

Topologies on measure spaces and the Radon-Nikodym theorem

b

RUSSELL LYONS* (Stanford, Cal.)

Abstract. Let M(X) be the space of complex Borel measures on a compact metric space X. If $\sigma \in M(X)$, the Radon-Nikodym theorem identifies $L^1(\sigma)$ with $L(\sigma)$, the measures which vanish on those sets where $|\sigma|$ vanishes. Let $\mathscr F$ be a topology on M(X) and $L^{\mathscr F}(\sigma)$ the $\mathscr F$ -closure of $L(\sigma)$. Analogously to the Radon-Nikodym theorem, we show that for certain $\mathscr F$, $L^{\mathscr F}(\sigma)$ is characterized by its common null sets. This unifies previous work of the author [5].

Let M(X) be the space of complex Borel measures on a compact metric space X. If $\sigma \in M(X)$, we let $L^1(\sigma) = \{f \cdot \sigma \colon \lceil |f| \, d |\sigma| < \infty\}$ and $L(\sigma) = \{\mu \in M(X) \colon \mu \leqslant \sigma\}$. A set E has measure zero for all $\mu \in L^1(\sigma)$ iff $|\sigma|(E) = 0$. Conversely, the Radon-Nikodym theorem says that $\mu \in L^1(\sigma)$ iff $\mu(E) = 0$ for all E of $|\sigma|$ -measure 0, i.e., that $L^1(\sigma) = L(\sigma)$. Now let $\mathscr T$ be a topology on M(X) which is weaker than the usual norm topology and let $L^{\mathscr T}(\sigma)$ denote the $\mathscr T$ -closure of $L^1(\sigma)$. Given a class $\mathscr C \subset M(X)$, we denote by $\mathscr C^1$ the class of Borel sets $E \subset X$ such that $|\mu|(E) = 0$ for all $\mu \in \mathscr C$. Likewise, if $\mathscr C$ is a class of Borel sets, $\mathscr C^1$ denotes the measures μ such that $|\mu|(E) = 0$ for all $E \in \mathscr C$. Thus, the Radon-Nikodym theorem asserts that $L^1(\sigma)^{1,1} = L^1(\sigma)$. Here we shall investigate the question of whether $L^{\mathscr T}(\sigma)^{1,1} = L^{\mathscr T}(\sigma)$, of which the Radon-Nikodym theorem is the case where $\mathscr T$ is the norm topology.

A prime example is given by the pseudomeasure topology PM on the circle T, this is defined by the norm

$$||\mu||_{\mathrm{PM}} = \sup_{n \in \mathbf{Z}} |\widehat{\mu}(n)|.$$

Thus, if λ denotes Lebesgue measure, we see that

$$L^{\mathrm{PM}}(\lambda) = M_0(T) \stackrel{\mathrm{def}}{=} \{ \mu \in M(T) : \lim_{|n| \to \infty} \widehat{\mu}(n) = 0 \}.$$

The fact that $M_0(T)^{\perp \perp} = M_0(T)$ was only proved recently [4]. Another interesting topology is the "Wiener-norm" topology, defined in [5] by

^{*} Partially supported by an AMS Research Fellowship and an NSF Postdoctoral Fellowship.

$$||\mu||_{WN} = \sup_{n \ge 0} \left(\frac{1}{2N+1} \sum_{|n| \le N} |\hat{\mu}(n)|^2 \right)^{1/2}.$$

For example, $L^{\text{WN}}(\lambda) = M_c(T)$, the class of continuous measures. For this topology and for the weak* topology, we showed in [5] that $L^{\mathcal{F}}(\sigma)^{\perp\perp} = L^{\mathcal{F}}(\sigma)$ for all σ . After finding an example [5] of a norm topology \mathcal{F} for which $L^{\mathcal{F}}(\sigma)^{\perp\perp} \neq L^{\mathcal{F}}(\sigma)$ for $\sigma = \lambda$ or $\sigma \in M_d(T)$ (the class of discrete measures), we felt that it was merely wishful thinking to hope for a general result giving $L^{\mathcal{F}}(\sigma)^{\perp\perp} = L^{\mathcal{F}}(\sigma)$. However, that is precisely what we shall do here. The conditions on \mathcal{F} explain clearly the counterexample that was found in [5]. Furthermore, we obtain immediately that $L^{\text{PM}}(\sigma)^{\perp\perp} = L^{\text{PM}}(\sigma)$ for all σ , which was the main unanswered question in [5].

Our result depends on sufficient conditions recently found by A. Louveau [3, Chap. IX] that ensure that $\mathscr{C}^{\perp \perp} = \mathscr{C}$ for a general class \mathscr{C} . Recall that \mathscr{C} is said to be a band if $v \leqslant \mu \in \mathscr{C} \Rightarrow v \in \mathscr{C}$. Since every class of the form \mathscr{C}^{\perp} is evidently a band, we may as well assume \mathscr{C} to be a band. With this assumption, we may in fact restrict ourselves to subprobability measures, i.e., measures μ such that $\mu \geqslant 0$ and $\|\mu\|_{M(X)} \leqslant 1$. That is, if $X^{\#}$ denotes the space of subprobability measures, then for bands \mathscr{C} ,

$$\mathscr{C} = \mathscr{C}^{\perp \perp} \Leftrightarrow \mathscr{C} \cap X^{\#} = (\mathscr{C} \cap X^{\#})^{\perp \perp} \cap X^{\#}.$$

We shall therefore abuse notation and let \mathscr{E}^{\perp} be understood as a subclass of $X^{\#}$ when discussing measures in $X^{\#}$. Similarly, we shall call a class $\mathscr{C} \subset X^{\#}$ a band if $\mu \in \mathscr{C} \Rightarrow L(\mu) \cap X^{\#} \subset \mathscr{C}$. For convenience, we write $L_{\#}^{\mathscr{F}}(\sigma) = L^{\mathscr{F}}(\sigma) \cap X^{\#}$.

Let M(X) have the weak* topology. If Λ is a (weak*) Borel probability measure on M(X) with compact support, then $v \in M(X)$ is said to be its barycenter if for all $f \in \mathcal{C}(X)$,

(1)
$$\langle f, \nu \rangle = \int_{M(X)} \langle f, \mu \rangle d\Lambda(\mu),$$

where

$$\langle f, \mu \rangle \stackrel{\text{def}}{=} \int_X f \, d\mu.$$

It is clear that every Λ has exactly one barycenter. A class $\mathscr C$ is called measure convex if it contains the barycenter of every Λ carried by $\mathscr C$. Now if (1) holds for all $f \in C(X)$, then (1) holds also for every $f \in \mathscr B(X)$, the class of bounded Borel-measurable functions on X, since the smallest class containing C(X) and closed under bounded pointwise limits is $\mathscr B(X)$. Thus it is evident that every class of the form $\mathscr E^\perp$ is measure convex. It is also evident that $\mathscr E^\perp$ is norm-closed. It is remarkable that these conditions are almost sufficient as well.

THEOREM 1 [3, Chap. IX]. Let $\mathscr{C} \subset X^*$ be a norm-closed measure convex band. If \mathscr{C} is weak* analytic, then $\mathscr{C} = \mathscr{C}^{\perp \perp}$.

We shall give a short proof of this based on work of G. Mokobodzki.

Proof. Let $\mu \in \mathscr{C}^{\perp \perp}$. Because \mathscr{C} is a norm-closed convex band, we may decompose μ as $\mu = \mu_1 + \mu_2$, with $\mu_1 \in \mathscr{C}$ and $\mu_2 \perp \mathscr{C}$ (let $\mu_1 = \mu|_E$, where E is a Borel set such that $\mu(E) = \sup \{\mu(F): F \text{ Borel}, \ \mu|_F \in \mathscr{C}\}$). Because \mathscr{C} is analytic and measure convex, there is [2, p. 191, Remark 37] a Borel set $E \subset X$ such that E carries every $\nu \in \mathscr{C}$ and $\mu_2(E) = 0$. Thus $E^c \in \mathscr{C}^\perp$, whence $\mu(E^c) = 0$, and so $\mu_2(E^c) = 0$. Therefore $\mu_2 = 0$ and $\mu \in \mathscr{C}$.

It remains to be seen under what conditions $L_\#^{\mathscr{T}}(\sigma)$ satisfies the hypotheses of Theorem 1. As we have supposed \mathscr{T} to be weaker than the usual norm topology, it is automatic that $L^{\mathscr{T}}(\sigma)$ is a norm-closed band. All the topologies considered in [5] have the following form: \mathscr{T} is a linear topology with base at zero consisting of the sets

(2)
$$\{\mu \in M(X): \forall f \in F \ f(\mu) < \varepsilon\} \quad (F \in \mathcal{F}, \ \varepsilon > 0),$$

where \mathscr{F} is a collection of sets F and each $f \in F$ is a nonnegative function on M(X). For example, if \mathscr{F} is the PM topology on T, we may take \mathscr{F} to consist of the single set $F = \{\mu \mapsto |\hat{\mu}(n)| \colon n \in \mathbb{Z}\}$; if \mathscr{F} is the weak* topology, we may take

$$\mathscr{F} = \big\{ F \colon \exists n \geqslant 1 \ \exists f_1, \ldots, f_n \in C(X) \ F = \big\{ \mu \mapsto \big| \big| f_i \, d\mu \big| \colon 1 \leqslant i \leqslant n \big\} \big\}.$$

We shall say that $f: M(X) \to R$ is measure convex if f is weak* universally measurable and if whenever v is a barycenter of Λ , we have

$$f(v) \leqslant \int_{M(X)} f(\mu) d\Lambda(\mu).$$

Lemma 2. If every $F \in \mathcal{F}$ is equicontinuous in the norm topology, each $f \in F$ is measure convex, each basic open set (2) is weak* analytic, $\sigma \in M(X)$, and $L_{\#}^{\mathcal{F}}(\sigma)$ is weak* analytic, then $L_{\#}^{\mathcal{F}}(\sigma)$ is measure convex and $L^{\mathcal{F}}(\sigma) = L^{\mathcal{F}}(\sigma)^{\perp \perp}$.

Proof. Since F is equicontinuous, every set (2) contains a (norm) ball about the origin; therefore $\mathcal F$ is weaker than the norm topology. Let ν be a barycenter of any (Borel) measure Λ carried by $L_\#^{\mathcal F}(\sigma)$. In order to show that $\nu \in L_\#^{\mathcal F}(\sigma)$, we must find, for each U as in (2), a measure $\omega \in L^1(\sigma)$ such that $\omega - \nu \in U$. Now $(\varrho, \mu) \mapsto \varrho - \mu$ is continuous as a map $L_\#^1(\sigma) \times X^\# \to M(X)$ (where M(X) has the weak* topology, which $L_\#^1(\sigma)$ and $X^\#$ inherit as well). Since U is (weak*) analytic, it follows [1, p. 43, Theorem 11] that $\{(\varrho, \mu) \in L_\#^1(\sigma) \times X^\#: \varrho - \mu \in U\}$ is an analytic subset of $L_\#^1(\sigma) \times X^\#$. Hence [1, p. 160] there is a selection map $h: X^\# \to L_\#^1(\sigma)$, measurable from the σ -algebra generated by the analytic subsets of $X^\#$ to the Borel subsets of

 $L^1_\#(\sigma)$, such that $h(\mu) - \mu \in U$ for all $\mu \in X^\#$ for which there is a measure $\varrho \in L^1_\#(\sigma)$ with $\varrho - \mu \in U$ —in particular, for all $\mu \in L^{\mathscr{F}}_\#(\sigma)$. Thus, h is universally measurable, so that we may define

$$\omega = \int_{X^{\#}} h(\mu) d\Lambda(\mu).$$

Since $L^1_{\#}(\sigma)$ is measure convex, we have $\omega \in L^1_{\#}(\sigma)$. Now for $f \in F$, we have, by measure convexity,

$$f(\omega-\nu)=f\big(\int\limits_{X^\#}[h(\mu)-\mu]\,d\Lambda(\mu)\big)\leqslant \int\limits_{X^\#}f\big(h(\mu)-\mu\big)d\Lambda(\mu)<\int\limits_{X^\#}\varepsilon\,d\Lambda(\mu)=\varepsilon,$$

where we have used the definition of U. Since this is true for all $f \in F$, it follows that $\omega - \nu \in U$, as desired.

The last part of the lemma follows from Theorem 1. m

We say that a nonnegative function f is coanalytic if the set $\{f < a\}$ is analytic for $a \ge 0$ [1, p. 74].

THEOREM 3. Let \mathcal{F} be a linear topology with base at zero given by sets (2), where \mathcal{F} is countable, each $F \in \mathcal{F}$ is countable and equicontinuous in the norm topology, and each $f \in F$ is weak* coanalytic and measure convex. Then for all $\sigma \in M(X)$, $L^{\mathcal{F}}(\sigma) = L^{\mathcal{F}}(\sigma)^{\perp \perp}$.

Proof. It is clear that each basic open set (2) is weak* analytic [1, p. 42, Theorem 8]. If S denotes any countable norm-dense subset of $L^1(\sigma)$, then

$$L^{\mathscr{T}}(\sigma) = \bigcap_{n \geqslant 1} \bigcap_{F \in \mathscr{F}} \bigcup_{\omega \in S} \bigcap_{f \in F} \{ \mu \in M(X) \colon f(\mu - \omega) < 1/n \}.$$

Therefore $L^{\mathscr{F}}(\sigma)$ is also weak* analytic. Lemma 2 completes the proof.

This theorem applies to the usual norm topology by taking $\mathscr{F} = \{F\}$, $F = \{\mu \mapsto | \int f \, d\mu| \colon f \in S\}$, where S is a countable dense subset of the unit ball of C(X); to the weak* topology by a similar artifice; and to the PM and WN topologies on T in the obvious ways. This explains the positive results of [5]. Furthermore, it is easily seen that the example given in [5] of a topology $\mathscr T$ with $L^{\mathscr F}(\sigma) \neq L^{\mathscr F}(\sigma)^{\perp 1}$ works because $L^{\mathscr F}(\sigma)$ is not measure convex; indeed, while the basic open sets are of the form (2), the elements $f \in F$ are not measure convex.

Two defects of this approach are the following: the results in [5] were obtained by first identifying $L^{\mathcal{F}}(\sigma)$ explicitly. It would still be interesting to identify $L^{\text{PM}}(\sigma)$, for example, or even $L^{\text{PM}}(\sigma)^{\perp}$ (cf. [4]). Furthermore, it is not clear how to extend these methods to (locally) compact (abelian) groups which are not Polish spaces, whereas we know, for example, that $L^{\text{PM}}(\lambda) = L^{\text{PM}}(\lambda)^{\perp \perp}$ for λ the Haar measure on any compact abelian group [4].

References

- [1] C. Dellacherie and P.-A. Meyer, Probabilities and Potential, Hermann, Paris, and North-Holland, Amsterdam 1978.
- [2] -, -, Probabilités et Potentiel. Chapitres IX à XI, Hermann, Paris 1983.
- [3] A. S. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, Cambridge 1987.
- [4] R. Lyons, Fourier-Stieltjes coefficients and asymptotic distribution modulo 1, Ann. of Math. 122 (1985), 155-170.
- [5] -, Wener's theorem, the Radon-Nikodym theorem, and Mo(T), Ark. Mat. 24 (1986), 277-282; Errata, to appear.

DEPARTMENT OF MATHEMATICS STANFORD UNIVERSITY Stanford, California 94305, U.S.A.

> Received March 18, 1987 Revised version July 3, 1987

(2289)