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‘The dual of every Aspinnd space admits
a projectionnl resolution of the identity

by

MARIAN FABYAN (Prague) and GILLES GODEFROY (Paris)

Abstract. We show that the dual of every Asplund space admits a projectional resolution
of the identity. An application is that any dual space with the Radon-Nikodym property can be
linearly and continuously injected into co(I"), has a Markushevich basis, and admits an
equivalent locally uniformly rotund norm. We also show that a nonreflexive Banach space which
is an M-ideal in its bidual is weakly compactly generated and containg a complemented copy of
Cg-

Introduction and statement of resmlts. An important and widely open
question in geometry of Banach spaces is that of the existence of nontrivial
linear centinuous mappings on a given space. Among such mappings norm
one projections play an important role. In some large classes of Banach
spaces the projections do exist, and moteover, they can be organized into a
“long sequence” with nice properties. Such a sequence is then called a
projectional resolution of the identity (PRI); for the exact definition see the
text following Theorem 1. Thus one obtains a powerful tool for studying the -
structure and for renorming certain spaces.

The first nontrivial PRI were constructed by Lindenstrauwss [24], [25]
for reflexive spaces and by Amir and Lindenstrauss [17] for weakly compactly
generated spaces, Shortly thereafter Tacon [33] constructed a PRI in the
dual of a very smooth Banach space.

Let us recall that a very smooth space is Asplund [3, p. 31], [2], [9]. So
the natural question about the existence of a PRI on the dual of a general
Asplund space has arisen. Papers [18], [6), and [7] are devoted to the
construction of a PRI in the dual of an Asplund space X under various
additional smoothness conditions imposed on X; [7] has provided so far the
most general result in this direction. '

The present paper solves this problem affirmatively in full generality.

Tueorem 1. Let X be an Asplund space, i.e. X* has the Radon-Nikodym
property, ard let p denote the first ordinal of cardinality dens X.

Then there exist a nondecreasing “long sequence” (M, © €z <u} of
subspaces of X and a “long sequence” {P,: @ < o < u} of linear projections on
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X* such that M, =X, P,=identity, and for all @ <a< pu the following

_conditions hold:
(i) dens M, < &

(i) U“QM;,H is dense in M,.

(i) JIPl = 1.

(iv) P,Py=PsP, =Py if B<ar

(v) dens P, X* < &.

(vi) U,’i<aPﬂ+1 X* is dense in P, X*.

(vii} The mapping R,: P, X* - M defined by R, f = fly,. f€P. X*, is a
surjective isometry and P,f =R *(fly,) for all feX*.

A “long sequence” |P,: @ <« < g} of linear projections which shares
properties (iii)}{vi) is called a PRI. Sometimes, but not in this paper, (iii) is
replaced by sup,||P,/| < + o0,

By combining the above theorem with known results and techniques we
obtain

TueoreM 2. Let X be an Asplund space. Then:

(i) There exists a one-to-one linear continuous mapping from X* into
co(7).

(i) X* has a Markushevich basis.

(iify X* admits an equivalent locally uniformly rotund (LUR) norm.

(iv) X* admits an equivalent norm such that every weakly compact convex
set in X* is an intersection of balls.

Of course, this theorem together with other known results yields further
consequences. For instance, combining it with a result of Edgar [5, Theorem
1.1], one sees that in the dual space with the Radon-Nikodym property the
norm Borel and weak Borel structures coincide,

For one subclass of the Asplund spaces the PRI from Theorem 1 enjoys
nicer properties, so one gets stronger conclusions:

Tueorem 3. If a nonreflexive Banach space is an M-ideal in its bidual,
then it is Asplund, weakly compactly generated, and contains a complemented
copy of cqg.

This theorem can be embellished by the renorming result that a weakly
compactly generated Asplund space admits an equivalent LUR norm whose
dual nerm is also LUR [7], [19], [3, pp. 164, 112, 113}

In what follows we would like to mention the difficulties which we met
and had to get round when we tried to prove Theorem 1. First, there is a

-question. of the existence of any nontrivial projection on the dual Banach

space. Here a surprising result of Heinrich and Mankiewicz [16, Proposition
34, Corollary 3.8] comes. Using model theory, they showed that every
sufficiently large dual Banach space admits many norm one projections. An
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elementary proof of this fact based on ideas of Tacon [33] can be found in
Yost and Sims [35]. However, such a general result proves to provide
projections too wild for ordering them into a “long sequence” satisfying the
conclusion of Theorem 1, or at least properties (iii}-(vi). Mainly, (vi) seems to
be violated in general. even in the duals of Asplund spaces. It follows that in
order to construct a PRI on the dual of an Asplund space the P, should
be selected more carefully; indeed, they must be controlled somehow. The
next proposition, whose origins can be traced back to John an Zizler {18],
[19], provides such a construction.

Prorosimion ([6, Proposition 1, Remark]). Let X be a Banach space
with a norm-weak lower semicontinuous multivalued mapping D: X — 2% such
that Dx is a counfable set for every xeX and that

() sp {x*|,: x* eDx, xeV) = V*

for every subspace V of X. )
Then there exist “long sequences” {M,: w <a < p} and {P,: o €a <y}

as in Theorem 1 such that P, X* =sp D(M,) for all a.

So, having a mapping D as in this proposition, we are done. For
instance, il X is very stmooth, then we can take for D the derivative of || +]|?;
thus we get the result of Tacon [33]. In a general Asplund space the
construction of the mapping D proves to be a serious problem. For finding it
we use a beautiful theorem of Jayne and Rogers [17, Theorem 8] on the first
Baire class selectors for multivalued usco mappings. With the belp of this
result, it is easy to construct a countable-valued norm-norm lower semiconti-
nuous mapping D: X ~2%". But we are still far from proving the identity (¥)
for such a D. In order to do it, further powerful levers must be applied. Even
for separable V the identity (=) is not obvious. Indeed, its proof needs a
result of the second-named author [10, Theorém 1.2] on the so-called
boundaries, which in turn is based on a deep lemma of Simons [32, Lemma
2]. Finally, having verified (x) for all separable ¥, we are able to prove it for
all ¥ by using a method of separable reduction; to make familiar with this
technique, see for instance [97], [31]

The paper is concluded by several remarks, including the proof that the
existence of a PRI is neither an isomorphic property nor a three space
property.
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Notation and recalls. All Banach spaces in this paper are real and infinite-
dimensional, mostly nonseparable. If (X, |i-|]) is a Banach space, then X* and
X** genote its dual and bidual, respectively. We assume that X is a subspace
of X**, The closed unit ball of X is denoted by By. The symbol {x*, x)
means the value of x* e X* at xeX. If V is a subspace of X and f € X*, then
fly stands for the restriction of fto V. The concepts such as “closed”, “dense”,

.. are related to the norm topology unless otherwise stated. Given a subset §
of a Banach space, the symbols 8, sp §, co S, and dens § are used to denote
the closure, closed linear span, convex hull, and density of 5, respectively, the
latter being defined as the smallest cardinality of a dense subset of §. Given a
subspace Y of X we put Y= {x*eX*: (x* x)=0 for all xe¥}.

The letters @ and £ are reserved for denoting the first countable and
uncountable ordinals, respectively. Given an ordinal «, & is its cardinality.

Let (X, ||-i) be a Banach space. We say that a function ¢@: X —(—c0,
+o0) is Fréchet differentiable nt x€X if there is £ eX* such that

@(x)—{f, h>] —0

X is said to be Asplund if any continuous convex real-valued function on X
is Fréchet differentiable in a dense subset of X [2], [29]. Further information
on Asplund spaces can be found in [4] and [9].

A norm ||-|| on a Banach space is called LUR if ||x,~x]|] = O whenever
x, x,€X and 2|x/|2+2{IxJI*—~]lx +x,]|* = 0. All the norms on a given Ba-
nach space are assumed to be equivalent with the original one; so the
adjective “equivalent” is often omitted.

A system {(x,,, x*) yel'l « X x X* is called a Markushevlch basis in a
Banach space X if sp {x,: yel'} = X, the set {x}: yel'} is total on X, ie,
for every € # x€X theré is yeI' such that{x¥, x> #0, and <x§,fxv> = 5,,,,
(the Kronecker delta) for 8, yeI'. If moreover sp {x*: yel'} = X*, then we
speak about a shrinking Markushevich basis.

The formula X = U@®, V means that U, ¥ are subspaces of a Banach
space X such that X =U+V and |lu+vf = |jul| +1jv]] for all uelU, veV
According to [15, Proposition 3. 1] we say that a Banach space X is an M-
ideal in its bidual X** if X*** = X*@, X+

Proofs.

ﬁ[mmm as [Ih >0, -

Prooef of Theorem 1. The proof is divided inte four steps.
First step. We defme the mapping J: X —2%" by
Tx={xreXt I <1, o5 xd =[x}, xeX.

Then clearly Jx is weakly* 'compact for each x € X. Further, it is well: known
and easy to check that J is norm-weak™ upper semicontinuous, ie., the set
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-{fxeX JxC # @] is closed whenever C is a weakly* closed subset of X*.
Now, as X is Asplund, it follows from [2, Proposition 5] {see also [29,
p. 735)) that X¥ is weakly* dentable. This means that for every bounded
subset S of X* and every ¢ > 0 there are a > 0 and xeX such that the set
[x*e8: (x*, x> >sup<S, x)—a
has diameter less than e. '

_Thus we may apply ihe theorem of Jayne and Rogers [17, Theorem 8]
(unlike [7] we now use this result in full glory), which vields a singlevalued
selector D, for J that can be written as a pointwise limit of norm-norm

continbous mappings D;: X —X* i=1,2, ... Define the multivalued map-
ping D: X —2% by

Dx=1{D;x,Dyx,..), xeX.

Hence Dx is countable for each x eX. Further, we remark that D is norm-
norm lower semicontinuous, ie., the set {xeX: Dx NG # @} is open when-
ever G is an open subset of X*,

Second step. We claim that
(%) gf;{x*ly: x*eDx, xeV} = v*
for every separable subspace V of X.
Proof of the claim. Fix sugh a V. We remark that the set
S = {Dotly: veBy}

is a boundary of By« [10], ie., for any veV there is f S suéh that {f, v>
= |[o]|. Assume that («) is false. Then there are v** €Byw and f; €By. such

that
W fo) > 0= Q**, )

for all fesp {Dyoly: veV, i=1,2,...} and, a fortiori, for all f €S. Now, as V
is separable and Asplund [29, Theorem 12], V* is also separable [29,
Corollary 107 and so By~ endowed with the weak* topology is metrizable.
So there is a sequence {v,} in By such that p, —v** weakly*, Hence we may
agsume that

<f(), ‘U,,>>‘%<U**,fo> for all k==1,2,...
Thus by the result of Simons [32, Lemma 2] we have

0 = sup [ o**,(3i £ &5} = sup {lm <f, u): f &5}
2 inf {|ull: veco lo: k=1,2,..}}
> inf {(fy, v3: vecofn: k=1, 2, e o> >0,

a contradiction. This pfoves (%). for our separable V.
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. Third step. We claim that the identity («) holds also for nonseparable
subspaces V' of X.

Proof of this claim. Let ¥ be a fixed nonseparable subspace of X.
We shall use the method of separable reduction. Let % denote the set of all
infinite matrices a = {a;;} with rational entries such that a;; = 0 for all but
finitely many i, j=1,2, ... Observe that ¥ is a countable set.
i let feV* be arbltrary fixed. Starting frem a separable subspace
¥, # {0 of ¥ we can construct, by induction, separable subspaces Y, Y;, ...
of V, sequences {y}}, {y?},..., where {y}}, j=1,2,..., are dense in Y,
n=1,2,..., and elements v(n, a)eBy for all n=1,2,... and all acWA
such that, for all n =1, 2, ...,

(++) <f“ Z a;; D .V}’?V:

ij=1

. G Dyl — 1/m

v(n, d)> ”f—

and o .
Yooy =splY,uio(n, a): ac}].

Then we put ¥ = U  Y,. Of course, Y is a separable subspace of V.

Now, let ¢ >0 be arbxtrary Since f|y is an element of Y*, according to
the second step there are real numbers by, ..., b, elements yq, ..., ¥, in ¥
and positive integers iy, ..., i, such that

Ifly= 3 b Dy, yily|| <e/2.
P

Clearly, we may assume the b, to be rational. Further, the continuity of D,

and the fact that oY, c...cJ¥, =Y ensure that there are n > 2/e and
positive integers j,, ..., j,, such that

1fte— kzl be Dy Yy lv|| < 2/2.

ﬁence, putting a = {a,} where g,

iydy = bl! ARRE]
wise, we get ae U and

g, = bm, and a; =0 other-

oo
||f|Y_ Z a;D; yﬂr" < g2,

ij=1

Thus by (»#) we obtain

an 1 an
||f— > aijDiy;iV”<;+ - ¥ ayD; ¥y, o(n, @)
Li=1 ij=1
1 ad
=;+ Sly— L ay DYy, vin, @)
Li=1
<= T b < ie2 <e.
h f.1=1'lj g n2
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This means that the distance of f from
|

sp{Dixly: x€V, i=1,2,..} =sp {x*|y: x*eDx, xeV}

is less than & And since ¢ >0 could be taken arbitrarily small, we have
verified () for our nonseparable V. "

Fourth step. By applying the Proposition the conclusion of Theorem 1
follows.

Proof of Theorem 2. The basic tool we use here is transfinite
induction on dens X. Let {M,} and {P,} be as in Theorem 1, We note that
both M, and M,.,/M, are Asplund spaces [29, Theorem 12], [2, Proposi-
tion 4]. Moreover, (vii) in Theorem 1 easily implies that (P,4; —P,) X* is
isometric to (M. /M¥ for all o €a < p.

Now (i} follows by repeating the proof from Tacon [33, pp. 423, 424]
word for word. (i) can be proved as John and Zizler do in [20]. (iii) is
obtained with the help of Zizler’s extension [36] of the renorming theorem of
Troyanski {(see the proof of [36, Corollary 1]). Finally, as in [20], we can
construct from {P,} a new “long sequence” {Q,: 0<a <v} of bounded
linear projections on X* such that @, =0, @, # 0, @, = identity, Q.Q;
= 0,0, =Qpif f<a, Qx*esp {Qpyy x*: f<a}if 0 <o and x*eX* and
(Qur1— Q) X* is separable if < v. Now (iv) follows from a result of Zizler
[37, Theorem 11
i Proof of Theorem 3. Let X be a nonreflexive Banach space which is
an M-deal in X**. According to [23, Theorem 2.6], X is Asplund. So
Theorem 1 applies; let {P,: w <o < pu} be the PRI constructed there. Fix
any @ € «< p. We shall verify that P, is weak*-weak* continuous.

In order to do this we shall first show that ¥ = P, X* is weakly* closed.
Since X*** = X*@®,; X' and ¥ is norm one complemented in X*, according
to [14] we may write Y**=YH, ¥,. And this further implies that ¥,
=Y+~ X' [22) Thus we get Y14 =YD, (Y**n X" and this means that
¥ is weakly® closed in X*.

Consequently, putting

_ ZwmixeX: {f,x)=0 for all f&Y}
and deﬁnin_g

| (T, x) = (g, [x]

we infer that T maps (X/Z)* onto ¥ = P, X* isometrically, Then, by (vii) in
Theorem 1, T~ 1o R;* maps M} onto (X/Z)* isometrically. But M, as well
as X/Z are M-ideals in their biduals [15, Theorem 3.4]. Thus, putting
together the last two facts we conclude by e.g. [15, Proposition 4.2] that
T-YoR; ! is weak™-weak* continuous. But T is weak*-weak* continuous.

ge(X/Zy, xeX, [x]=x+Z,
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So, together with the formula -P, f = R ' (fs ), f €X*, we infer that P, is

weak*-weak* continuous as well. This means that P*X < X hence by
defining Q,x = P¥x, x€X, we have Q¥ =P,.

Moreover, from (vii) in Theorem 1 it easily follows that Q, X = M,.
Thus, by (i) and (ii) in Theorem 1, {Q,: @ <« < u} is a PRI on X. Now a
shrinking Markushevich basis on X can be constructed by transfinite induc-
tion on dens X exactly as in the proof of [19, Lemma 4]. Hence X is weakly
compactly generated [19, Proposition 2].

Finally, since X is nonreflexive, we can and do take the M, = g, X to
be nonreflexive as well. In fact, this can be seen at once by inspecting the
proof of [6, Proposition 1]. And since Q, X is an M-ideal in its bidual, it
contains an isomorphic copy of ¢, [15, Theorem 3.5]. Hence, by Scbezyk’s
‘theorem [26, Theorem 2.£.5] there is a projection P: @, X —+¢g. Then Po @,
is a projection showing that ¢, is complemented in X.

Remarks, examples, problems. 1) Let X be an M-ideal in X**. Then a

PRI in X™* can be constructed with the help of a. reduced number of tools. In
fact, the proof of (+) can be simplified considerably: Fix one subspace V of X
and denote by E the set of those points of B~ which are strongly exposed by
¢lements from V. Then by Asplund [29, p. 735], By is equal to the weak*
closure of co E. But V is an M-ideal in V**, which easily implies that the
weak™ and weak convergences on the unit sphere of V* coincide. Hence By
is equal to the norm closure of co E, and so V* =5E. Finally, remarking
that E is contained in {D,vl,: veBy), we get ().
' 2) We recall a result of Stegall [4, p. 195] that a dual Banach space has
the Radon-Nikodym property if and only if it admits no bounded infinite -
tree for any & > 0. Thus from Theorems 1 and 2 the following problems
arise naturally: If @ Banach space admits no bounded infinite g-tree for any
&£ >0, does it admit a PRI, a linear continuous infjection into co(I), ..?

3) In [7] it is shown that a weakly countably determined Asplund space
admits a Fréchet differentiable norm. By using the mapping D constructed in
the proof of Theorem 1, the proof of this result can be made more self-
contained. In fact, a renorming theorem of Mercourakis [28, Theorem 4.6]
that the dual of a weakly countably determined space has a dual strictly
convex norm is then no longer needed.

' 4} Not every dual has a PRI: see the duals J T* and JH* in Remark 7.

On the other hand, if X* has a PRI, X need not be Asplund. Indeed, I, is
not Asplund, yet its dual, as any abstract L,-space, has a PRI.

Let us also notice that, if X is a separable space not containing !, such
that X* is not separable, then there exists [8, Proposition VI1.4] a separable
subspace Z in X* such that Z is not contained in a separable complemented
$ubspace of X*; thus, assuming the continuum hypothesis, we can easily
show that X* has ne PRI Fortunately, in some concrete duals the conti-
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nuum hypothesis is needless for disproving the existence of PRI: see Re-
mark 7.

5) The projections P, constructed in Theorem 1 will not be weak*-
weak* continuous in some concrete cases. Namely, having a PR] 1P, with
this continuity property, a dual version [7] of Zizler’s extension of Troyan-
ski's theorem would yield a dual LUR norm on X* But, according to
Talagrand [34], we know that the dual of the space C([0, £]) of continuous
functions on [0, £] admits no dual strictly convex, a fortiori no dual LUR
nerm; see also the spaces JL, JT* in Remark 7.

6) The existence of a PRI is not an isomorphic property, ie. it depends
on a concrete norm on the space. In order to show this consider once more
the space X = C{[0, @]). Then, putting P,x = XY+ %) Xma XEX.
w < o < £, we can easily verify that {P,} is a PRI on X with respect to the
supremum norm. On the other hand, if X is equipped with a Fréchet
differentiable norm |{|-|| constructed by Talagrand [34], then it does not
admit a PRI Indeed, if a PRI {Q,} existed on (X, {/-])), then by [19, Lemma
3], {Q¥} would be a PRI on X* each Q¥ being, of course, weak*-weak*
continuous. And this is impossible: see Remark 5. )

7) Let JL denote the Johnson—Lindenstrauss space [21]. We shall show,
following an idea of Plichko [30], that this space admits no PRI with respect
to any equivalent norm. By contradiction, assume that {P,: o <a < p}
is a PRI on JL, There exists a subspace M of JL isometric to ¢, such that
the quotient JL/M is isometric to a Hilbert space [21]. Hence JL is Asplund
[29, Theorem 14] and it is easy to find @ < « < u such that M = P,{JL)
= X; thus dens X < & < Ji. Also, JL/X is a quotient of JL/M and so JL is
isomorphic to the direct sum of X and a Hilbert space H. Now recall that
JL¥* is weakly* separable [21]. Thus, since JL* is isomorphic to the direct
sum of X* and H, it follows that H must be separable. Hengce, taking into
account the Asplundness of X we conclude that

dens X = dens X* =dens JL* = Ji > &,

a contradiction.

Thus JL .does not admit a PRI for any equivalent norm. But both M
and Hilbert space have a PRI So the existence of @« PRI is not a three space
property. On the other hand, JL is LUR reriormable, since, for instance, the
existence of a LUR norm is a three space property [12]. Also, the weak*
separability of JL* [217] implies that JL* endowed with any norm contains
no PRI {P,] with all the P, weak*-weak* continuous. None the less, JL*
admits a dual LUR norm [117 since it is weakly compactly generated. By the
way, this implies that the P, from Theorem | are not weak®-weak™* conti-
nuous in general; see also Remark 5. '

Let JT be the James tree space [27] and let M denote its predual JT,.
The same method then shows that the dual JT* enjovs all the properties of

5 — Studin Mathemation XCL2
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_JL which are quoted in the preceding paragraph. It should be noted that
Plichko found a subspace of JT* with the same properties [30]. It can also
be shown by a somewhat different method that the dual JH* of the James—
Hagler space [13] admits no PRI yet is LUR renormabie.
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