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Singularities of triples of vector fields on R*:

the focusing stratem
by

PIOTR MORMUL {Warszawa)

Abstract. We consider the space .#** of germs of triples of smooth vector fields on R*,
with the action of the group H*? generated by germs of coordinate changes and multiplica-
tion of triples by 3 x3 invertible matrices of germs of functions. The paper is an extension of
[M1]. The stratification of #*?* of Thom-Boardman type, invariant under H** and studied in
the general case of #™* by Jakubczyk and Przytycki in [JPZ], is used. Attention is focused on
the pivotal codimension 4 stratum SF, We show that SF cannot be further divided with the use
of the Boardman-like algebraic approach. We also note some striking (nongeneric) phenomena
in the behaviour of triples in SF.
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1. Imtroduction. In [JP2] a general method of studying the Boardman--
Thom type slratification of the space #™* of germs of k-tuples of smooth
vector fields at a point of R" was presented. Highly nonintegrable k-tuples
are considered (integrable ones have codimension o). The strata are inva-
riant under the action of the group H™* generated by germs of coordinate
changes and of multiplication by k xk invertible matrices of functions. The
aim of the theory is to find a rich decomposition of #™* into H™*-invariant
sets approximating H™*-orbits as closely as possible. (We use the notion of
“stratification” in a weaker sense than usual, understanding by it just a parti-
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tion into semialgebraic sets. In each case, it is a matter of proof whether
such a stratification is a stratification into manifolds in the sense of
Thom [T7]) .

In [M1] attention was focused on triples of smooth vector fields on R*,
We described there a stratification of the above type outside a codimension 5
algebraic set (5.

For all notation and precise definitions we refer to [JP2] and [M1];
however, in some key places we shall briefly recall their intuitive meaning,

The aim of this paper is to consider carefully a pivotal stratum from the
stratification of #**\ Qs mentioned above, namely, the one which corres-
ponds (for generic triples) to isolated points in R* (like the point P in Fig. 2).
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These are intersection points of the traces M;, M,, M, of the singularity sets
Sto.210 S(1,3)5 S(o,210,1) Tespectively (see again Fig. 2). We call this curious
stratum the “focusing stratum” and denote it by S¥ (see Fig. 1). This stratum
was formally defined by the formula (12) in [M1] (we recall that definition in
the statement of Th. 1).
It was announced in [M1] that § is a (semialgebraic) manifold in %>,
Recall that the sets S, (a5 in Fig. 1) consist of those triples for which
the dimension of the space spanned by the vector fields themselves (at, say, 0}
is equal to m: §  refers to vector fields and their frst Lie brackets.
The set (Si,3 ™S .3)-1,4) 18 an example of the so-called generalized
sets of type S. Sets of this kind used in this paper are not all possible
generalizations of the sets S, suggested by Remark 2.7 in [JP2]. This applies
in particular to Theorem 1; on this point we refer to comments in 2.2.
The geomelric idea underlying the rigorous algebraic definition of the
sets §; (I stands for admissible sequences of indices describing systems of
consecutive jacobjan extensions) consists in the following. ’
Consider, for a generic triple of vector fields, for example the set M.
(Recall that M, consists of points where the distribution Ly (X, Y, Z)(-)
= span (X, ¥, Z)(') is 2-dimensional.) Generically M, is a smooth codimen-
sion 2 manifold in R* One may ask how the distribution Loly, behaves
with respect to M, (ie. the singularity set at the previous step). At the next
step a singularity set M; < M, arises from investigation of singularities of
this behaviour. M, consists of points where Lo, . has deficient codimension

relative to TM, (ie. has one direction in common with the tangent bundle).
This procedure applied to the (generically!) smooth manifold M, determines
the codimension of Lg|y, relative to TM;. In generic cases the procedure

may be continued. Lie brackets of the vector fields may come into play too.

Note that the paper [MR] is devoted to the description of the beha-
viour of a triple of vector fields near a point in M, \ M,. An explicit local
model for the germ of such a triple is compuled there. Observe that in [MR]
{except for Fig. 1) the sets M,, M,-in the notation of [M1] and of the
present paper —are labelled M,, M, respectively.

The geomelric approach outlined above is in fact due to Thom (cf. his
lectures [LJ), who considered consecutive singulatities of smooth mappings.
The algebraic formalization is similar to that from Boardman’s paper [B],
which uses jacobian extensions of ideals. Nevertheless, in sharp contrast to
Boardman's construction, in the case of k-tuples of vector fields there are
many invariant subbundles of the tangent bundle (subbundles correspond-
ing to the distributions L;(+), i = ~1, for a given k-tuple). This enriches the
whole algebraic setting enormously and makes it possible to have nontrivial
intersections of singularity sets, such as S o " 81,5 < AP, contamzng the
focusing stratum ST. s

5~ Sludia Mathematien 913
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From the algebraic point of view, the jacobian extension procedure over
a given functional ideal describing the singularity sel al some slage consists
in differentiating the generators of the ideal in the directions of a tangent
subbundle of a given order (working. as in [JP2], with functions on the germ
space) and examining the rank r of the resulting matrix. (r is the codimension
of the subbundle relative to the singularity set under considerarion: ¢f. the
original paper [JP1] and Remark 2.8 in {JP2]) One extends the given ideal
by all (r+1)-minors of this matrix. The ideal hus oblained describes the
singularity sel at the next slage.

The ideals 4, used in delning the sels §; are contsined in the ring of

smooth functions on the germ space #™**(U) = #™* » U, U being a certain

fixed neighbourhood of 0&R™ Instead of dealing with 4,, we shall frequently
formulate statements in terms of ideals related to a given A-tuple, kK =3, of
vectar fields (ideals in the ring of functions on U). For the purposes of this
paper we recall briefly that, for a fixed triple (X. Y. Z) defined on U, we may
cxpress the fact that its germ at 0, (X. ¥, Z), belongs to S, in terms of the
ideal

germ, (4, olX, ¥ 7:))

where (X. ¥, 2): U — #%3(U) is the germ mapping induced by (X, Y. Z).
This ideal is equal to & {X, Y. Z) (for the formal definition sce [JP2], 1.4(e)).
The ideals &, () are described more simply than the ideals 4, (especially for
triples of vecior fields suitably chosen as in this paper), We recall briefly that
one slarls with a given triple (X, ¥. Z) and defines & (X, ¥. 7) by successive
jacobian extensions in the ring %% of germs at ( of smooth fanctions on R*.
If (X, Y.Z) is in Sy, we shall say that §(%, ¥ Z) satisfies the (i, jj-
condition.

Throughout this paper, for the sake of simplifying the notation, we shall
take the liberiy ta skip the tildes over triples of vector fields when working
with their germs al 0eR*,

The tirst objective of this work (dealt with in Sec. 3-7. 91 is 1o show the
thinness of the focusing stratum S*: it cannot be lurther divided using the
sets 8, and generalized sels of type §. We shall include here a duality related
lo S', since this focusing stratum has also a second description invoiving no
generalized sets of type S.

The second objective is to substantiate the so-called strange nongenerici-
ties manifested by triples of vector fields belonging to that stratum and by
certain others lying in the boundary of 55, In Sec. 7 we substantiate an
important feature of this kind, formufated first in [M1], Sec. 4, {12). But
there is also another example of the like, which is presented in Sec. 8. This
second nongenericity (nontypical geometrical behaviour) concerns triples of
vector fields not in the focusing stratum itself, but lying in its closure.
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number of indications (especially the advice to apply the techmique of
Lemma 4.4).

2. Statement of theorems. The scts §; are defined for certain sequences
of pairs of integers I which we call udmissible (see [IP2], 1.4(d} and 2.1(g)).
Generalized sets of type S are precisely defined in [M1], Sec. 3, (4). These are
sets of type (8, NS, and (S, w Sy where 1, J, (i, j) are admissible, i =
— 1. All sets of this form may be called singulority sets of Boardman type.
Thus we come to a thinness staiement.

2.1, Tueorem 1. The focusing stratum
F -
8% = S 200, 001,3 N Si,ax1.3 N S0,2) V83— 1.4

is a semialgebraic codimension 4 manifold in the space #*3. Moreover, 57 is
included in, or disjoint from, every set S, und every generalized ser of type §.

This focusing stratum cannot thus be subdivided by any singularity set
of Boardman type.

2.2, Comment on Theorem 1. Generalizations of the sets §, occurring in
the formulation of Th. 1 are some of those suggested by Remark 2.7 in [JP2].
Their definition involves only one jacobian extensicn of a sum or an
intersection of ideals defining the given sets S; and §;, so that we call them
one-step generalizations. It does not seem reasonable to consiruct further
generalizations in the way suggested there, since some one-step generaliza-
tions may lack geometric interpretation (i.e. the correspondence, mentioned
in Sec. 1, between the algebraic and geometric aspects may no longer be
valid).

One particular exampie of such a situation is presented and discussed in
7.6.

2.3, Note that we may consider the germ at 0 of the surface M, or the
curve M, (cf. Sec. 1), corresponding to & germ of a triple of vector fields.
Germs of triples of vector fields in the focusing siratum manifest a strange
geometrical nongenericity. Namely, we have

TuEoOREM 2. For o given germ belonging ro SV, vectors in the space
spanned by the triple of vector fields at 0eR* cannot stick out of the three-
dimensional vector space Ty M+ Ty M,, ie. '

Lo(X. Y. Z)(0) & Ty M, + Ty M.

In the proof of Theorem 1 we shall often use a certain technical tool
concerning several smooth vector fields. The next seéction begins with that,
and deals, as does Sec. 5, with consecutive eliminations of various thin strata
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(of codimension 2 5) falling into the negligible nongeneric algebraic set Qs
(cf. Sec. 1). This gives the necessary preparation for the explanation of
striking geometric phenomena described in Secs. 7 and 8.

3. Elimination of nontransversal sets—the first encounter.

3.1. THE STRAIGHTENING LEMMA. Let X*, ..., XP be smooth vector fields
defined in a neighhourhood of 0eR”, and let T be an (n— p)-dimensional smooth
manifold passing through 0 eR" such that span{X'{0). . L XN~ T, T = {0}
Then there exists a new smooth coordinate system around 0aR" such that

X =, i=1,..p

Wy == =0
- = =
F={xy=_,.=x,=0]

Proof. Suppose that ¥: (R"7%, 0) —=(I", 0} is a local smooth parametri-
zation of I Let X denote the flow of the vector field X for the time 1. The
new coordinates around O are given by the following diffeomorphic mapping:

(pxl cpIz (px (W (s s XN {30, s X} @

In proving Th. 1 we shall get rid of subsequent nongeneric parts of the
singularity set

(]) S(U,Z) ﬂS(l,p,) [ n%A’a

(in order to reach S eventually). The set Sy, NS5 i a semialgebraic
manifold of codimension 4 in #*3 according to [JP2], 2.12(b).

3.2. Restriction to Sqay-1.2)- Since S,z has codimension 2, we have
Sco.2 = Sto. - 1.0 Y Sio,23-1.1 Y Sto, - 1,29 The first two summands are of
codimensions 10 and 5 respectively (cf. [JP2], 2.16(a)). We get rid of them, as
of everything thin enough (having codimension greater than 4), keeping the
remaining part a (semialgebraic) manifold.

3.3. Restriction to S(q.z0.1)- A certain restrictive inclusion for the sets 5,
holds in %3, namely '

- %
Seo,a00,2 < Sy

(cf. M1, (7). 1t yields in turn the corresponding geometrical restriction
relating the sets M,, M, and M, for a given triple. (These sets need not be
smooth geometric figures for this result.) Namely, M, may meet M, but at
points of M3 = M. (For generic triples we thus know in advance that the
curve M, may cross the surface M, only at points of the curve M,.) Hence,
constructing S¥ within the LHS of (1), we remain in Sy ay0,0y Y S(0,2300,1)-
Sinoe S(o,2y0,0¢ 18 @ codimension 6 manifold {cf. [JP2], 2.16(b)), we considet
in the sequel only the manifold

(0 __
8% =S, 20-1.2 N Sae.n M S
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Here 1 stands for a Roman ordinal, not for a sequence ol pairs of integers.
The set S, resulling afier subtraction of the thin parts, is still a —semialge-
braic! — manifold, because the union of all thin parts subtracted up to now is
closed. This argument will often be applied later on.

4. Excision of the S, 2, ;~part. The use of the special forms technique.
We want Lo excise further from §% certain thin H*-invariant sets expressing
nontypical singularities. In this section we shall eliminale the S 20000
singularity {meaning, for the tnples in $, that T, M < L (X, Y, Z)(0)). We
are going to describe a procedure of transforming germs in S by means of
elemenis of the group H*3, which generally brings the triples into a simpler
form.

4.1, The special procedure (1). For every triple in 8%, the set M, is a
smooth 2-dimensional surface (by the geometric interpretation of Se 2= 1,2))
Additionally, Ty M, has codimension ! in To M, +Lo(X, Y, Z}(0) (by the
interpretation of Sig,2)0,1,)- The announced procedure runs as follows:

1° Choose a triple in the H*3-orbit of a given triple such that
X0 ¢TyM,, Y(0)eTo My, Y{O) 0.

2° Straighten simultancously X and Y using a suitable plane [" not
transversal to M, at 0 (see Lemma 3.1, with the coordinates labelled
x,y,z,w) and its parametrization such that in the outcome I NTo M,
= span(&/ow)(0)

3% Replace the vector Bield ¥ =[Y¥% Y2 Y3 Y*] by (1/YH(Y—Y' X).

4° Replace Z by Z~Z' X-Z*Y.

We thus obtain a triple of the form

{2) (8/0x, &f8y-+ud/dz+ pd/ow, Bo/oz-+ Cfow).
4.1.1. Remark. For the obtained triple (2) we have
3) g = Plimo =0
(4) B, ¢, B, C,, B, C,, vanish at 0eR*,
5 0
(5 ( o ]( ) # 0,
o
6 * 0) = (
{6) B C Y1{0) = 0.

Prool (3) follows by applying Lcmma. 3.1; step 3° does not violate this
property. The ideal 8,5 (X, Y, 2) @ F¢ i genemtcd by B and C, thus M, is
described by B=C=0. Bul Y 0) 0/6y ye Ty M, (3° does not change
this) and (/) (0) e Ty M, by 2", hence {4) follows.

(4), together with the triple being in Sy 3)(-1,2), implies (S) Now 1t follows
from (5} that

(7 dim L(X, Y, Z)(0) = 3.
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It is [X, Z](0) that is linearly independent of X (0), Y(0). Within SY < 8§, 3
the remaining first Lie brackets must then belong to span (X, Y, [X, Z](0).
Therefore the vectors [Y, Z1(0) and [X, Y](0) ought to be proportional to
[X, Z](0), which means (6), since [¥, Z](0) = 0. =

4.12. DerFirion. A triple in the manifold S® will be called a special
form (1) triple if it is of the form (2) and fulfils the conditions (3)~(6) (within SV
the last two follow from (3) and {4)).

We denote the subset of S© consisting of all such triples by Spec'.

\ Y -
413, Remark. Sg,2-1,9 " Sw.2n00 & S 5,4

Proof. The special procedure (I) may be applied in the whole LHS of
the inclusion, and there (7) holds. w

Spec' is a very thin subset of S, it has infinite codimension there {in the
sense that the codimensions of its projections into j*SV < j"#™*° tend to
infinity as r —oc). Consequently, we shall have to work on some finite jet
tevel if we want to apply the classical differential topology as a tool for the
excisions.

42. The simplitied special procedure (1) in the vicinity of Spec’. We would
like to describe the special procedure (I) in a uniform way with respect to a
triple of vector fields, for triples in S close to the special form (1) triples in
the Whitney topology. We need a neighbourhood U of Spec' in SV so small
that for (X, Y, Z)el:
a) X (0¢ T, My, X*{0) > 3max (| X*(0), | X>(0)], IX*(0))).
b} Y2(0) > 3max({Y(O), |Y>(0)], |Y* (0)).
o) (0/&) (D¢ T M, .
d) For W =the orthogonal projection of (&/éw)(0) on Ty M,

Wt s dmax (W, |W2, [W3).
(All this holds obviously in Spec')

— . p—

42.1. Remark. U is defined on the 14et level (ie. in terms of 1-cts of
germs).

4.2.2. Under conditions (aj-{d), the vectors X (0), ¥ (0), (&/a=z){(), W form
a basis of Ty R*.

Idea of proof Each of the above vectors has its characteristic coordi-
nate, greatly predominant in size. Thus no linear combination of any three of
them can be equal to the fourth one. =

Because of 4.2.2, for every constant ¢, the vectors X(0), Y (0)-+cX (0},
(6/8z)(0), W are also a basis of Ty R*.

icm
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4.2.3, The wuniform special procedury (1), defined in . denoted by @,
consisis in:

1* Performing 4 linear combination X, Y+¢X, Z, with ¢ depending
smoothly on jU(X}, j1(Y} such that (Y+cX){OeT, M,.

2 A linear change of coordinates, depending smoothty on j' (X, Y. Z),
preserving the versors (/0 (0), (F/0v) (O, (/823 (0) und repiacing (/8w (0} by
W (see condition {(d) i the definilion of {0,

3 The simultaneous straightening of X and Y with the help of
I =span(d/fz, &/ dwH0) with its natural parametrization (l.emma 3.4,

4" Executing steps 3* and 4° of the special procedure (1), 4.1,

Thanks to conditions (a)-{d} assumed to hold in U, images of ¢ are indeed
special form (1) triples in the sense of Defl 4.1.2.

4.24. Remark. 6'5.;::& = id.

Proof Step 3 only reguires some comments. For (X, ¥, £) ¢Spec’ the
straightening diffeomorphism @f @l (0, 0. 2, w)e=(x, y. 2. w) is the identity,
for Y is already straightened at points (0, 0, z, w), and hence @) (0, 0, z, w)
= {0, y, o, w), and X = {/fx everywhere. o

The described uniform special procedure & will serve in the next section
to define a submersion alfowing us 1o excise the thin part S 0.0

4.3. Construction of o submersion on o chosen finive jet fevel, We can
construct, with the help of the mapping &, a smooth submersion ¢ on an
arbitrary r-jot level, r = 1

Every point p in € is mapped into Spect with the help of a cerlain
h,e H"?:

(8) B (p) = by pl,

where h, consists in executing operations 17-4" on an arbitrary triple of
vector fields (so that it acts on the whole #*3), with the operations being
defined by the triple p (and its consecutive images under the earlier
operations). The H*3-group action on .#*° induces the jet action of
FrYHS on J MY (P4 1dets of function matrices act with an effective
use of their r-jet truncations only). So a definition we intend to give could
read

9) U Py = (R P,

provided that different representalives of Lhe considered r-jet of a triple, Jp
= " p’, yield the same induced element of j' HY he, 17 by = 7" by For
the uniform special procedure @ this is really the case:

43.1, LemMa. If the triples (X, Y. Z) and (X', Y, Z') in U < $" have the
same r-fets ar O, then the straiyhtening diffeomorphisms at step 3 in 423 have
the same (1 1)-jets at 0, : o
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Sketch of proof. Estimating the distance beiween g, = el (0, 0, z, w)
and ¢ = ¢f (0,0, z, w), 0< || <|y|, notice that both points remain within
an O(max{x|, |y, |z|, |w|))-distance of DeR* Write M = max(|x], [y, |z], w).
Because

1Y ig)— Y (@l < 1Y (g)— ¥ (gDl + 1Y ()~ ¥" (gl
=0 (M)+0 (M) = O(M),

it is possible to estimate the distance between g, and g, by a higher order
quantity.

Writing g,—¢go as the vector-valued integral {8 Y{g,)dt, and using the
fact that g, = g5 = (0, 0, 2, w), we have

¥ ¥ ¥
gy —ayll = ||{ Y{q)de— [ ¥" (g del| < [l Y {q)— ¥'(gp)ll dt
0 o] Q

¥
= [Oo(M)ydt = O(M?),
o
So one can repeat the above estimate for |[Y{g)~ ¥’'(g)]] with a higher
accuracy O(M3). Proceeding inductively, one obtains an O(M""')-estimate
for this deviation of velocity vectors. So finally |lg, — )il = O (M""%. Estima-
ting now

lleX (g,)—oF (@) < lleX(g,) — X @l +leX (g} — o @l

we have, as above, an O (M7 *?%)-bound for the second term. The first ierm is
O (M *2) as well, being the distance between the images of g,, ¢, under the
locally Lipschitzian mapping of (-). Thus the inverse diffeomorphisms to the
discussed straightening ones have the same (r+1)-jets at 0.

4.3.2. Remark. It is important that the straightening diffeomorphism in

icm

4.2.3 does not involve any Lie brackets of vector fields in the considered-

triple. Otherwise Lemma 4.3.1 would not hold; ¢ would not be defined by
(9). Only a mapping between jet spaces of different orders would then be
induced by & (cf. (8)). Consequently, Lemma 44 below would ‘have 1o be
replaced by a technically more complicated statement.

4.3.3. ProrosiTioN. Fix r 2 1. Then &: U — [ Sped', restricted to «
certain open U o j"Spec’, is a smooth surjective submersion, ‘

Proof. The definition (9) of @ is correct:

(i) The H**-action at step 1° in 4.2.3 depends only on j! p, and so does
the action’s (r+ 1)-jet, coinciding with its O-jet (there acts a constant matrix if
p s fixed).

(i) The H**-action at step 2 depends on the position of the plane
To M, only, ie. on the 15jet of the image of p under step 1%, and so does the
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action’s (r-+1)-jet, coimciding with its I-jer (this is a linear change of
coordinates). ‘

(iti) Step 3* is sound by Lemna 4.3.1; the (r+1)-jet of the diffeomor-
phism ¢, acting on triples at 3* depends on the r-jet of the image of p under
the action h,:== 2" 01"

(iv) The entries of the function matrix acting on triples at 4 are
rational in coordinate functions of the image of p under the action h,
=g, h, (=3"02"01Y). Therefore

(#4 The r4et of the matrix acting at 4 smoothly depends on j h,(p).

According to a remark preceding the definition (9), only the r-jet trunca-
tions of the (r- 1)}ets of matrices act on j* #*+3,

Thus @ is well defined. To prove the smoothness of @ let us choose the
simplest possible smooth section s: JfU = U of m,; U —j U, namely the one
assigning 1o a set of ret coordinates the triple of polynomial vector fields
with these coordinates as coefficients.

We claim the mapping /U —/" ' H*, fprf*th . is smooth.

S0
That will finish the proof, since by (if-(iv) this mapping is nothing but
the well-defined mapping f'pi—j""*h,
To prove the claim, note that

(»#)  The mapping j prj*! H\_Uf.m is sincoth,

because the dependences mentioned in (i) and (i) are rational in the j!p-
coordinates,_wan_gl rz 1 _

Let (X, Y, 2):=h, (s(Fp). The diffeomorphism g:Uip} carries
(x, ¥, 2, W) to of 0! (0,0, z, w). Thanks to (i), (ii)
(exx) X, Y, £ are polynomial vector fields of order <r

(whose coefficients are rational functions of j* p).

Let us consider another mapping

{x. y. 2, w, coefficients of X, ¥) ¥ 01(0, 0, z, w).

Its smoothness is due to the smooth dependence of the solution to a smooth
ordinary differential equation on parameters and initial values (the coeffi-
cients of ¥ influenee the initial values of solutions of the equation determined
by X). Thus euch mapping
o @t (0,0, z,w)

(’Jx,] . fbcil

(x, y, z, w, coeflicients of X, ¥}

L]
Xpps oves X3 €1, ¥, 2, Wi, 18 smooth too, In particular, all the

& {of @1 (0,0, z, w))
&y, ..

0, 0,0, 0, coet’ﬁcien_té of ¥, f’)
y .
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are smooth. Considering [ < r-+1 yields that j’“{q W) depends smoothly on

the coefficients of X. ¥, and so does j*'g_ By (#x), the latter depends
smocthly on

ig 1 5ot [Tl Hd
PR, (G P)) =0 B M SUTpY) = (7 Ry VU D)
This together with () yields that
J P H0r+ 1 (jr+ 1 Es(jrp))

is smooth, which means that

s(J m

j'IP"—‘jr+lﬁ

sUTp
is smooth. Via () we know, at long last, that j" p—j ™! by ey 18 8TOOLH t0O.
The claim is thus proved. :

To show that the smooth mapping @ is—locally around j Spec'-an
onto submersion, note that for j* g ¢/ Spec' and a representative p of /" ¢ such
that peSpec’ we have, by Remark 4.24, h, = id. In particular, /"' h, = id,
and t;!5|jrspec =id. Thus D®(j"q) is an cplmorphlsm (being the identity when

restricted to T, i Spec!). Hence there exists a neighbourhood & of j Spec' in
J"U where D@ () is an epimorphism. m

4.4, THE DIFFERENTIAL TOPOLOGY LEMMA. Suppose S is a finite-dimensional
smooth manifold, 8§ = 8 is its regular smooth submanifold and there is
family H < Diff(S) such rhat YpeS 3heH, hip)eS™.

Let Q =S be H-invariant such that Q 8 is a regular smooth codimen-
sion d submanifold of $™°. Ler additionally Q and S\Q be preserved hy a
certain family of local submersions, namely assume YV peS™* 3 a swooth
submersion ¥: V =8V (peV < 8, V open) such that ¥ (Vi Q) < § < Q,
W(V\Q) = 5740,

Then Q is a regular smooth codimension d submanifold of S.

This lemma has some similarity and plays an analogous role 1o Lemma
6 in [R], p. 76.
Proof Take an arbitrary geS and heH with h(g) eS5™. Take a
submersion pair ¥, V for h{g). Then
geh! mQ < hg)eV nQ « ¥{h(g))eS™ Q.

So i~ (V) nQ is the counterimage of $ nQ under the smooth submersion
Yoh (its image is an open subset of $, for each submersion is an open
mapping). m

44.1. Remark. When applying Lemma 4.4 to the situation from Prop.

4.33, we will have one global submersion ¥ of ¥ o> $™ onto $*. Then also
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¥ oh in the above proof will have the whole S as {ts image. This will not
mean that the entire ¢ is the counterimage of ¢ » 5 under any such ¥ oh
—h™ (V) need not cover Q. (For a given ¢ €@, the diffeornorphism h = h,
does not send—in general—other ¢’ €Q into 5™, Similarly, A {¢) €V need
not hold.)

4.5. Achieving the excision. Since the manifold S and the singularity set
Sty are both defined in j' %%, we are going to apply Lemma 4.4 for §
=180, Q=" (S NS, ST =jSpec!, H = H4, W= defined
by (9) for r=1, V= for r =1 (I is defined in the prool of 43.3).

45.1. Obscrvation. In this interpretation AT s a regular smooth
p
codimension 1 submanifold of &,

Proof Take an arbitrary representative (X, Y, [Z', Z% B, ]) of a
given pe@ NS We have Z 1, Z2em? and by Cramer’s formulas we may
tind smooth functions f, y em* such that Z' =Z-+f X +¢Y has ils Ist and
2nd coordmdtes vanishing (cf. step 4° in 4.1). Then Z7 =B modw®, 2% =C
mod ni®, so thal

a((l'z)(X, Y; Z) = 8(0’2)(X, }I, Z‘j = <B+Sth 2'ﬁal, C+Sth 2"ﬂat>

(ef. (31)). (X, Y, Z)€S,2yy.1) means that all 2-minors of the matrix of the
derivatives of generators of 84 (X, ¥, Z) in the directions included in
Li(X, Y, Z)(0) vanish. This last space is spanned by the vectors X (0), Y (0),
[X, Z1(0), but Y({0)—by (4)—differentiates that ideal to 0 (X, ¥, Z) has
properties (4)-(7) of special form (1) triples, which concern 1-jets only). Hence
the sole condition reads

X (B-+sth 2-flat} [X, Z]({B+sth 2-flat)

X(C +sth 2-flat) [X, Z](C+sth 2-flat) ©

" Computing and taking account of (4) and (5), we obtain the equation

(10 B.(0)y =0,

expressed in terms of j1 (X, Y, Z) =j' (X, ¥, Z') = p. The equation (10} desc-
ribes a regular, smooth, codlmmmon I submanifold in S§** Indeed,
C.(0) % O then and B,(0) is a regular smooth (coordinate!) function on
j'Spec's its regularity at p manifests itselfl eg. on the line

‘ i Yzl.
ply =t (X, Yopt & (0) \(3/(’7.., —H}cﬂ/ﬁz),

p0) = p, included in 5 for small 1] (cof. (3)(6)). =
All  the assumptions of Lemma 4.4 are fulfilled, including

DV Q) e S AG, (K Q) o 5\ Q (the submersion & is defined with
the help of elements of j*H*?, and Q, j' #**\Q are j*H% -invariant).
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Elimination of the S, 3,1-part follows: now that we know that it consti-
tutes a thin, regular part of S (its closure is an algebraic set of codimension
5), we excise it, obtaining the smooth, regular, semialgebraic, still 4-codimen-
sional manifold

(11) S = 8% S 21,2 = Sto,m1,m N 81,3

5. Excision of further nongeneric parts. Refinements of the special forms
technique. Applying the special procedure (I) (cf. 4.1) to a triple in S we get
a special form (I) triple in Spec’ n §" (S is H**-invariant). Thus (10) is not
valid, B,(0) %= 0.

5.1. The special procedure (IT). For every triple in S we extend the
special procedure (I) by adding one more step to 4.1:

t o, G0 Z)
B.(0)" " B.(0) )

The resulting triple is still of the form (2}; let us retain the names
a, B, B, C for the appropriate coordinates of the outcome triple.

The properties (3}-{6) remain valid and additionally we now have B, (0)
=1, C,(0)=0, ie.

5.1.1. Remark. The description T, M, = span(d/dy, 6/dw)(0) valid for
special form (1) triples still holds after step 5°.

5° Take new coordinates (x, ¥,

5.1.2. Dermvmmion, A triple in %! will be called a special form (11} triple if
it is of the form (2) and fulfils conditions (3}-(6) and (12).
We denote the subset of such triples in S™ by Spec".

5.2. The simplified special procedure (11) near Spec!. We define a neigh-
bourhood of Spect in SV, UM = U~ 8™ (U" is defined on the 1-jet level, cf.
Remark 4.2.1). Over every germ in U" we may perform a uniform special
procedure (I1), written 7, which is the extension of & (cf. 4.2.3} by the same
step as in 5.1:

0
0

5% The linear change of coordinates (x, ¥, B:(O) z, W—E:E ), depend-

ing smoothly on j*(Z).

{Since & yields special form (I) triples, and S"" is preserved under &, we
have B,(0) # 0, as noted before the definition 5.1 of the special procedure
(1),

Obviously, images of & are special form (II) triples.

521, Remark. & =id.

Spec

icm
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Proof. See Remark 4.24 and note that step 3 does not change
coordinates because B.(0) =1 on Spec”. m

5.3, Excision Of the S(O‘z'(o,l)(o_l)'part.

5.3.1. Definition of the submersion &7, Observe that the construction of
4,3 may be carried out with the mapping &" instead of & (on an arbitrary
r-jet level as well, r 2 1). Indeed, represeni ™ as in (8) and define " using
@ as in (9). This definition is correct, an argument analogous to 4.3.3
applies. To this effect one should only remark that

{v) The H**-action al step 5 depends (smoothly) on j' (h,{(p) (see (8)),
and so does its (r+ -jet (this action is a linear change of coordinates; r = 1
is important).

£3.2. Prorosrnon. Fix rz 1. Then M UM - Spec'! is a smooth
onto submersion when restricted to a certain open U o j" Spec!l.

Proof Taking into account Prop. 4.3.3, one should only verify that
step 5 does not violate smoothness. According to (v) above, the operation at
5, ohserved on the r-et level and applied to j (h,(p)), means a linear
transformation of the coordinates of j(h,(p)), the coefficlents of the transfor-
mation being products of powers of B.(0) and C,(0) (with sums of expo-
nents < #), some of them multiplied by 1/B,(0) or (C,/B)(0). Remark 5.2.1
iraplies that the open set £% where D@™(-) is an epimorphism contains

F8pec’. m

Because the singularity set S zy0.1y0.1, 18 defined in 2<jets of germs of
triples. Lemma 4.4 will be applied for § = j2S5,
Q = (Swe.a0,m0.0 NS, S = j* Spec'’,
H=/PH", Ww=0" forr=2in 531,
V=0" forr=21in 53.2.
£33, Observation. In this case the assomptions of Lemma 4.4 are
fulfilied with o =1,
Proof. We look for the description of Q&% within. §*%. Let
(X, ¥, [2', Z% B, C]) be an arbilrary representative of a given p&@ ST,
We follow the proof of 4.5.1; now Z!, Z*euw?, f, gem’,
{14) 7% =B modmt, 2% =C modm?
amiz](X, Y, Z) = a((hz) (X, Y, Z’) = <B'+‘ sth 3'ﬂat, C+sth 3"ﬂﬂ.t>.

Since Oy (X, Y, Z) = (Z°, 2", we have a simple description  of
3(0_2,(0‘“()(, Y, Z) == 6(_9)2)(0,1)()(, K Z,) = <Z!3, Z’4, d€t>, Whel'e

XxXz?® yz?
XZ/AL YZM-

det:=‘
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(Two other 2-minors involving the derivatives of Z'% 7" in the Z'-direction

fall into 245, (X, ¥, Z') already!)
(X. Y, Z')€8,0.200, 10,1, Means that det has derivatives in the directions

of Ly(X, ¥, Z1{0) proportional to the respective ones of Z Z0 7% e in view
of {(4) and (14}, d2t,(0) = 0. We compute it directly:
¢ (| X (B+sth 3-flat) Y(B-sth 3-flat)
det, (0) = -( . o)
Ay \| X{C+sth 3-flar) Y (C+sth 3-flat}
a ( B, +sth 2-flat B,+aB,+fB, +sth 2-flat
By \lC,+sth 2-flat €, +aC,+ fC, +sth 2-flat

)(0)

= By, (0) 0l 1B Byto B. +0(‘Bza'+ﬁy B, -+ BBW 0)
- Cer (0) 0 C: Cytay Cz+°5Czy + By C,+B8C,,
=, (0, by (3), (4 and (12).

The equation
(15) C,.(0) =0,

expressed in terms of j2(X, ¥, Z') =j*(X, Y, Z) = p, is the sole condition for
p to be in @ m$™. It describes a regular, smooth, codimension | submani-
fold of §m. In effect, C,,(0) is a smooth regular (coordinate) funcuon on
i SpeclI Its regularity at p manifests itself eg. on the line p{f) = j*(X, Y z
+ty? &owy, p(0) = p, lying entirely in $™ (for every 1, (3)-(6) and (12} are
fulfilled). =

The assumptions of Lemma 4.4 are fulfilled (¢ and j* #**\Q are now
7 H%*-nvariant). We excise the thin Sy.20.10.1,-Part of SV, obtaining the
smooth, semialgebraic, codimension 4 manifold

(1 6) Silla) S(II) 05(0!2)(0!“‘.0!2)

= Se.201,2) N Sc0,2100.100,2) N 1,3+

Note that property (5) of special forms (I) means, for a special form (1) triple,
that

(17) C{0 # 0

(cf. (12)). This allows us to notice (see (11)) that

54, L,(-)(0) has maximal dimension, Indeed, the following inclusion
holds:

T
ST < 8z 4-

Proof. It suffices, by the H* -invariance of Jakubczyk—Przytycki's sets,
to consider special forms (II) only, Then we know that L,(X, ¥, Z)(0)

icm
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= span(& dx, &/ dy, & 82)(0). Computing
[[X. Z], Z](0) = [0. 0, (B, B,+C,B,)0), (B, C,+C, C,) (0)]
= [0, 0, B,(0), C. (0],
and using (17) yield that this vector and L,(X, Y, Z)(0) span T, R*. =

The singularity set S" admits a shorter description. Within this set,
we have
55, Ly(-)(O) is rransversal to M.

’) a e .
551, ProOrosrmioN. Sq, o, vm,2 O Swani.a © S22

Proof. We may reduce any triple in the LHS, via the H*3-action, to
the special form (2) except that (6) need not hold (the assumptions le]d {N
only). Then

on(X, Y, Z2) = (B, C), o200,y (X, Y. Z)y = (B, C, det,
Y () ekerdB(0) ~ker dC (0)

(cf. the proof of 5.3.3). But Y(0)¢kerd(det)(0) (X, Y, Z)¢ S 2y0.130.2) Other-
wise), o that

kerd(det)(0) 3 ker dB(0) nker dC(0),

Hence B, C, det are differentially independent at 0; the set M,
regular description

(18) Be=(C=det=0

—is a smooth curve. Once the smoothness of M, and M; is established,
the inclusion in question follows from the geometric position of the spaces
oMy, ToMs, Lo(X, Y, 2)(0) and L, (X, Y, 2)(0). =

55.2. Cororrary. 8™ = 8y 50,10,3 N Si.3 (cf. (16).

Proof. The inclusion LHS = RHS is imphed by the independence of
the functions B, C, det (when using the special forms) in the directions of the
3-dimensional Ly (X, ¥, Z)(0), which contains the  2-dimensional
Lg(X, Y, 2)(0). =

By this corollary the manifold SY™ really gets a simpler description
which suggests focusing attention on the §j,3,- term, This is purposeful, for
we need to gel rid of nontransversal parts of S, ; within S®®.

—having the

8.6. Excision of the S a,z-port. Within S we have one additional
piece of information about special forms (1I):

(19) Cp{0)# 0 . ‘
((15) does not hold after the excision in 5.3). For every special form (IT) triple
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(X, Y, Z) the ideal &, 5 (X, ¥, Z) is generated by the functions
B, B1 ,
C, CF C, Byl
B, B,+aB,+f#B,~2,B~ua,C l
Cx Cy+acz+ﬂcw"_ﬁ:BHﬁwC .

This is because the matrix (X, Y,[X,Z], Z,[X, ¥Y]. [Y, Z]) has the non-
zero 3-minor

Fy:

2=

F_:;:ﬁ

1 0 0
0 1 G
0 « B,

All 4-minors of this matrix (only 6 of them being, possibly, not identically
zero) are functional combinations of the three 4-minors which are extensions of
that invertible 3-minor (see e.g. [S], Ch. I, § 1, Example 4). This description
of d,4 (X, Y, Z) allows us to note

5.6-1- REmafk. S(HM s S(l,}})(l,?.) US(1.3)(],3)'
Proof For a special form (IT) triple, the 2-minor

YF, [X,Z]F,
YF, [X.Z]F,

]

turns out to be nonzero:

. B,, B By Byl
YF {0) =(8/an) F (O)=\C.w C1\(0)+ c. c, (0) = 0,
N B, (B,+4%), _\1 %
YEO =040 20O ¢ 0 * "

B, B
[X. Z]F(O (&/8z)F; (0) -—O-l—\(, C

5.6.2. Deriving the equation for the special forms (IT) in the Sy 3, z-part.
We want to excise from S the first summand on the RHS in Remark 5.6.1.
This singularity set is defined. as well as S™, in 2-jets. We shall use Lemma
44 as in 5.3,

Let this time

§=j8 0 =j2(Su,3)u,2) N8,
Ssp?c mjl (SpCCH ﬂS(]I“)), H =j3 H4’3, o= (D(H}J pit

(see Prop. 53.2 for r = 2).

25t
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Take any representative (X,[Y' Y% o, ], [ZY Z% B,C] of an
arbitrary peQnS§™, The upper left - 3-minor of the matrix
(X, Y [X,Z].Z2,[X, Y],[Y, Z]) is obviously nonzero ([X, Z]'=B,0/éz
+C, 8/dw mod m?), so that 8, 4)(X, Y, Z) = (F,, F,, F3>, where the F; are
the same 4-minors as those written explicitly at the beginning of 5.6 for a
special form (II) triple. F,, F,, F; are differentially dependent in the
directions of L, (X, Y, Z)(0) = span(&/dx, &/ 0y, &/02){0). Noticing that

Fi= \C c mod m¢, F;_.,\? ﬁx mod n?,
B, B,+uB,-+pB,—a,B—u,C

Fom 0¥ ¥ # W % w 1 d

F O, CotuCot O~ B B, € O

taking account ol Remark 5.6.1, and computing: le(O) = 0

B.xx &y
Coox /f

Fay(0) = B, (0 +|

B, o

Co P

(0): F3_x (O)

XX

F3,(0) = (0)-+ (0) = ﬂxx(o (0): ;

C /3 yx O + (ﬂx 200,
xy

we arrive at the equation in 2-jets expressing the mentioned: differential

dependence:
xx O:x B a‘wl . B
=0,
{20) ( » (ﬁm C.e Bs ny B )>

{Simplifying the notation, we¢ have omitted in (20) all symbols ‘of EVELluc‘[thi‘l
at () ‘
This is the condition, in terms of p, for p to l:;e in Q e

563, Remark. The functions det and Fy (cf. 5.3.3 and 5.6.2) have the

) (ny+06 Cz) (ﬁx!’

same derivative (= C,,(0) for special forms (If) mod n) in the direction

Y(0). This is not accidental, because for special forms -
(21) det —Fy e ¢B, C.

5.64, Completing the excision, The computation in 5.6.2 shows: that
Q M8 s deseribed within §° by a regular function-on §—that on the
LHS of (20). (Its regularity at p = j*(X, ¥; Z) manifests itself, for instance, ‘o
the line p{t) =j*(X, Y+1x?&éw, Z) included in S™. (17) and (19} ‘are
essential for this regularity.) ic assumpnom of Lemma 44 are fulﬁl]ed ‘with
d = ] 4 LA ..:-'J A

After the excision of I;he thm S(, L pql;l't therf: Temains;a., smqo£h
(semialgebraic) manifold: . .

(22) S Uy 8y ain,3) = Sio,2100, 01,3 O St nt, 3y

6 - Studin Mathemodicn 91,3
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8.7. Ensuring regular intersection of M, and M, We intend to cnsure
that M, and M, be in general posilion with respect to each other. For this it
will suffice to ensure the same for the curves M, and M, only —a surprise
constituting the second strange nongenerigity mentioned in Sec. 1,

57.1. Examples of nontypical behaviour. Germns betonging to the mani-
fold (22) may still behave very nontypically. For instance, the curves M, and
M, can even bhecome identical, as for the triple :

{23) (orox, £0, 1, 6, x*1, [0, 0, x, z+ p*)).

Here F, =C, Fy=f8,=2x ~B=ux, Fy=2p=det (cf. 5.3.3 und 5.6) and
obviously &g a0, (X, Y2 Z2) =8, 5(X, ¥, Z).

These curves may also have an arbitrarily high degree of tangency to puch
other at 0 =R*, Namely, all terms of the following sequence belong to §™";

(24 (&0x, [0, 1,0, X*+xw*], [0, 0, x.z4+p%]). hk=1,2,...

For the kth term of this sequence
Fi=C, F,=2x+w=2B+4+wk

CFy = 2y—(z+ y)kxwt T = det — Chxw® " 1,

hence & 5,(X, ¥, Z) = QB+wh C, dety. Recalling that for special forms
So,200(X, ¥, Z) = (B, C, detd, we sce that the announced tangency is
clear, except for k =1 in (24), i.e. for the triple

(25) (@&/éx, [0, 1, 0, x>+ xw], [0, 0, x, = +p2]).

We shall make reference to this specimen triple i 7.8 this triple is quoted in
[Mi], (12). It supplies the model situation we strive for. The remaining
mutual geometrical positions of M, and M, will be eliminated with the use of
the technique of 4.3-44,

8.7.2. The special procedure (IIT). This procedure is nolhing  bul a
particular special procedure (I1) (cf. 5.1} restricted to §'", The particularity
consists in a more thorough specification of a special procedure (1) applicd.

Now that we are in S o a0, 1y0.2. We may Tequire al step 2 in 4.1 that
the curve M; = M, be tangent to I' at 0. As a consequence, M, will have at
0 the (J/ow){Q)-direction after the straightening, Notice, as an extension of
Remark 5.1.1, that this description, T, M3 = span(&/éw)(0), remains valid
after step 5° in 5.1, ‘

We shall call special form (1) triples in S"™ having M, tangent at 0 to
the w-axis special form () triples, and denote their set by Spec'.

5.13. The uniform special procedure (IT1) in the vicinit y of Spec™. Define
a neighbourhood of Spec' in $"", called L', by requiring conditions {a)-(c)
from 4.2 and :
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(d') For W' = the orthogonal projection of (3/dw){0) on Ty M,
W > 3max (W', W, |W3).

These conditions are obviously fulfilled in Spect’.

("' is defined on the 2-jet level because the description of T, M,
involves the sccond jets of germs of triples.

The uniform special procedure (1), defined in UM and writien @U,
consists of the same steps as $'0 (see 5.2), but with step 2 {cf 4.2.3)
replaced by

2" A lincar change of coordinates, depending smoothly on j*(X, Y. 2),
preserving the vectors (70x){0), (/Ov)(0), (/az){(0) and replacing (&/fw)(0) by
W' (see (d) above).

Images of '™ are special form (I11) triples and &M is the identity on

Spec™.

874. The submersion M, We define, as in 53,1 (on an arbitrary r-jet
level, ¥ = 2), the mapping ¢ induced by . The arguments of 4.3.3, 5.3.1
and 53.2 apply here again so that one can check the correctness of this
definition and the smoothness of M0 7 L —j Spec', r = 2, @', being a
submersion, like 'V and &, on a certain open T - jSpec™, will serve to
eliminate the degeneracies presented in 5.7.1.

87.5. Restriction to the case of M,, My regularly intersecting. Nontypical
mutual positions of M,, M; imply an irregular, to-be-eliminated, description
of M, nAM,. Namely, in the language of dideals,

(26) Ao.zcen (X, Yo 20+ 80,3(X, Y, Z)

should not then contain 4 functions differentially independent at 0. In terms
of generalized sets of type § this means

(X, Y. 2D e(So.20,0 NSk~ 1m-

Tl’lih’ 5¢1 iS dt’:ﬁ]'lcd on lhe 2-'et IEVG]. ¢ intend to & ] L{'-Tﬂm:.l J fOI' S
; i W pply 4.4
= 25U,

Q = jz ((S(().Z)(U,I) M S(] ,3))(.., LM Sum)), S o j2 Specm,

H=paY, V=0 ¥=0¢" (for r=2in 574).

Examining the assumptions of the lemma, let (X, [Y Y% «, £],
[Z!,Z% B, C]) be a representative of peQ m$*. Reasoning as in 5.3.3
(see (14) and the definition of det that follows) and 5.6.2, we see that the ideal
(26) equals ' “ -

-<B+sth 3-flat, C +sth 3-fat, det, Fy, Fy, Fs>.
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We know that F; = C mod n®, F; = det mod m?. Hence “p g M ST boils
down to :

(2h “B.C,det, F, are differentially dependent at 0"

Let us derive an equation of this dependence.

Since (X, Y, Z) is, modulo m?, a special form (I1I) triple, (&7 dw)(0) spans
T, M, (the curve M; is defined by (X, Y. Z)). Consequently, B,, C,. det,
vanish at 0 (cf (18), valid modw® here). But B, C,det are differen-
tially independent in the directions (&/ox, @&y, 0/0z)(0) (since
(X, Y, Z) €50,210,1)1,3)- Hence the requirement (27) boils down to F,,(0)
={, and further to

(28) (ﬁxw — Oy C.xw) (0) =0

{on account of (6), (12) and the description of F, in 5.6.2). The function on
the LHS of (28), defined on $, is smooth and regular (its regularity at p
reveals itself e.g. on the line p(f) = j*(X, Y+txwd/dw, Z) lying entirely in
§7). Thus (28) describes Q M §™* as a codimension 1 regular submanifold of
§¥¢ The excision is now completed using Lemma 4.4.

We can thus restrict ourselves generically o the codimension 4 (semial-
gebraic) manifold
(29 8™ = S, a0 w.m N Swnu,y

' M (So,20,1 N Suad-1,4-

57.6. Note. The geometric meaning of the generalized set of type S
occurring in (29) is nothing but M, being in general position with respect to
M; (ie. TyM,n TyM; = {0)). This has been guaranteed in the course of -
57.5.

6. Regular intersection of M, and M,.

6.1. THE ALGEBRAIC LEMMA. For every germ (X, Y, Z) in 81
(30) Q0.0 (X, Y, Z)+84,5(X, Y\ 2) = donwo) (X, Y. 2)

+ (X, Y, 2).

Proof. It suffices to deal with special forms. This is due to a general
transformation rule valid for é-ideals. Namely, in the general sitvation of
X et (g, Fle H™, for every admissible sequence I {cf. [M17], {2))

(1) ' (lg, FIX)="26:(X)cg™ "

(A proof is included in [M2]. It suffices to prove the inclusion <. The
opposite one follows from this, applied to (g, F) X and (g, F)™')
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I (X, Y, Z) is a special form (1) triple, &0 1,(X, ¥, Z) has the
description as in 533 (except that (12), (17) need not hold), and
Sanl(X. Y, 2) is as in 5.6 (but (19) need not hold}. Obviously LHS < RHS.
The epposite inclusion now follows from (21). w

6.2, Automatic reyulurity of the intersection. For triples of vector fields in
S (el (29) the ideal (26), and via Lemma 6.1 the ideal & 5 ( )+ 8q.4,(")
Loo, satisly the (— 1L4)-condition (i.e. are both equal to m). (We say that an
ideal T 7Y satisfies the (1, J-condition iff its jacobian extension T is
included in m, and Ty, equals F) We get aulomatically ‘

v(]\’) - o
S e (S0, N Siae L

(cf. [M1], (4)). This means (cf. Note 5.7.6) that the 2-dimensional tangent plane
To M, and the tangent line T, M, cross each other “most sparingly” at
0eT, R*, We underline this automatic inference, once the regular crossing of
the lines TyM, and T, M, is known, and comment on this second (as
announced in Sec. 1) strange nongenericity in geometrical behaviour later
(sce Sec. 8).

Thus the geometric genericity of 6.2 holds everywhere in SV, We are
finally restricted to the (semialgebraic) manifold

; P e
(32) (8" = 8™ =) Se 0003 O Suman M NSu k-1, @

This is the long awailed focusing stratum.

7. Properties of S". Proof of Theorem 2 (the first strange nongenericity).
The focusing stratum SY, constituting a generic part of the initial singularity
set (1), may be expressed differently, without resorting to generalized sets of
type S:

7.1. LEMMa.

(S
8" == S, m0,100, O Si0.21- 1,20 O 1,310,210+ 1,4
Proof. Of course 8" < 80,250, 1002 M S0, 210~ 1.2+ To prove the inclusion
ez, one has to establish the independence at 0 of the functions F, Fy, Fy
and F,, where

Fl.\' Fly"{"&Fl:'F”ﬁFlw BF1:+CF'[W
}’N;I_ = sz F!lj,”i”cﬂf"2£+/jlf2w BF;K+CF2“‘ .
Fye FayhaFy -+ fF;, BF;,+CFy,

(We refer only to special forms (III), cf. 5.7.2, since ail sets §, are H*.
invariant. The inclusion in Sy ay0.2;» i€ @ certain 2-minor of the determinant
defining F, not vanishing at 0, follows from the S 3) M 8(,3)1,5)-28sumption.)
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r ([IT)
(33) Fi(0) = F1,(0) =
Hence
F,, F
F, =(BF,,+CF,,) Fr F“ mod m?,
where
F.’Zx FZ_V
GO)#£0 for G:= ,
9 0= Fae Fs,

because of the S _s,2-assumption.

In turn, by (4) (valid all the more for special forms (IIl)), BF,,+CF,,
= BB, C, mod m?, Thus F, = BB, C,G mod m?. Since B,C,G is invertible
at O {cf. (12), (17)), the independence at 0 of Fy, F,, F;, F, is equivalent to
that of F,, F,, F5, B. By (12),

(35) F, = C modm?

The independence mentioned above is then equivalent to the (—1, 4)~condl-
tion being fulfilled by the ideal (B, C, F,, F,, F4), i.e. by

a(O.Z) (X, Yo Z)+ 6(1,3)(X, Y, Z)
This is nothing but the condition for
(X, Y, 2) e(S0,2 NS 3pd- 1,4

Proof of o. We do not know for a while whether we have the
S(0.2301,z7-condition fulfilled. This leads us to an (irrelevanily) weaker special
form (II') construction than in 5.1,

First we get a special form (I) triple of vector fields (as in 4.1). In
particular, according to (4), BU(0) = CV(0) =0 for a while. But after an
-additional step 5*” (which cannot coincide in phrasing with 5° from 5.1, since
we do not know that (10) is zor valid) we will not have such information.

5% Change coordinates in the (z, w)-plane so that [X, Z7(0) is the new
versor (8/0z)(0) and the new versor (&/dw)(0) makes with it an angle of + /2
in the old coordinates in this plane,

A special form (II') triple coming out-after steps 1°-4° and 5" yields less
information than a special form (II). We do not know if (¢/ow)(0) e Ty, M, , ie.
if B, {0)=C,(0) =0; however, some properties of special forms (I) are
acquired, namely the property (12). By (12) and the S5, 2y~ 1,2)-assumption we
only know that C_(0) #0 or C,(0) # 0.

As has already been computed in 5.6.1-2, for special form triples ((I), (I1)
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718 Mote. (12) alone does not guarantee here the inclusion in St0.2x1,2)
as it did for special forms (1) in 8Sec. 4. We do not know (5), which rests on
{4), and the latter is temporarily unknown.

Therefore, more carefully than in the “=™ part of the proof, we calculate

BF 4+ CF, = BB, C.+CE, (C, modm?®
fHenco ' - -
Fy o (BB o+ CB,C) G omod i,

and the wssumption that £, Fy, Fy, Fy are independent al 0 implies that
FooFy Fyo BB .C 4+ CB O, are independent at 0. But (35) is still valid,
implying that ¥, F,, Fy, BB,C, are independent at 0, We have B(Q) = 0,

so (17) must hold, and F,, F,, Fy, B are independent at 0. All the more, the
ideal <B, C, F{, F,, F3)> fulfils the (-1, 4-condition.

7.2, Note. One could argue more briefly: F,, F,, F3,' BB, C.
+CB,C,, independent = <8, C, F,, Fy, F3> fulfils the (—1, 4)-condition.
Yet the preservaiion of (17) is important for an argument below.

On the other hand, F,,(0) = (B, C.)(0} % 0, and (33), (34) are still valid
(the Jatter because of the former and the Sy 3,4 ,-assumption). Therefore
Fy, F,, Fy are independent in the directions (&/dx, &dy, &22)(0)

= (X, ¥, [X, Z])(0}, ie. the germ of the triple belongs to S35 Once (17)
is established, the inclusion in S((, 21,2 holds automatically (cf. (12)), Weaker
properties of special forms (II') in comparison with special forms (II) have
turned out to be irrelevant, because they have paved the way back to the
situation in 5.1. Since S a0 18 assumed, Corollary 552 yields the
inclusion i S, 20, 101.3- :

7.2 Algebrgic foromdation of the smmqe nongenericity occurring in SF
The strange nongenericity described in Th. 2 (see 2.3) has a short phrasing
with the help. of a generalized set of type 5

Turorem 2. S' o (S w2 S oo -

Proofl, Set
(36) 3:’57-‘ (f)([).;l)((Y1 Y-, ZJ ™ 6{1.3)(X1 Y., Z) e <B'u C> m {P‘l, _Fz"!__ P’S)' )
(We work only with qpu.ml form (III) triples.) For tnpiea of vector fields in
Spec' A &Y . . R

B(0)éspan(dF,, dFy, diy)(0)

(because the ideals equated by (30) are equal to m). On account of 35), for
every fB-+gCeT f(0) = 0. Both X{0)and Y (0} differentiate to zéré evety
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function in 3, because

{37) ‘ XCOy= YC(®=0

(see (4), (12)). This yields that Ly (X, Y, Z)(0) diffcréntiates to 0 the ideal T
Theorem 2’ is proved (cf. [M1], (4)). =
7.3. CororLary. 8 < (S0 v 8,30

Proof. The ideal T (see (36), by Theorem 2, satisfies the (0, 0)-
condition (for every point of S"). Thus it can satisfy the (1, j-condition with |
=0 or j=1 only.

But F, €T by the definition, and

[X, Z]F; (0) = dF, (O)([X, Z1(0)) = dC((&/22)(0)) = C.(0) # O

(cf. (12), (17), (35)). Thus, for every point of Spec™ M S7, we have j = 1, Hence
j =1 for the whole S, since generalized sets of type § are H*3*invariant. =

. 74, Cramm.

F . E -
5 = Somon ¥ Sanons S S0y ¥ Suak,

‘Proof Set
(38) Ni= om0 (X, ¥, Z) 0 80,5(X, Y, 2)
| = (B, C,det>n (Fy, Fy, F3d.
(Without loss of generality we restrict the argument to special form (111}

triples of vector fields) By the definition- (cf. especially (21)) we know that
F,, F, 9t Notice that

(39 fF,eM = f{0)=0
(F;=M would result in {F,, Fy, F3) < ¢B, C, det), which is impossible
within Spec™ N SF, where the sum of these two ideals is m, see 5.7).

The matrix of partial derivatives of Fy, F; in the directions
(&fdx, B/dy, 8/2)(0) is the following (cf. 3.6):

(o 0 C.0)
+ C(0) )

Recalling now the geometric positions of Ly(X, Y, Z)(0) and L, (X, Y, Z)(0),
and knowing (39), we have both inclusions of the claim justified. =

75. Remark. Recall that (S;w S,),, consists of certain points of
S; nS; only, namely those where the ideal J;(-) n &, (") satisfies the (i, j)-
condition.

7.6, Discussion of the definition of (S;yw 8yg,. The definition - of
(S1.& S7)a.p, as stated in-[M1], (4), has been applied here always in situations
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when the traces M (of 8, 3)) and either M, (of S, 4,) or M3 (0f §(0,2)0,1)) intersect
regularly, When traces like these become tangent in some directions, we need
a finer definition of (S, w S, which coincides with the previous one in regular
cases as in this section. In tangent cases the common part of d-ideals may not
reflect adequately the geometric contents. Take, for instance, k = 2 in (24).
For that triple, do,g0.0(X. ¥, Z) = {x, z+p?, 2> = {x, y, z), while

O (X, ¥, Z) = Qx b w?, 2k y2, 2 —(z+y%) 20w
= 2x-Fw? 2 +vh 290 = Qx-rw 2,

Therefore a0 (X ¥ 2y 050X, Y, Z) = {x(2x+ w1, 25, and this
ideal Ffulfils only the (0, U-condition; the triple formally belongs to
(Si0.m00,1) & Spr, 3,1y But, as is expluined in 5.7.1, for this triple, the curves
M, and M, are tangent al 0, their common tangent direction being
(&ow) (). So geometrically Lo{X, Y, Z)(0) = span(&/dx, ¢/av}(0) has codi-
mension 2 relative to M, u M;. Therefore one needs another definition
making use of a certain ideal satisfying the (0, 2)-condition in this case.
Such an ideal should have the span of derivatives of its generators equal to
the intersection of analogous spans for &(-), &('). In the present section,
the intersections of d-ideals are already sufficiently thick so that there is no
need to replace & () né;(-) by any other ideal

77. Proof of Theorem 2. An algebraic proof is already given in
7.2: Theorem 2’ turns out to be equivalent to Theorem 2. This is so because
within S¥, with the thickness mentioned in 7.6!, we have '

(40) (80,2961 1 8t,3 (- D(0) = d (0,2 ()0
[ d(a““}) ( ' ))(O)
(For special form (III) germs both sides are equal to span(dF1 (0))
= span{dC (0)) by (35) and the inference fB-+gC = f(0) = 0 in the proof
of Theorem 2’ in 7.2. This identity extends to the whole SF via (31).) Hence
To M+ Ty M, =ker d(am,z)(‘))(DH'kerd(@u.s) (N0
= ker [d (80,2 (IO N (81,5 () (O]

= ket d (80,2 (1) 0 81,3 () (0),

“the last equality being due to (40). Theorem 2’ asserts that the last space

contains the subspace Lo(X, Y, 2)(0). In othet words, in ‘the focusing
stratum there. are no pathologies mentioned in 7.6, s0 that Theorem 2 is
indeed equivalent to Theorem 2. w
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Yet it is Th. 2 that highlights the geomelric context of the strange
nongeneric behaviour of germs in the focusing stratum. We comment on this
below. '

7.8. Comments on the strange nongenericity. A straightforward geometri-
cal argument for Theorem 2 is possible. Let v be a vector spanning T, M,.
For special form (If) (and all the more (II) triples, M, has the description
F,=F, =F; =0 (cf 5.6), so that vF{0) =0 and hence, by (35), vC(0) = 0

1
Because also XC(0) =0 (see (37)), the vector X (0)—»55(0—)“1) differentiates
both B and C to 0. Thus
X{(0espan(v, Ty My) = Ty M+ Ty M,

A supplementary direction of L, (X, ¥, Z)(0) is Y (0), which for special forms
(11} belongs to TpM,. The strange nongenericity—confinement of the
vectors (X, Y, Z)(0) to a certain 3-dimensional space depending- cn the
second jets of the vector fields, as pictured in Fig. 2--is established for special
form (11I) triples of vector fields, and hence for the whole S*. The similarity
(35) .of F; and C (for special forms!} is crucial. We can describe this
nongenericity by saying that in the focusing stratum the vector fields in a
given triple cannot behave entirely independently of the sets materializing

their sinpularities (“traces of singularity sets” throughout this paper}. To
" thé contrary, they are bound together to some extent at 0 eR*, the point
focusing the whole complex singularity of the considered generic triple of
vector fields. The specimen triple (25 yields an example of this strange
behaviour, as computed in [M1], (12).

The nongenericity arising from Th, 2 may be considered similar, in some
aspects, to the strange nongenericity {in codimension 2) in #** discovered
in [JP2] (Iniroduction, 1.12 and 5.1. (5, however the former (in 2#%7)
appears in hlgher codimension.

8. The second strange nongenericity related to ST, As was observed in 6.2,
the property of regular intersection of the curves M, and M, {established for
the whole focusing stratum S¥ in 5.7) translates automatically into the
property of regular intersection of the surface M; and the curve M,. The
immediate translation is obtained via Lemma 6.1 (the strange identity (30),
which itsell could be named nongeneric). I{ seems fitting o atiribute the
adjective “nongeneric” to the resulting geometric restriction limiting the
arbitrariness of mutual positions of M, and M, . Indeed, 6.2 implies immedia-
tely (we omit “germ of” in the sequel):

8.1. Observation on the geometry of M,, M; and M;. The curve M,
cannot cross regularly the curve M, and simultaneously be tangent to the
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surface M. The only direction of possible tangency of M, to M, is the M,-
direction. The last tangency may occur only outside the focusing stratum.
Yet the described kind of tangency is inherited from the neighbouring
focusing stratum, because this stratum renders identity (30), which forces
geometric restrictions.

8.2, Consequences for ceviain nongenerie triples of vector fields on a 4-
munifold. The restriction in nonlypical behaviour mentioned in 8.1 has
consequences for certain triples of smooth vector fields on 4-dimensional
manifolds. We mean the triples which are nongeneric in the sense of [M1],
Sec. 6, yet transversal to Sig 0., (M) and Lo S, 4, (M), where M stands for a
given smooth 4-manifold. Their nongenericity consists in the nontransversali-
ty to the manifold (8.1 Sy (M), ie. in nonregular intersection of M,
and M, for u given triple. For these Iriples of vector fields on M the
direction of possible tangent intersection of the corresponding curves M,
with the surfaces M, is uniquely determined. M, may cross M, only at
points belonging to the curve M, (cf. also 3.3) and the mentioned direction is
the dirgction of the curve M; at the point of intersection.

9, Complstion of the proof of Theoa'em 1. Section 6 ends with establish-
ing that 8" is a codimension 4 semialgebraic manifold. In order to complete
the pronf of Theorem 1 we want to know how many different functions &:
St - fideals . of #%) there exist on ST. We shall call such a function §,
mw.s.senr:a.’ iff for every (X, ¥, ZjeS¥ ‘

BUX, Y, Z) = .
We shall call 8 proper iff for every (X, Y, Z)eSF
G, NZ)cm

We introduce the same notions for ideals occurring in the definition of
generalized sets of type § (we mean the definition in terms of local ideals,
equivalent to the one in [M]] {4); of. the comment on this in the Introduc-
tion).

The assertion of Theorem 1 means that each of the &, (d,+ &)y, and
(& ™ &)y is cither unessential or proper.

9.1, Lemma. Every &, is either unessential or proper. More preczsely, the
Jollowing proper nonzero @y functions exist: C

6{1 3y a(l 3)(() 21

6(0 24 0(0 2)((1,1)1

This means that a further jacobian, extension of ideals wluch &re values
of the listed functions, as well ‘as performing another sequence..of such
extensions from the beginning, gives values of, unless unessential, ldea]-
valued functions already. present on this list,
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Proof. For germs in S¥, L, (X, Y, Z}(0) has maximal dimension 4 (see
Remark 5.4). Thus, for constructing the ideals &,(X, Y, Z), one may use at
the first step only the distributions Lo(X, Y, Z) and L,(X, Y, Z). And
generally, since the distributions L;{-), i = 2, are full-dimensional, in the
remainder of the proof of Th. 1 we shall make use of L_, (") = T.R* 10
replace and eliminate them everywhere.

So we first consider 8,5 (X, Y, Z) and &, 5,(X, Y, Z). (6, for f =0, 1
and &, for j =0, 1,2 are unessential since S = 85 M5 .3): Q0,3 and
01,4y are zero functions.)

9.1.1. What can jacobian extensions of dg (X, Y, Z) be for
(X, 7Y, ZysS™? This ideal has 2 generators which have nonproportional
derivatives in the directions of L, (X, ¥, Z)(0) {f. (11) in 4.5). Hence &y 2.0
and Gg,21,1) are upessential, while & 21, for j= 2, 3,4 does not differ
from O3 {the jacobian extension procedure adds minors of size > 3, using
only 2 generators that span Gg g (*) over Fg).

No extension is due to L_,() either—the two generators have
nonproportional differentials. But an interesting extension with the help of
Lo (-} is possible. The function &, 5.1, is proper and different from & o, (8"
omits So, 230,29y = 3,43, f. 3.3). As above, Oo,500.0, 15 unessential and &q 50,5
for j =2, 3,4 does not differ from &g 5.

Note now that: 8 50,,(-) has 3 generators independent in the direc-
tions of L.(*)(0) (8" < S5, 20, 11,3)- f. Corollary 5.5.2). So neither L, () nor
L_, (") gives a new jacobian extension of it different from #%. The only
possibility is the Lg-extension g 20,150.2(*), since S¥ < Sig 20, 1y0,21 (cF.
(16); €0,2)0, 130, 18 unessential for j = 0, 1 and equal to g 3.1y for j =3, 4).
But this also gives nothing more than the function &g, a0, This is so
because (we argue for special forms (III) only) the additional generator that
extends Jo,500.1(X, Y, Z) to g 20,1002 (X, ¥, Z) is a 3-minor with a
column of derivatives in the Z-direction. Hence this generator is a cormbina-
tion of the coordinates of Z, ie: of B and €, and belongs to (B, (>
= fo,(X, ¥, Z). :

Therefore the jacobian extensions of &g g0.1)( ) yield values of no new
proper ideal-valued function. ‘ '

9.1.2. What can jacobian extensions of &y 4 (X, Y,Z) be for
(X, Y,2)eS™ This ideal is generated by 3 functions independent in the
directions of L, (X, Y, Z)(0) (cf. 5.6), thus having no new proper L,- or
L_-jacobian extension (by an argument similar to 9.1.1). There eyists only
one nontrivial Ly-jacobian extension of ;5 (), namely 8y 30,2, (")

Analogously to the previous cases, 8, 0, iS unessential for j =0, 1
and equal to §;, for j=3,4, Lemma 7.1 yields that for (X, Y, Z)eS§¥

(41) (’)(1'33(0'2) (X, Y,Z} = N1,

icm

Singularities of triples of vector fields 271

(Four independent functions on R* vanishing at O may be considered as new
coordinate functions on R* spanning then the unique maximal ideal
m e J/Tf,) :

By (41) the jacobian extensions of & 1. (-) are evaluations of no
new proper ideal-valued function. Lemma 9.1 is proved. =

9.2. Continuation of the proof. We can now show that ST is not subdivi-
ded by any set §;. The inclusion §¥ <8, [ = (1. /1).. .0l s I8 equivalent
to the condition: @y, .. 4,4, 1§ proper and for r=1, ... m G ;p.Gi- 1)
is unessential (the latter condition is void if j, = 0).

It follows from Lemma 9.1 that every function &; is propetr or unessen-
tial, Hence 8" 4:§, is equivalent 1o

g

Al €r € m:

ty el 18 URESSENLIAL OF

Jez 1 and & pp..0,.5,-1) 15 proper,
which implies the disjointness of §* and §;.

9.3, Completing the proof. We should- finally examine the mutual posi-
tions of $" and generalized sets of type § (cf. 2.2 and 7.6}, The inclusion
SV (S, Sy I8 equivalent to the conditions: :

S' e8NS,
(@ + ka,py 1s proper,
(& + 6y ;- 1y I8 unessential (no condition if j ="0).

Under these conditions & and @; are proper too. Thus, unless being O, these
functions are equal to certain ones included in the list in Lemma 9.1, After
evaluating the latter at (X, Y, Z)eS", we get the pairs of ideals

Qon(X. ¥, 2) = Ao,y (X, ¥y Z),
6(1‘3)()(, Y, Z) @ 8y 300,00 (X, Y. Z).

Hence 8,(X. Y, Z)--d,(X. Y, Z} can only be either 0 or the evaluation of one
of the listed functions (the option depends on f, J and not on (X, Y, Z), cf.
Lemma 6.1, 6.2, (41)). So, by Lemma 9.1 agair, for every admissible f,
{8+ &), 18 either proper or unessential. . o
Analogously, the inclusion in (S; & S))g,j boils down to: the inclusion in
5,8, (& N &)y, being proper, and (6 M 8))g,j-1) being umessential {no
condition if j = Q)
The ideal & (-} a,(-) can be 0, T 9 or the evaluation of one of the
functions listed in 9.1 (cf. (36), (38)). Which is the case depends on I, J only.
It follows from 7.3, 7.4 and the description of 3 9 for special form
triples that for i= —-1,2,3,... : -
{a) 3 satisfies the (i, 1)-condition,
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{b} M satisfies the (i, 2}-condition,
for any triple in S¥. All this together with Lemma 9.1 yields that for every
admissible pair (', /), (6; N &)y 5, is either proper or unessential.

Thus ST is either included in, or disjoint from every generalized set of
type S.

At long last, Theorem 1 is proved. m

94. Concluding remarks on u possible sirengthening of Theorem 1, Re-
mark 7.6 warns that the definition of generalized sets of type S, of the form
(87 U S53)u.5. as appeared in [M1], {4), is too rough (vet right in the context
of the focusing stratum 57 discussed in the present paper) and ought to be
refined — possibly as 7.6 suggests. _ R

But if, regardless of 7.6, we considered all possible generalizations in the
sense suggested in [JP2], 2.7, a far from clear picture of available general &-
type ideals would appear for points in S*. Consider eg. the specimen triple
(25) again. Looking back to Th. 2’ in 7.2 one could ask about (Jyo,0;. For
the triple (25) this ideal is equal to my and the same can be proved
everywhere in S, :

Similarly, after Corollary 7.3, what about (3); ,? The triple (25) yields it
equal to w1, which alse turns out to be valid in the whole S*.

Analogously, after Claim 74, one can compute (980,41, = m for this
specimen; yet I cannot prove it everywhere in S¥. Again after Claim 7.4, let
us ask about (%), , for the specimen triple. Curiously enough, the answer is

(W10 = Mx+w, y, 2, X2

Still for this triple, (M) 5)0,2 = M But strangely enocugh,

(Pe1, 2013, = ¢x% xw, dx+ w, ¥, 2 = (W2,

so thai one has here
42) 91; (‘R)(m) = ((m)u.z))u,a) %’({m}u,za)m,z} =m.

Such irregular behaviour of d-typé idéals hampers us in the further investiga-~
tion of interrelations between the focusing stratum S and possible generali-
zations of the sets ;.

The natural question arises whether that more abundant family of &
type ideals distinguishes some triples in S* (forgetting about the possible lack
of geometrical interpretation discussed in 7.6), i.e. whether our classification
of singularities is ful] with respect to the operations “+7, “~A" and the
jacobian extensions of ideals.

I suppose, aiming at strengihening Theorem 1, that S¥ cannot be
dissected this way, yet [ am unable to prove it.
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