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Topologies on measure spaces and
the Radon-Nikodym thecrem
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RUSSELL LYONS* (Stanford, Cal)

Abstract. Let M{X) be the space of complex Borel measures on a compact metric space X.
If ¢ e M(X), the Radon~Nikodym theorem identifies L' (¢} with L(z), the measures which vanish
on those sets where |o| vanishes. Let & be a topology on M (X} and L7 (g} the Zclosure of
L{g). Analogously to the Radon-Nikodym theorem, we show that for certain &, LY (¢) is
chatacterized by its common null sets. This unifies previous work of the author [5].

Let M (X) be the space of complex Borel measures on a compact metric
space X. If ceM(X), we let L'(s)={f0: [{fldlo] < w} and L)
= {peM(X): u<o}. Aset E has measure zéro for all pell (o) iff || (E) = 0.
Conversely, the Radon-Nikodym theorem says that uelL’ (o) iff u(E) = 0 for
all E of |o|-measure 0, ie., that L'(¢) = L(o). Now let 7 be a topology on
M(X) which is weaker than the usual norm topology and let LY (¢) denote
the Z-closure of L!(s). Given a class ¢ = M (X), we denote by %* the class
of Borel sets E = X such that | (E) = 0 for all pe%. Likewise, if £ is a class
of Borel sets, &* denotes the measures u such that |y (E)=0 for. all Eed.
Thus, the Radon-Nikodym theorem asserts that L'(g)™* = L'(g). Here we
shall investigate the question of whether L7 (¢)** = L7 (), of which the
Radon-Nikodym theorem is the case where  is the norm topology.

A prime example is given by the pseudomeasure topology PM on the
circle T this is defined by the norm '

lldlen = SUIZ?Iﬁ(n)L
Thus, if / denotes Lebesgue measure, we see that
M) = Mo(T) = {ueM(T): Jim 20 = 0}.
n| o

The fact that Mg (T)**= My(T) was only proved recently [4]. Another
interesting topology is the “Wiener-norm” topolpgy, deﬁnef_i :in [5] by
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1 s 1/2
ll#lyn = sup (2N+1 ,,,IZSNW(")I ) :
For example, L¥N(1) = M_{T), the class of continuous measures. For this
topology and for the weak* topology, we showed in [5] that L¥{(¢)**
= L7 (o) for all o. After finding an example [S] of a norm topology 7 for
which L7 (6)** = L7 (o) for o = 1 or oeM,(T) (the class of discreie meas-
ures), we felt that it was merely wishful thinking to hope for a general result
giving L7 (¢)1* = L7 (6). However, that is precisely what we shall do here.
The conditions on & explain clearly the counterexample that was found in
[5]. Furthermore, we obtain immediately that L™ (¢)*+ = L*™ (o) for all g,
which was the main unanswered question in [5].

Our result depends on sufficient conditions recently found by A. Lou-
veau [3, Chap. IX] that ensure that €** = % for a general class %. Recall that
% is said to be a band if v € pe% =ve¥. Since every class of the form &+ is
evidently a band, we may as well assume % to be a band. With this
assumption, we may in fact restrict ourselves to subprobability measures, i.e.,
measures u such that g > 0 and ||g||yx, < 1. That is, if X * denotes the space
of subprobability measures, then for bands %,

b =F" e GAXF =(FnXHAX"

~We shall therefore abuse notation and let #* be understood as a subclass of
X * when discussing measures in X ¥, Similarly, we shall call a class ¥ c X #
a band if pe¥=L(WnX* =% For convenience, we write L% (o)

=L (e)n X ¥
Let M (X) have the weak™* topology. If A is a (weak*) Borel probability

measure on M (X) with compact support, then &M ({X) is said to be its
barycenter if for all f e€(X),

M(X)
where
o > = [ fdp.
X

It is clear that every A has exactly one barycenter. A class ¥ is called
measure convex if it contains the barycenter of every 4 carried by 4. Now if
(1) holds for all f eC(X), then (1) holds also for every f e #(X), the class of
bounded Borel-measurable functions on X, since the smallest class cortain-
ing C(X) and closed under bounded pointwise limits is % (X). Thus it is
evident that every class of the form &+ is measure convex. It is also evident

that &* is norm-closed. It is remarkable that these conditions are almost
sufficient as well. _ ‘ ‘
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Treorem 1 [3, Chap. IX]. Let % < X * be a norm-closed measure convex
band. If % is weak® analytic, then € = €**

We shall give a short proof of this based on work of G. Mokobodzki.

Proof. Let ue®*'t Because % is a norm-closed convex band, we may
decompose p A8 = [y, With u; €% and u, L % (let py = plp, where E is
a Borel set such that p(E)=sup{u(F): F Borel, ulyc%}). Because % is
analytic and measure convex, there is [2, p. 151, Remark 37] a Borel set
£ = X such that E carries every ve% and u,(E) = 0. Thus E°&%-, whence
u(E) =0, and so u;(E) = 0. Therefore y, =0 and pe%. =

It remains to be seen under what conditions L% (o) satisfies the hypothe-
ses of Theorem 1. As we have supposed .7 to be weaker than the usual norm
topology, it is automatic that L7 (o) is a norm-closed band. All the topcﬂo—
gies considered in [5] have the following form: 7" is a linear topology with
base at zerc consisting of the sets

- (@) _ {ueM(X): YfeF f(y<e} (Fe#F, e>0),

where # is a collection of sets F and each f € F is a nonnegative function on
M(X). For example, if 7 is the PM topology on T, we may take # to
consist of the single set F = {u—|ji(n): neZ 1, if 7 is the weak™® topology,
we may take

F={F:anz113f, .. ,eCX) F={pm|{fidd: 1<i<n}}

We shall say that f: M(X) — R is measure convex if fis weak* universal-
ly measurable and if whenever v is a barycenter of 4, we have

fo < [ flwdd.

M(X}

LemMa 2. If every FedF is equicontinuous in the norm topology, each
f eF is measure convex, each basic open set (2) is weak*® analytic, UEM;_[X), _
and L%(c). is weak® analytic, then L% (g) is measure convex and L% (g)
= L.@'(G.)_LJ._ '

" Proof. Since F is equicontinuous, every set (2) contains a (norm) bgll
about the origin; therefore 7 is weaker than the norm topology. Let v be' a
barycenter of any (Borel) measure A carried by L% (¢). In orc}cr to show that
v L% (0), we must find, for cach U as in (2), a measure fL (o) su:h, that.a)
~yeU. Now (¢, g)t—0—p is continnous as a map L#g:r)xX_ ﬂM(.IFf)
(where M (X) has the weak* topology, which L% (s) and X inherit -ag wg }.
Since U is (weak*) analytic, it follows [t, p- 43 .Tllleorem il] that
(o, Wellilo)xX #: p—pelU} is an analytic subset of L#(a) xX7, Iiempe
[1, p. 160] there is a selection map h X#* LY (:), mcasurablgfrom t § a}
algebra generated by the analytic subsets of X7 to the Borel subsets: o
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L% (o), such that h(p)—ueU for all peX* for which there is a measure
o€l (o) with g—pelU —in particular, for all pel%(g). Thus, h is universal-
ly measurable, so that we may define

w= | h{u)dA(u).
#

X

Since L% (o) s measure convex, we have w €L (0). Now for f €F, we have,
by measure convexity, ‘

flo==7( ] hw-uldaw) < § f(h—wdAw < | edA(w) =e,

x# x# x#

where we have used the definition of U. Since this is true for all f ‘EF, it
follows that w—velU, as desired.
The last part of the lemma follows from Theorem 1. m

We say that a nonnegative function f is coanalytic if the set [f <a} is
analytic for 2= 0 [1, p. 74].

THeorEM 3. Let 7 be a linear topology with base at zero given by sets
(2), where # is countable, each F € % is countable and equicontinuous in the
norm topology, and each f €F is weak™ coanalytic and measure convex, Then
Jor all seM(X), L7 (6) = L7 (0)**.

Proof. It is clear that each basic open set (2) is weak™ analytic {1, p.
42, Theorem 8]. If § denotes any countable norm-dense subset of L*(g), then

7@ =0 N U N ireM®): f(u-o) <1/n).

nz 1l FeF weS [eF
Therefore L7 (g} is also weak* analytic. Lemma 2 completes the proof. =

This theorem applies to the usual norm topology by taking # = {F}, F
= {u>[[ fdy|: S}, where § is a countable dense subset of the unit ball of
C(X); to the weak* topology by a similar artifice; and to the PM and WN
topologies on T in the obvious ways. This explains the positive results of [5].
Furthermore, it is easily seen that the example -given in [3] of a topology &
with L7 (5) # L7 (6)** works because L7 (¢) is not measure convex; indeed,
while the basic open séts are of the form (2), the elements f €F are not
measure convex.

Two defects of this approach are the following: the results in [5] were
obtained by first identifying L7 (o) explicitly. It would still be interesting to
identify L™ (o), for example, or even LF¥(g)* (cf. [4]). Furthermore, it is not
clear how to extend these methods to (locally) compact (abelian) groups
which “are not Polish spaces, whereas we know, for example, that L"™(A)
= L™(A)*+ for A the Haar measure on any compact abelian group [4], -
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