biharmo-
nic multiple layer potential on the boundary of a C! domain. A norm || ||,
analogous to the BMO norm of John and Nirenberg, is defined in § 2.1' on
triples of L2 boundary data. We introduce a space BMO2 consisting of those
triples f = (f, g, #) for which ||f]l, < cc and the compatibility condition f
= gx, -+ hy, holds, (As usual, (x(s), p(s)} is an arc length parametrization of
the boundary and the subscript s denotes differentiation with respect to arc
length). Although it is easily seen that for / eBMO2, [|Flls = [1gllsmo + Hilamo.
it is convenient to work with the space BMO2 since the L? estimates for the
trace of the biharmonic multiple layer potential are given in terms of maps
from triples to triples (see § 3 of [3] for details). '

This paper’s main theorem is a biharmonic analog of a result of Fabes
and Kenig (Theorem 1.1 of [9]) in which they showed that the trace of the
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classical double layer potential preserved the space BMO. Using the atomic
Hardy space theory of Coifman and Weiss [7] and A*-BMO duality, they
constructed an H! space for a C' domain from harmonic functions whose
normal derivatives are in atomic k'. This paper is the first step in developing
an analogous H' theory connected with the solutions of the adjoint bounda-
ry value problems studied by Cohen and Gosselin in [4] and [5].

In Theorem (2.1.6) we show that the singular integral A, which charac-
" terizes the trace of the multiple layer potential and its gradient along the
boundary of a C! domain in the plane, is bounded from BMOZ2 to itself. Our
proof follows the same general outline as the theorem of Fabes and Kenig
[8] but is considerably more complicated. In particular, the elements of
BMO2 are compatible triples rather than scalar-valued functions. The
BMO?2 norm, as defined in § 2.1, is obtained by taking the best fit &d(f) for a
triple f in the space of polynorruals of degree at most one and their gradients
in an arc y, averaging the difference |f—a @(f)| along 7 and taking the
supremum over all arcs y. A pointwise estimate is obtained for the difference
between the best fit for a triple f over an arc and the best fit for f over the
double of the arc in terms of a sharp function of f A Poincaré type estimate
is obtained bounding the L*(y) norm of f—ew(f) in terms of the L*xL?
x L*(y) norm of f~a(f) where @(f) is the best fit for f on the arc y and f
—w(f) is the first component of the triple f—ad(f).

One technical aspect of our work is worth noting here. To analyze the
behaviour of the matrix kernel 7 of the operator ' far from the singularity,
we develop in § 2.3 a kind of matrix-valued Taylor series approximation for z
which differs from it by what we call the “remainder matrix”. This somewhat
technical section has the advantage of suggesting ways to handle estimates of
this type for any multiple layer potential.

It is important to note that the estimates obtained in the main theorem
make no use of the fact that the components of the matrix kernel are
biharmonic. The proof shows that an integral operator defined on a space of
compatible triples and satisfying appropriate L? boundedness, reproducing
properties and kernel estimates extends to a bounded operator in the BMO
metric defined in this paper. This fact is of sufficient interest that we include
it as a separate result (Theorem (2.1.7)).

Integral operators on spaces of compatible triples are not artificial.
Multiple layer potentials as defined by Agmon [1] are defined on exactly this
type of compatibility space and a study of solutions of elliptic equations via
such potentials involves the type of singular integral estimates obtained in
this paper.

In particular, Theorem (2.1.7) immediately applies -to all constant real
coefficient elliptic equations of homogeneous fourth order on C* domains in
R?. The general fourth order results extend to C' domains if L2 boundedness
can be shown for the appropriate multiple layer potentials. The methods of
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the theorem seem adaptable to obtaining BMO estimates for the (m—1)ik
derivatives of the solutions of elliptic equations of order 2m,

Finally, 1 would like to acknowledge the contributions of John Gosselin
with whom I have studied the properties of biharmonic layer potentials, and
Garth Baker and Henry Simpson, for several useful suggestions about error
estimates for best fit approximations for compatible triples.

§ 1. Preliminaries. Before stating the main results of this paper we
review some of the relevant definitions, notations, and estimates for biharmo-
nic potentials on C! domains. Throughout the paper we assume that € is a
bounded simply connected C' domain in R* By C! we will mean that for
any P &6, the boundary of Q, there exists a ball B(P, §) of positive radius
8, centered at P, and a coordinate system (z, w) of R? with origin at P such
that  with respect to  this coordinate system, QnB(P,
=iz, w): zeR, w> @(x)! nB(P, §) where peC}(R) and ¢'(0) = ¢(0) = Q.

We let H = (L* x L* x L*)(9Q) where we assume that the components of
elements in H are real-valued We define the inner product of two elements
fiiJo €H by (fi, f2) = §,, /3 fi ds where f denotes the column vector which is
the transpose of the row vector f; and the product f; f7 is the scalar function

-obtained by matrix multiplication. H is clearly a Hilbert space with norm

arising from the inner product.
We next define an important subspace.

DermTioN (L1) #, =/ =(f, g, h): f (L} x L* x*)(0Q) and f, =
+hy, ae). (Here (x(s), y(s)) is an arc ]ength parametrization of 8Q, the
subscript s in f,, x,, and y, denotes differentiation with respect to arc length
and felL}(AQ) means that [, ( |F12+] £ ds < oc). Tt is important to note
that because of the compatibility condition the metries {f, (f1>+Igl?
+|B] %) ds1Y* and ’l(!fl +| fil*+1g1>+1k)ds }H* are equivalent for elements
in #,. Generally, the arrow notation, f, will denote elements of H whereas
the dot notation, £, will denote compatible triples. The symbol IIfl or ||f||
will denote the norm arising from the inner product in H.-

For X =(x, »), a point in R* with Cartesian coordinates (x, y), the
function

D P
P{X) = = ((x*+ ) log (x*+y%) 2+ %)

is the choice of fundamental solution for the biharmonic operator used by
Agmon w [1].

DermuTion (1.2). For the point Q 4@ fixed and X eR* we define the
differential operator K by

o

(13) KU =(K1 v, Kzu, K3 U) S
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where
K, v(X) = (Pdv(X), Ngd+2 Py (X), Tpd,
K3 0(X) = (04 (X) — 2, (X)) (D),
K30(X) = (0 (X) = 6, (X)) p5 (Q) + 40, (X) y,(Q).

The vectors NQ and TQ are the unit inner normal and unit tangent at @
respectively.

DerviTionN (1.4). For X ¢8Q, the muitiple Juyer potential with density
feH, is defined by

(1.5) u(f; X)= [ J@QKCF(X~Q)ds(Q)

[:1e3

where the superscript Q indicates that the dlfferenndl operator K is acting at
the point Q.

Dermnrrion (1.6). For X ¢8Q, we let u(X = (u(X), u (X), u,(X)} and
note that since we may interchange the order of integration and dlfferentia-
tion in computing u, and u, we get the integral representation

(1.7) a(fi X) = j(Q)‘E(X Qds(Q)

where 1(X, () is the 3 x3 matrix given by

KeF(X—Q) K¢ F(X—Q) KEFF(X-0Q)
(18) (X, Q)= [KgFX Q) K§&*F(X—0Q) K$a F (X~ Q)]
K§F(X—Q) K§ZF(X—-Q) K§HF(X-Q)

The superscripts denote the variables on which the differential operator is
acting.

DeriNiTIoN (1.9) For X =(x,y) and § a subset of R* we define the
space of polynomials .#(8) = 'w: w(X) = ax+fx+7y(x*+y*)+8). We next
define the space of triples .#(S) = W = (w, w,, w,): we.#(S)]. We will often
use this notation for .#(8Q) and if it is clear from the context we will simply
denote the space by .%.

The trace of # on dQ cannot be obtained at a point PedQ by
substituting P for X in (1.7). However, for P # Q, the matrix ©{P, Q) can be
defined as in (1.8)-and we may define

{1.9) ASPY= | f(@r(P,Q)ds(Q).

|P-Q>e

The main results of Cohen and Gosselin in [3] and [4] which we will
need here can be summarized as follows:.
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Tueorem (1.10). () A7 (P) = lim,, ¥, f(P) exists ae and A s
bounded and compact from 4, to itself.

(i) AW =w for all we g

(iii) The nontangentiol limy .p_ant(f: X) equals

{(I'~I~Jf)f(P) ae., Xe,
(—f+.0)f(P) ae, X¢Q.

(iv) (I+.#)" 1 exists on By, (—1+A4)" " exists on (—I+ ) #,.

CoroLtary (1.11), The interior Dirichlet problem A*u(X)=0 in @
i=fe#, on 6Q, is solvable by u = u({{+ )" f; X). The exterior Dirichles
problem is solvable by u=u((— I+ lfo, X)+wy where f = fo+,
foe(—I+ %’)%’2 and W, g,

§ 2. The BMO2 space. In this section we define a space BMO2 which is
analogous to the space of bounded mean oscillation introduced by John and
Nirenberg [10], and adapted here to the space of compatible triples. For
fes#, we define a sharp function of f a corresponding BMO2 norm and
prove that the operator 4 defined in Theorem (1.10) is bounded in the
BMO?2 norm.

§ 2.1. The basic definitions, We start with some notation. For P, €02 we
let B,(P,) denote the set {PedQ: |P— P, < r|. When the “center” P, is clear
from the context we will simply write B, and |B | will denote the arc length of
B,. Because the domain is C! and the boundary is compact there are
constants ¢, and c, such that ¢, r < |B,] €< c,r and this will hold for all arcs
B, as long as r < |00,

For Sc R we let 2,(5)={f(X)=oax+fy+8: X =(x,y), XeS} and

= {f=(fifef,): FEP(S)]. When the set S can be inferred from the
conlext we write thcse sets as @, and &.

Derinimion (2.1.1). For feH we define the sharp function of f
(2.1.2) F*(Pgy) —Sup {inf |B]™! [lj w2 ds M2

weHy By
and the BMO2 norm, — :
(2.1.3) e = 1 -
Derinrron (2.14). BMO2 = {fed,: ||f], < ol

Remark (2.1.5). From the definition of the sharp function it is clear
that if fy, f € H and fo—f; €#,, then 7o —Fills = 0. This means that BMO2
is not a Banach space. However, the relation f ~ fi = jo—fleé'?l is an
equivalence relation, Thus:by choosmg equivalence classes in BMO2 or
introducing the metric || 1 1o+l fll 'we can turn BMO2 into a Banach. space

For the purposes of this paper that is unnecessary..
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We can now state our main theorem:

TrEOREM (2.1.6). For # defined as in (1.10)i), there is a constant c,
depending only on the shape of the domain, such that || #Tl, < cllfll,-

The proof requires several lemmas concerning approximation of ele-
ments in #, by elements in #; along arcs B,. While the machinery
developed for the proof is complicated it is useful because it is immediately
applicable to the following more general theorem.

Tueorem (2.1.7). Let k(P, Q) be a 3 x3 matrix of functions defined on dQ
x 06 for P % Q and assume

Af(Py=1m |

e=0 |P-0| >z

F(@k(P, Q)ds(Q) .

exists for almost every Peff. Then if

(2.1.8) ”Wf””z wrl e S € Hf””; <12 x 12000

(219) APy =ad(P) for every dye#, and for almost every P edQ,

(2.1.10) the components k;; of k satisfy the pointwise estimaies

D sy (P, Q) < ¢/|P—~QP,

D2k (P, QI < c/IP—Q)F, i=2,3,
|Dky; (P, Q< c/IP—Q°, j=2,3,
|Dk; (P, Q) < C/IP—QIf, i,j=2,3,

where D denotes one derivative taken with respect to the variable P and D?
denotes a second derivative with respect to the variable P, then

@11l 17 1l < el flls.

§ 2.2. The best fit polynomial. In this section we consider the restriction
of elements in 4, to arcs B,(P,). We define a triple ¢, (f) which is the best
fit for fin the space #, along the arc B,. The best fit ¢, (f) will play the role
in the BMO2 theory that the average value of a function on an interval plays
in the BMO theory introduced by John and Nirenberg [10].

Let B.(P,) = |Pedfd: |P—Pg <r}. H, will denote the Hilbert space
(L? x L? x L*)(B,) with norm arising from the inner product
(fvlaf‘z)r = [ (/1 fatg192+h hy)ds
Bl’

where fi = (f1, 1, ), o =(f, 2, ho) and i,y €H,. We let #,(r) denote
the subspace of H, consisting of those triples (f, g, k) eH, which satisfy the
compatibility condition f; = gx,+ hy, almost everywhere.
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Recall that #, (B,) is the restriction of the triples f = (f, f., f,) to the set
B, where f(x, y) =wax+fy+5. We will need an orthonormal basis for
#(B,). To find such a basis we start with the polynomials 47 (P) = 1, d} (P)
= x{P)—x(Py) and d5(P) = y(P)—y(Py). We form the following correspon-
ding triples:

&} (P)=(1, 0, 0),
(2.2.1) 4 (P) = (x(P)=x{Py), 1, 0),

dy(P) = (y(P)—y(Py), 0, 1).
Clearly the set {d], P, d5) forms a basis for ,(B,). Applying the Gram—
Schmidt process with the inner product in H, we arrive at an orthonormal
basis {47, €3, &5} If 2}, j=1,2, 3, denotes the first component of &, then

(e}, and {#}),, the partial derivatives of €}, are the second and third compo-
nents.

DerinimioN (2.2.2). For feH, the best fit for fin &, (B,) is defined to be

3

(2.23) b, = o (f; P =} (f &) &(P).
j=1

We let m, denote the first component of ¢,. Clearly e, is a polynomial
and @, = (o,, (0, (m,)y). Furthermore, the polynomial o, extends in an
obvious way to all of R*. When we have occasion to refer to the polynomial
w, its domain will be inferred from the context.

We begin by establishing an identity relating the best fit o, and its
“double”, @,,.

Lemma (224). For feH,

(=02l f) = 0, (F=02. (D), &) =02 (f) = &, (T~ 02, ( /).
Proof. Expand the é3"s in terms of the é7's and combine the coefficients
of the é7s.

Lemma (2.2.5). Let B, denote B.(Py) and 1€, &5, €5} the orthonormal
basis for . (B,) obtained from the d;’s via the Gram—Schmidt process. Then for
j=1,2,3, the polynomials &, (€)), and {(€}), satisfy:

(226) &L (P) < C/rt2, [P < Clr+|P—Polifr'*  for j=2,3,
[(ej)x (P) C/rllz fO?‘ J =2, 3, (e'i}x = 0,

i €
2.1
22D (€ (PN < C/rt'? for j=2,3, (e1)y=0.

Proof. Adapt the Gram-Schmidt procedure used on p. 120 of Taible-
son and Weiss [11] to the sets B, via the use of local coordinates. The
calculations are tedious but elementary.
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CoroLLARY (2.2.8). For fe®,, I, €),¢l <c|Bl™! jBrlfl ds where the
constant ¢ is independent of v, Py, and f.

Proof Using the pointwise estimates from Lemma (2.2.5) we have

229 I, &), &P < c{r V2 [If1ds)I& (Pl < clB] J |f1ds.

CorROLLARY (2.2.10). For fedB,, Py€dQ, B,= B.(Py) and ©,, o,, the
best fits for f over the arcs B, and B, respectively,
by () o2, () < o #(Po). |
Proof. From Lemma (2.24), the projection estimates and Schwarz’
inequality,

(2211) 16, ()= e (N = o (F— o0 (N

<elBI™* [If=da (NI <& * (Po)*.
B?‘

The next lemma is a kind of Poincaré estimate which bounds the L?
norm of the first compenent f—m,(f) in terms of the L2 norms of its x and y
derivatives.

LemMma (2.212). For f =(f, g, W e®,,

Yz

1f~a, (/2 dsP? < e|B { T (jg — (o, (D)L +|h—(e0, (F))[") ds}

B, B

Proof. Since o, (f) is the best fit for fin the space H,, there is a point
FeB, for which f(Py—aw,(f, Py =0. We may then write

(2.2.13)

FP =0, ()P = [[(g— (@ D)) x+(h—(w0,(),) ys] ds.

f— ™

Squaring both sides, applying Schwarz’ inequality and integrating both sides
over B, gives

@214 [0 (/) ds<IBF [ (9o Dl + (0, (D)) ds.

r

Take square roots and obtain the estimate in this lemma.
CoroLLARY (2.2.15). For f =(f, g, h) €4,,

{FBJ_IJ [f=w, (NI ds}? < |B,) [ *(Py).
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Proof. This estimate follows by taking the square root of both sides of
(2.2.14), dividing by |B,|"’* and applying the definition of f * (Py).
CoroLLAry (2.2.16). For feB,, PycdQ, B, = B,(P,) and &, and @, the

best fits for f over the arcs B, and B, respectively, the first components o, and
@, satisfy for all Pedg

(2.217) |0, (1) (P)~ 05, ({}{(P)] < c(IP~ Po|+71) 1 *(Py).

Proof. For j =1 use e} (P) < ¢/r'/?, (e]), = (€]), =0, Schwarz’ inequa-
lity and Corollary (2.215) to obtain

(/w2 (), &1, 1 (P) < {BJ" [f— 2 (/) ds}'2 |e; (P)

< af #(Py).
For j =2, 3, use (2.2.6) and Schwarz’ inequality to obtain
(/=2 (f), &) (P <c{ [ 1f o (P ds 12 fr+|P—Pol}ris?

Bar

Scl{r+|P=Pyl} £ *(Py).

 §23. The osculating polynornial and the remainder matrix. Our goal in
Chapter 2 is to show that & is bounded in the BMO2 norm. In this section
we introduce a polynomial which approximates the operator away from the
singularity. The approximation will be by a kind of boundary defined Taylor
series which Agmon [1] called the osculating polynomial.
In our case we will actually be looking at a certain matrix of polyno-
mials which will be made up of polynomials which resemble Taylor series
remainders. To do this we must develop some notation which is a little

‘cumbersome.

DerinTioN {2.3.1). Let P, Q €8Q and fe®,. The osculating polynomial
of order two is

232 T(f; P, Q) = F{Q)+9(Q(x(P)~x(Q)+h(@)(y(P)~y(Q)).

We define T;(f; P, Q) to be f(Q) and call it the osculating polynomial of
order one.

. The function T;(f; P, Q) is a polynomial in the varjable (x(P), y(P)} so
we can extend it to be a polynomial in the entire plane. We can then define
an element T, e#,; by

L P, Q= (L(; P, Q. & T(f; P, Q), § T(f; P, Q)
=(L(/;P, Q). Ti(g; P, Q), T, (h; P, Q).
For three elements £, f5, fy €%, we can let f = (f;, f», f») and define the

matrix

3 _ Sudia Mathematica XCL2



118 J. Cohen
fig by

(23.3) (Y= 292 ha
J3 93 by

where ¢ denotes the transpose of f.

Derinition (2.34). The osculating polynomml for the matrix (/%
defined by

235 - L{/Y;P, Q)= [L(f; P, Q),Tz(fz,P ), T(fs; P, QT

and then we define a matrix-valued version

Tz(fﬁ P, Q) Iiig; P, Q) T (hy; P, Q)
T(f2: P, Q) Ti(g2: P, Q) Ti(hy; P, Q)
Lfs; P, Q) Tilgs; P, Q) Ti(hs; P, Q)
We now turn our attention to the corresponding réemainders.
Derinvimion (2.3.7). For fed,, P, 0 €dQ we define

R.(fi P.Q)= f(P~T(]; P, Q)
R/ P, Q)= f(P—1(Q)

(23.6) T{/Y;P, Q)=

(2.3.8)

The corresponding elements in #, are giveri by
(239) R (/5 P, Q= Ff (P~ f‘P Q)
—(Rz(f P, Q)a Ri(g: P, Q); Ry (h; P, Q))

For the matrix (/%) we define

Ry(fi; P, Q) R, (g1; P, Q) R, (hy; P, Q)
Ry(f2; P, Q) Ry(g1; P, Q) R, (hs; P, Q)
R,(f3; P, Q) R, (g93; P, Q) Ry (hy; P, O)

We have introduced the osculating polynomials and the various remain-
ders to apply to a particular compatible triple which will arise in the next
section. In this section we will obtain the estimates which will be used to
show that " of Theorem (1.10) is bounded in the BMO?2 norm.

Let Po€8Q and choose some r > 0. Let n({X) e CF(R? with 5(X) =1 for
| X—Pol < 2r, (X} =0 for | X—Pg| 2 4r and 0 4(X) <1, VX &R,.

Let P,QedQ with |Po—P| <r and [P,—Q| > 2. Then for fe4,, the
vector-valued integral o ((1—7) f)(P) = [(1-n(Q) £ (@)t (P, 0)ds(Q) is well
defined. Since [P—Q| =7, (1~7(Q))<(P, Q) is C* on 80, so we can justify
an Interchange of differentiation and integration yielding

(2310) R, ((f; P, ) =
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@311)  A((~nfP)= af (L=7@) S (@ T(P, Q)ds(Q)
0 .
=, &, &) ] (1= () f(Q KeF(P—QY ds(Q).

So obvmusly A ((I—n} f }e#, and we can define the osculating polyno-
mial T; (A ((1—11) f); P, Po) and the related remainder:

(2312) R (A {1—n)f); P, Po)
= A (- WPy =T (o ((1 ~mf): P, Py)
= aj (1—n(@) S (@) e(Po. P, Q)ds(Q)
where
(2313)  p(Py, P, @) = R, (KR F(-—Q)); P, Pp) =

R, (K§F(—Q); P, Po) R (K$F.(—Q); P, Py) R,y(K§F,(—Q); P, Py)
RZ(KgF(“_Q)s-Ps PO) (Kng( )=P9 PO) RI(K?Fy('—'Q);Pa PO)

We will refer to o(Py, P, Q) as the remainder matrix and note that from

direct calculation we get the following estimates:
Lemma (23.14). For P, Q, Pyedfd, |P— Pyl <

components of the remainder matrix satisfy:

- [e11(Po, P, Q)| < er¥/|Py—QP?,
lo:1 (Po, P, Q)| §572/IP0—Q|2= =23,
lo15(Po, P, Q) < cr/|Py— 0}, =23,
loi;(Po, P, Qf S crflPo—QI%, i=2,3,j=2,3.

Proof. The estimates follow from the fact that for the points Py, P, Q
described here F{-—(Q) is a smooth function in R? and the remainders are
simply two-dimensional Taylor series remainders restricted to the boundary.
The estimates in (2.3.15) follow from computing the appropriate derivatives

of F(-—-0).

§ 2.4. The basic estimates for . In this section we show that # is
bounded from BMOZ to itself in the BMO2 norm. The argument follows a
strategy similar to the proof of Theorem 1.1 of Fabes and Kenig [8].
However, the norm is more complicated here and the estimates require the
use of both the best fit polynomial for f and the remainder operator.

Proof of Theorem (2.1.6). Let P,edQ and choose r > 0. Choose
feCy(R? such that #(X)=1 for [X|<2, 6(X)=0 for |X|=4 and

[Rz(KﬁzF(-—Q);P, Po) R(KF.(—Q); P, Py) R,(KPF,(—Q); P, PD)J

r and |Py—Q| = 2r

(23.15)
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0<8(X) <1, VXeR. Let 7(Q) = 8(P,—Q/r). Then n(Q) =1 for |P,—Q|
<2, n{(Q)=0 for |[Po—Ql 24r, 0<n(@)<1 and |P5(Q) < Mjr where
M = max {|F0(X): XeR?).

For f eBMO2 let @by, = dbay,p, (/)(Q) devote the best fit for fin the set
B,,(P). Let T = To{ A (1 —n)( fmm4,)) P, P;) be the osculating polynomial
for o ((1 —n)(f—0dy,) based at Py and let T denote its corresponding
element in %, N %, obtained by taking the gradient of T w1th respect to the
variable P. We can then write

24.1)  Af(Py—dby, (P)— T (P) = X ((n(f—wan)) HP)
— [(f Q) 04, (@)0, 7,(Q), 1,(@)) T (P, @)ds(Q)
+ § (L=#(Q)f (@)~ 0iAQ)e(Po, P, 0)ds(Q)
an

where o{P,, P, Q) is the remainder rﬁatrix defineéd in (2.3.13).
To estimate the first term on the right-hand side of (2.4.1) we use the
boundedness of X from #, to %,. This yields

@43)  [|# (-0 ds(P) < aj"n | (0~ 0u)P)| ds (P)
Br

<C [|n(f~wu) (Plds(P < C afﬂ 7 (P2 1f (P)—ba, (P) ds (P)
a0

+C [ IPHPIRIS (P)=0q, (P ds(P)
<Cr{B|™* BI |/ (P} =y (P) ds (P)}
+CrM2f #?Po)z < Crf * (o).
To estimate the second term in (24.1) we employ Lemma (2.2.12) and

straightforward estimates for the components of the matrix (P, Q) defined
in (1.8). We get

(24.4) IaL J{Q) — w4, (D)0, 1(Q), n,(@)7(P, Q)ds(Q)]

C_ j' |f (@)= o4, (Q)l
><(|Tz1|+|331|+|'522|+|Tzal+|T32f+|T33|)(P Q)ds(Q)

<C— {r~1B £ (Q)— 4, (Q) ds (@)}

<X g eapn = o rpy.
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For the third integral in (24.1) we begin by noting that it suffices to
estimate the integrals

I=f(t=r (@) (@~ 04 (@) 211 (Po, P, Q)ds(Q),
m- g

a0

"'7(Q))(f(Q)“wm(Q})Qiz(Po: P, @)ds(Q).

The remaining terms are similar and if anything easier.

To simplify the notation we let B, »}3_,J (Po) wj=w,; (f) and let N
denote the largest integer for which ,B,+1 \B; is nonempty Since 1—n{Q) =10
for QeB, we may estimate

N

245 W< ) - _[\Blf (@)~ (@)le11(Po, P, Q) ds(Q)
I=1 Bjyy

N j+1

Y I ro- w,+1Q)I+ Elwlﬂ(Q) w; (Q)l}

i= 1B+1\BJ

//\

xle11(Po, P, Q)lds(Q).

To estimate the “f--c;,,” term we use the estimates for the remainder
matrix in (2.3.15) to get :

[

246 | 1f( Q-1 (Qlless (Po, P, Q) ds(Q)

Bj+1\B;
< CB' I/B.Jf(Q)-wj+1(Q)ITZIPG_Ql_?’dS(Q)
SCRENT T 1@y (Qlds(Q) < 27 7 (Po).

To estimate the 2.}: ;” term we once again use the remainder estimates
in (2.3.15) along with Corollary (2.2.10) to get

jt1

e4n Y

=1 Bjy | \B;

{0041 (Q)—; (@) |11 (Po. P, Q) ds(Q)

< jil Cf *{Po) [

i=2 Bjy 18
S g2 if*(Py).
Summing in j we get the estimate
(248) 1] < of *(Po).

To. estimate II we begin as in estimating [ and we are led first to
estimate the integral

(27 +[P=0Q)r*|Po— QI ds(Q)
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(2.4.9) § 1S Q) —w;41(Q)er2(Po, P, Q) ds(Q)
Bj+1'8;
<¢ | if(@—w s (QriPo—0Q1 7 ds(Q)
Byt 1\By
<27 | f (@~ (@) ds(Q)
Bit1
Se27¥r BTt | IS (@ =051 QP ds (@)}

Byt

<c27/f*(P,) by Corollary (2.2.15).

As in the estimate for I we must estimate the integral

2410 |

By 1 \B;

;4 1 (@)~ (Q) |01 2 (Po, P, @Nds(Q)

< *(Po) | (2r+|Po—Q)rIPe—Ql 7> ds(Q)

Bj+ 1 W
<o F (PP~ 4279,

Summing in i we get

j+1
241) ¥ o (@) ~oi(Q)ller2(Po, P, ) ds(Q)
i=2 Bj+1\Bj

<G27f * (Py).

Combining estimates (2.4.9) with (24.11) and summing in j we get

(2.4.12) I} < of *(Po) i 271 ef *(Py).
=1 .

Hence we get the BMO2 estimate:

(2.4.13) UBA™* [P ds} 2+ {|B|* § IIPds}? < of *(Po).
B, B,

The proof of (2.1.7) now proceeds in a manner similar to the proof of
Theorem (2.1.6). One can still define the polynomial T = T,( ((1—n)(/
~ty,)); P, Pg) and let T denote the corresponding element in 2, N 2, . This
replaces the matrix kernel ¢ on the right-hand side of (2.4.1) by a matrix of
Taylor series remainders for the functions k;(-, @). In particular, g,; is
replaced by R, (ki (-, Q); P, Py) and g, is replaced by R; (k4 (-, Q); P, Py).
The pointwise estimates for k;;(P, Q) have been chosen to guarantee that the
replacements for the g;; will satisfy pointwise estimates sufficient to allow the
proof of (2.1.6) to go through for this case.
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