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Packing measures on ulirametric spaces
by
H. HAASE (Greifswald)

Abstract. We introduce packing measures on ultrametric spaces following the ideas of [9].
Since ultrametric spaces have strange properties they are a good object for testing the properties
of new classes of measures, Qur main concern is to show that packing measures permit similar
theorems as for Hausdorff measures [87, for instance the selection problem for subsets of finite
positive measure can be attacked by a good Density Theorem. The packing measures are in
general u different class from that of Hausdorff measures, i.e. a packing measure cannot be
obtained by taking the Hausdorfl measure with respect to a different increasing function using
ancther metric which generates the same topology. Furthermore, packing menasures seem to be
better means for studying sets of non-o-finite measure. We apply our theorems to prove the
existence of Borel measures on the. real axis with remarkable properties.

1. Basic motation. Let (X, d) be an ultrametric space, ie. the usual
triangle inequality for d is replaced by the stronger one

{0 dix,y) < max(d(x, z),d(z, y)) for all x,y,zeX.

It is well known that ultrametric spaces have strange properties. Both open
and closed balls are clopen sets. Every point of a ball may be its centre. For
any two balls, either their intersection is empty or one is contained in the
other.

Let H be the family of all Hausdorff functions, ie. heH iff h: [0, + ool
- [0, +2¢] and : : -

(2) h( =0, higg>0 for g=>0,
(3) g, <q, implies hig.) < h(qa),
Ch limh{g) = 0.

al0

Let M < (aeR; a>0) and inf M = 0. Put
Py = [B(x,1); xeX, reM|,

where B(x, r) is the closed ball of radius r and centre x. A countable subset
iB(x,, ra} of Py is called a Py-packing for a set 4 X iff

(5) X, €A,

] B(.xm rr) NB(x,, ry) = Q for n#m.
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For all heH and A = X put
(0 i (4) = inf sup 3 h(2r); {B(x,, r.}} is a Py-packing
a0 n
for A with r, <48},

@ Pi(E) =inf {3, 7 (E); Ec UE,} [9].

We call (7) a packing premeasure and (8) packing measure.
For a nonempty subset 4 £ X

(9) diam (4) = sup {d(x, y); x, y €4}

is the diameter of A. Furthermore, for nonempty sets 4, B< X we let

(10) dist(4, B) = inf{d(a, b); acd, heB}
be the distance of A and B, and for a family & of subsets of X we define
(11) . mesh{sf) = sup {diam (A4}, A es/}.

The h-Hausdorff measure on X for heH and E < X is defined by
(12 p"(E) = supinf {3 h(diam(E,))); E c JE,, diam(E,) < 6}.
8>0 n n
A map ¢: E — X of some subset E of X into X is called nonexpanding
i :
(13) d(x,yy z d{e(x), p() for x, yek.

A Borel measure u is strongly metrically invariant iff for every Borel set
E, each nonexpanding map ¢: E — X satisfies

(14 n(Ey 2 plo(E)).

For a Borel measure u, a set M of positive reals with infM = 0 and a
Hausdorff function k the lower (u, h)-density of a point x€X wurt. a Borel
set E is
(15) D! v (E, x) = supinf {u(E N B(x, ))/h(2r); reM, r < 5.

>0
A Borel measure g on X is representable as a Hausdorff measure iff for

some Hausdorff function h and a topology-generating metric &' (which is
hot necessarily an ultrametric)

(16 p= g
A Borel measure y is called tight iff for all Borel sets B
(17) #(B)=sup {u(K); K = B, K is compact}.
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2. Basic properties of packing premeasures and packing measures.

Tueorem 1 (properties of ). (i) A £ B implies t%(4) < % (B).
(ii) the(d L B) < th{A)+7h (B). :
(iii) dist(4, B) > 0 implies 1 (A U B) = 1%, (A)+% (B).

(iv) If two Hausdorff functions g and h satisfy

limg (g)/h{g) =0
210

then t%,(4) < 4 oo implies 4 (4) = 0.
(V) If A= {x] then ©};(4) = 0.
(vi} the(A) =t (A) (4 stands for the closure of A).
(vii) If h is continuous then there is a sequence r,|0 such that for
M=1r,; neN) '

(A < oy (A) < P (A),
where 1" is obtained by allowing all positive radii for the balls.

Proof. (i} follows from the definition of ;.
(i) For all 6 >0

Th(A U B) < sup Y h(2r,); {B(x,, rJ} is a Py-packing for
AL B with r,< 6 for all n},

Let ¢ >0 and for each & >0 choose a packing {B(x’, r))} satisfying
th(AuB) —e <Y h(2r)).

Divide {B(x, r¥)! into two packings, one for 4 and one for B, by the rule
xieA or x’eB. Since

YhZD< Y h@d)+ ¥ k()

mxded wxicn
we thus obtain
the(AuB)—e < th(A) -+ (B).
(i) It is enough by (ii) to verify that
dist (4, B) > 0 implies (4 U B) = i (4)+14(B).

Let ¢ >0 and 0 <§ < dist(4, B). We choose Py-packings for 4 and B,
called 'B(xS, r3)) and {B(y%, si)! respectively, such that ri < & and s), < & for
all n, m and

A A —e2 S TR, Th(B)—g/2 < Y h(2s3).
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Because of B(x{, r)nB(y2, s5) =@ (otherw1sc d(x,,, ¥8) < min{r?, s2) would
contradict & <dist(4, B)), [B(x3, rd) w (B(3%, s8)! is a Py-packing for
Auw B. We conclude that for all & < dist(A, B

thi(A)+1h (B)—e < sup ‘Zh (2t,); |B{z,, t)! is a Py-packing

for AwB with t, <4 for all n},

hence
(A +h (B —¢ < i (4 U B).
(iv) and (v) follow easily by the definition.

(vi) It is sufficient to verify 73(4) = c};(4). Let {B(x,, 1)} be a Py-

packing for A. Since x,€A and B(x,r)nds® we can take some

Y, €B(x,, ,) N A as a new centre for the ball Hence [B{y,, r)! is a Py-
packing for A4 and the result immediately follows.
(vi)) The inequality 1% (4) € t"(A) holds for all M.
Let r,] O be such that
h(2r,1 1) = 3h(2r,)

(Such a choice is always possible by the continuity of h) Put M
=1r,. neNl, let >0, >0 and let !B(x,.s,)) be a P,-packing for A
with s, < 4§ such that

(A)—e <) h(2s,).

For a fixed m we find n, satisfying
Ve S S < Fyp—1-
Then (B(x,, ra i 15 &8 Py-packing for A such that r, <5 and we obtain

T (A)—e < Zh 2r, —1) —-ZZh (2ry,,

This proves Lt"(d4) < <4, (A).

Remark. It is surprising that we obtain (vi) without requiring # to be
continuous. The corresponding result for the Euclidean space [9] or a
general metric space [6] requires k to be continuous.

Tueorem 2 (basic properties of phy). (i) pl, is @ metric outer measure, ie.
dist(4, B) >0 implies ply(A u B) = ph(4)+ ply(B).

(ii) phs is Borel regular, ie. for all E < X there exists a Borel set B 2E
such rthat pt;(B) = pi (E).

(ii) All Borel seis are ply-measurable.
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(iv} For Ec X, piy(E) <t (E) and pliy(|x}) =0 for all xeX.

(v) For each sequence E,TE, pi(EJ) 1T (E).

M) f Ec X is p'ﬁd-measurable, 0 < ply(E) < + o0 and & > 0 then there
exists a closed set F < E such rhat

P (F) > phy(E)—
(vil) For each E

Pe(E)=inf | m <l(E); E,1E).
n—=+ w
Proof. (i} Since pf; is certainly an outer measure [8] it suffices to prove
that

dist(4, B} > 0 implies p%,{4 wB) = pi, (A) - ply (B,

but this is a consequence of Theorem 1(i), {iii) and [7].
(i) follows from Theorem 1(vi).
iii) follows from (i) by [8].
iv) follows from the definition of pf,.
v) is a comsequence of (i}iii).
vi) We find a Borel set B = E with pl(B) = pl,(E) by (iii). Since pl, (B
— E) = 0 there exists again a Borel set B, = B—E with p},(B,) = 0. Then B,
= B—B, is a Borel sel with B, € E and pi(B,) = ply(E). The formula

u(F) = piy(F nBy),

F a Borel set,

defines a bounded Borel measure on X. Therefore u is an inner regular Borel
measure, i.e. we can find a closed set F £ B, with

u(Fy> p(Bs)—¢  [41
which gives pl;(F) > piyy(E)—e.
(vii) Let
p*(E) = inf | lim <4(E,); E,TE}.

n—++ oo
(iv) and (v} imply
Ph(E) = lim piy(E,) < lim 73(E,)
n—+ o n—+-+ oo
for all E,1E, hence pi{E) < u*(E).
Conversely, let ¢ > 0. We can cover E by sets F, such that

of

2, The(F) <ph(BE)+e.

n=1

For E, = E n(J!~, F;) we then obtain using Theorem 1(i), (ii)

.4

Th(E) < X Ty

i=1

(F) <Py(E)+e

and thus u*(E) < ply(E)+e
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TreoreM 3. For any Hausdorff function h and M as above, the Hausdorff
measure p* and the packing measure ply relative to M satisfy u" < ply.
Proof. It is sufficient to verify
#'(E) < tj(E)
Let £ > 0. Then there exists §(¢) > 0 such that for all o < &(s)
inf ‘Zh(dlam(E,,)) Ec UE,,, diam(E,) < 6}.

for Ec X.

i (E)—e <

Every set E, is contained in a closed ball with radius diam(E,). Furthermore,
we may assume E, N E,, = @ for n # m and the infimum does not decrease if
we assume diam(E,) M for all neN. Hence, we may suppose that the E, are
a Py-packing for E and thus

p"(Ey—e <sup Y h(2r,); {B(x,, r,)} is a Py-packing for E

with r, €6 for all n},
ie. pt(E)—e <t (E).
Remark. Theorem 3 is not true in a general metric space [6, 9]).
TueorReM 4. ply is a strongly invariant measure.
Proof. We verify
AB) > The(o (B)

for a subset E < X and a nonexpanding map ¢: E =+ X, Let {B(y,, 7)) be a
Pypacking for o(E). We find x, €E satisfving ¢(x,) = v, for all n. We see
that {B(x,, r,)} is a P,-packing for E. Indeed, otherwise there exist n and m
with n % m such that

B( H" )nB( ms rm)#@-

But this implies B(x,, r,) € B(x,, ) or B(x,, r,) & B(x,, r,) and we would
obtain
d(Vns V) S A (X, X) < MAX (1, 1),

contradicting B(p,, ry) N B(,., ry) = @. Hence, we have found for each P,,-
packing of @(E) a P-packing for E having the same h-sum of double radii.

3. Seme selection problems. The next two theorems are basic tools in the
sequel.

THEOREM 5 (Density Theorem). If p is a Borel measure on X and E< X
is a separable Borel subset with u{E) < + oo, then

lnfD’”M(E x) Pl (B) € w(E) € SUPD wm(E, x) ply(E).

icm
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Proof. For the right-hand side. inequality we show:
1(F) < SU-PDA m(F, x) The(F)

for an arbitrary Borel subset F < E. The final result then follows since E
=J,E, E, a Borel set, gives

By < Y u(E) < ZSUPD e (Eny ) The (E,) -

n xeEg,

< sup D} (E, x) z 37 (En)

xel

and we may restrict our attention to Borel covers of E by Theorem I{v1)

Let a > Supyep Dby (F, x), 6 >0 and
V; = 1B(x, r); p(B{x, )" FYh(2r) <a, reM, r £ 5"

For every x eF there is some B{x, r) &¥;, hence we can cover F by couhtably
many pairwise disjoint B(x,, r,), by the Lindeldf property. We obtain

Zy(F NB(x,, 1)) < aZh )
< asup Y h(2p,); {B(¥m: Pw)} is 2 Py-packing for F
with p,, < 8 for all m}
and conclude that .
p(F) < sup Dl (F, %) ehe(F).
xeE

For the remaining inequality let inf,_; D" i (E, x) > 0 and take b with

0 <b <inf, gDk y(E, x). Put |
E,= {x€E; reM, r <1/n implies bh(2r) < pu(E nB(x, 1)}

Since E,1E we obtain by Theorem 2(i), (v) '

Pir(E) = SuppM(E SHPTM( E,).

It follows that _ _
th(E,) < sup {3 h(2p,); {B(m: P} is & Py-packing for E,
with p,, <1/n for all m} =
and we conclude that '
bty (E Z bh(2p,,,) < Z H(E N B (X, ) (E)

hence bpls(E) < p(E).

2 — Swdia Mathematicn 51.3



196 . H. Haase

THEOREM 6. Let K < X be compact. Then the following are equivalen::
(i) K has non-o-finite ply-measure.
(i) Thereis a nonempty compact subset Ko = K such that for each subset
U < K relatively open in K, UK, # @ implies i (U Ky) = + co.
Proof. {i)=(i). Let
#=1U < K; U relatively open in K, nonempty and with
o-finite pl,-measure!.

Assume that % # ) since otherwise there is nothing o prove. Since (K, d) is
a Lindeldf space (just as any other subspace) there are U, e, n=1, 2, ...,
satisfying () # == [}, U,.

let Koy =K~—|J,U,. Then K, is a nonempty compact subset, since

otherwise K would have o-finite pfy-measure. Let U < K be open such that
UnKq+#@. Since

U=(UnKy)uUn{JU,)
and U has non-o-finite measure, U m K, must have non-s-finite measure too,
hence (U nKg) = +2¢ by Theorem 2(iv).
(ii) = (i). If K, has non-g-finite measure then so does K. Suppose that

Ky has o-finite pl,-measure. Then there is a double sequence of compact sets
(K, such that

(a) Y 1K) < 400 for all n,
(b) ) Ky=U K-

Because of (i) and the completeness of (K, d) there exists, by the Baire
Category Theorem, a pair n,, m, such that K, m, has an inner point w.rt, K

and thus 1} (K, m,) = + o0, which contradicts the assumption.

TueoreM 7. Suppose X is compact and has non-o-finite pliy-measure for
M ="t neN| where t,| 0 and

[T (1 +nr@H. )R <+ 0.
=1
Then X has a compact subset K such that
0 < ph(K) < +eo.

Proof. By Theorem 6 we may suppose i (U) = + oo for all nonempty
-open subsets U < X. We find a finite P,-packing {B{x,, r)lr-, for X such

icm
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that:
(i} Y h(2r) > 1,
k=1
(ii) SOy <1 Torallj=1,....m,
k=1

where the term h(2r) is omitted, and as a condition of minimal choice

(i) If {B(y, 5)) is any other P,,-packing for X with the property; for all /
there is kell, ..., m} with B(x,, r) € B{y, s) (equality does not hold
for all [} then

Yh2s)< 1.
i

We call the selected balls .

We now proceed by induction. Suppose that the sets of balls
F1r..0s Py are already chosen. We define %, ; as follows. Take any ball
B(x, r) €.%#,. Since t4,(B(x, r)) = + o0 we can find a finite P,,-packing for
B(x,r), say (B(x™, ri")}, satisfying

(i 2 h(2) > h(20),
k .

iy YOR2A <h(2r)  (R(2r%) is omitted),
k

iy If {B ", s} is any other packing for B(x, r) such that for all {
there is k with B(x{, r™) = B, 5™ then

¥ h(2sf") < h(27)
1

as the condition for a minimal choice. Let %,., be the collection of all
packing balls obtained for all the B(x, r)e &, in this way. Since the radii
of all balls are taken from M, mesh(%}—0 as n— 4o, and
i) Furs S, it follows that

K="Qvuyn

is a nonempty compact subset.
We now construct a probability measure on K. Let Pe%,, say
P =B(x,r). Then we define
#(K) h(2r)
2 {h(2); B(x,Ne,}

pPNK) = (u(K)=1).
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Suppose that u(PnK) is already defined for all Pes u...u ¥, For
Pe,,  there exists a unique Q€ %, with P < @ (by the construction of K)
and we put

#(@ NK)h(2r (PY)
Y h{2r(P)); P e#per, P SO}
where r{B) is the radius of the ball B. Observe that
#=1{PnK; Pel)Z)U10, K}

uPnkK)=

is a base for D(K), the clopen subsets of K which may be obtained by finite
unions of members of .#. D(K} is an algebra and the measure p is well
defined on D(K) by extending it to the members of D(K) in a natural way. p
is a g-additive measure on D(K) and the canonical outer measure p* reduced
to the Borel subsets of K is a Borel measure agreeing with u on D(K).
Denote this Borel measure again by u.

For each x €K we now obtain upper and lower bounds for D} (K, x).
For xeK there is a sequence (B(x, s,)) of closed balls with:

(8) B(x,s,)es, for all n

(b) 5,10 (s,eM).
Then we can estimate using (i) and (1)

w(K nB(x,s,) u(K nB(x, 5,.1)) (2s,)
W25 h(Zs) Y (2 (P PE S P S BX, 5p1)]

< MK NB(x, 55-1))
b (28— 1} ’

1(K N B(x, s1)) #(K).h(2s,) <1
h(2s;) T h2s) Y (20 (P)); Pes, )

Hence we have

sup Dl (K, x) < 1,

xeK

To get a positive lower bound for sup,.xDh (K, x) let reM be
sufficiently small. There is a unique neN such that

Sy > F 2 Sy
In the case ¥ = s,,, we consider the fixed P,-packing for B(x, s,) whose
members belong to %#,., and can then estimate by () and (i)
#(K (-\B(X, Sn+1)) - ‘U.(K ﬁB(x, Sn))h(zsm‘- 1)
h(2Sn+ 1) 11(2Sn+1')z {h (27' (P)); Pegﬁn—%—ﬁa P g B(xs Sn)}
'> u(K nB{x, s,)) '
T R(28,) +h(25,4 1)
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#(K mB(x, 51!—‘1)}}1(23'1)
(h(25)+ h(28,4 1)), {h(2r (P)); Pe&,, P < B(x, 5,-1)}
> H(K ﬂB(X, Snﬂl))h{zsn}

(A(25,) + 1 (28,1 1)) (B(28,~ ) +R(25,))
1 (K 0B, 5u-y))
(14 A28 )/R(250) (25,2 )+h(2s,)
Repeating this we obtain
(K N B(x, Sy4q)) . 1 1

h(2s, Z BT TN S
Bored T 4 hs ks T
i=1 .
Since s;eM for i=1, ..., n it follows that
I«L(K NB(x, Sn+1))> _ 1 . 1
h 1+hi2t,)

(285..1) 1_—[1 (1 + h(2t;41)/h(21))

and we abbreviate the constant right-hand-side by ¢,

If. s,>r>s,4, we have B(x, s,.1) € B(x, ) and can replace all
Pe¥ '+, with P < B{x, r) by B(x, r) to obtain a new P,,-packing consisting
of B(x,r) and all Pe%,.,, PS B(x,s,) but P& B(x,r). The minimal
condition (iil) permits us to conclude that

k(2r) < ) Th(2r(P)): P < B(x, n}.
Now we c¢an estimate

].L(K(\B(x, I'))>Z{H(K0P); PE’ n+la PEB(X: i")}

h(2r) T N {h(2¢(P); PeFpys, P S Bix, 1)}
_ uw(KnPpP) h(2r (P))
Pe#y11.PsBxr) h (2"(P)) Z ‘{h (2"(Q)); Q E;S”;,_H, @ < B(x, r)}
> ¢ h{2r (P})

=c
P59”+1Z,P§B(x,r) Z{h(zr(Q))a Q E'90)1+1 y Q g B(x, ?‘)}
By Theorem 5 the compact set K has positive finite pf,-measure.

Turorem &, Ler (X, d) be a complete separable ultrametric space without
isolated points and A an analytic. subset with non-c-finite packing measure
wrt piy. Then A comtains a compact subset with -non-o-finite measure
wrt ply.

Proof. The result.is true in a general metric space.[6], but rote that we
have dropped the continuity condition on k since the ultrametric condition
on X ensures ¢, (d) =t (4).
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Furthermore, under the same conditions as in the last theorem we have
Tueorem 9. Every analytic subset A of non-o-finite packing measure e

contains 20 pairwise disjoint compact subsets of non-o-finite measure.
Proof. {6].

TueoreM 10. piy is a tight measure on every complete separable metric
space without isolated points.

Proof. The tightness condition for Borel sets B with Ph(B) < 400
follows from Theorem 2(vi) and [4] and for Borel sets with non-o-finite
measure from Theorem 8, since B is an analytic set.

Tuzorem 11. If (X, d) is a complete separable space and py is represen-
table as a Hausdorff measure then X has o-finite measure.

Proof. Suppose that there are geH and an equivalent metric d'
generating the same topology as d such that

P = 1
and X has non-¢-finite measure. Let
9% = {U; U nonempty, open and has o-finite measure}.
Then
Xe=X-U ¥

is a nonempty closed set since otherwise X would have o-finite measure by
the Lindelf property. If ¥ is an open set with ¥V n X, # @ then V' n X, has
non-o-finite measure because

=(VnXu(¥VnlJU,)

and {J % = |J,U, for countably many U,e% by the Lindeldf property. We
conclude that

(VX =
On the other hand, we can find a dense G,-set Koo & XO such that
1 (X o) = 0

since X, must be separable (see [8]). By Baire’s Category Theorem using
AV nXe) = +o for all open ¥, VX, # @, we obtain pl;(Xq) = +00,
which is a contradiction; hence X has ¢-finite measure.

Remarks. 1. As we now see by Theorem 11 and its proof, packing
measures need not be G,-regular. We know that for any Hausdorff measure
u" we can always find a Gy-set H 2 E with p*(H) = u"(E).
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2. If ply is o-finite on X it is easy to check by Baire’s Category Theorem
that pj, must be locally finite (i.e. each point has a neighbourhood of finite
measure) on a dense open subset ¥ of X. A result of Bandt [2] tells that p%,
restricted to Y is representable as a Hausdorff measure,

But in a more general sense we obtain

Tueorem 12, For any subset E < X, we have
Pis(E) = supinf [¥ % (E,); E < UE,,, diam(E,) < 8}.
d=>Q n

Proof [7]

4. Examples and an application. 1. Let (X, d) be a complete separable
ultrametric space without isolated points. For every heH there exists a
complete ultrametric &', which generates the original topology, and some
M ¢ R¥ such that the packing measure pl; based on the ultrametric d' is not
representable as a Hausdorff measure. Furthermore, for each Hausdorff
measure 24" (g a Hausdorff function and d” any other topology-generating
metric) there is a compact subset K = X such that

pe Ky =0, 0<py(K)<+o.

To prove this we first choose a sequence a, |0 such that

[ee]

(i) IT{(1+h{2a,+1)/R(2a,)) < + o0

n=1

and put M = {a,; neN}. By induction we can find a family of partltons
() en ©of X consisting of cIopen sets with

(Il) Peg,m Pl—‘UlQ: PE'@n+1}a
(iii) lim mesh,(2,) = 0,

n—+o0
(iv) card 1Q; Q€P,.1, QS P h(28,.0) > n

for all neN and all Pe#,.

We define d' as an ultrametric which has the sets contained in | ), 22, as balls.
Hence, d' generates the same topology and it is clear that 4 must be
complete since the original metric is. d' is given by’

d'(x,y) = sup la,; P, Qe,, P#Q, x€P, yeQ} for x#y,
d'(x, x) =0.

From (iv) we conclude that t%(U) = + oo for all nonempty open sets U. By
Theorem 6 which can be extended to sets or spaces satisfying .Baire’s
Category Theorem X has non-¢-finite measure. Theorem 11 yields that pl, is
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ntr representable as a Hausdorfl measure. Condition (i) ensures that for each

Hausdorff measure’ 1#9'" a compact subset K can be chosen satisfying
T (K) =0,

We only have to select a compact subset of non-g-finite packing measure by
Theorem & and then apply Theorem 7.

0 < phy (K} < +o0.

2. I (X, d) is non-g-totally bounded for instance the Baire null space X
= NV with the ujtrametric

d(x, y)
Al x) =

and the démain ‘of positive values of d is a null sequence, we can take those
values for the set M and then define a Hausdorff function satisfying (i) as
above. The condition: that X--is non-o-totally bounded ensures that X has
nén-c-finite measure wirt. pf;. By Theorem 11; p%, cannot be a Hausdorff
measure. ' Again for each Hausdorff measure u#" we can conclude the
existence of a compact set K © X satisfying

= max{l/m; %, #y,) for x%y, where x=(x), ¥ = (),

HK) =0, 0 <ph(K) < +oo.

3, Our theorems’ éoncerning ultrametric spaces permit us to prove the
existence of Borel measures on the real line with remarkable properties:

THEOREM 13 There is a Borel megsure J on R with the following
properrles

() p(fix}) = Ofor all xeR.

(b) u is not Gsregular.

(©) u is tight.

(d) u is non-c-finite.

(€) Every Borel set with mflmte measure coniains a compact subset of
positive finite measure. : :

(i} Every Borel>set of non-o-finite measure contains 2%
compact subsets, each qof non-o‘-ﬁmte measure.
_ (g) For every Hausdorff measure - f** (depending on h and a metric d
- ‘geneérating the Euclzdean Iopology) there is a compact set K sarzsfymg
u"' (K)~—O 0 <p(K) < +ow.

Proof. The space I of irrationals is homeomorphic to NV [5] and may
be metrized by an ultrametric. Applying the previous remarks, we can find

the desired: Borel ‘measure w on R as a suitable packmg measure on i

exrcnded by u(R I) 0,

pairwise disjoint

icm
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Remark. This theorem shows the type of conditions which can be
satisfied by a measure on R which is not equivalent to any Hausdorff
measure.
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