On regular $\mathscr{K}'\{M_P\}$ -distributions

by Stevan Pilipović (Novi Sad, Yugoslavia)

Abstract. The characterizations of regular tempered distributions given by Z. Szmydt [6] are generalized to the characterizations of regular $\mathcal{K}^{\prime}\{M_p\}$ -distributions, where M_p is a sequence of functions which satisfies suitable conditions. For a class of these spaces a new characterization of regular $\mathcal{K}^{\prime}\{M_p\}$ -distributions is given which implies, in particular, a new characterization of regular tempered distributions.

Basic notions. Spaces of $\mathcal{K}'\{M_p\}$ -type are introduced and investigated in [1]. Here we shall quote the definition of these spaces and some of their properties.

Let $x \mapsto M_p(x)$, $p \in N$, be real-valued functions defined on R (N is the set of natural numbers and R the set of real numbers) which satisfy the following conditions:

$$(1) 1 \leqslant M_p(x) \leqslant M_{p+1}(x), \quad p \in \mathbb{N}, \ x \in \mathbb{R};$$

(2) For any fixed $x \in \mathbf{R}$ there are only two possible cases:

$$M_p(x) = \infty$$
 for all p or $M_p(x) < \infty$ for all p ;

- (3) M_p is continuous with respect to x at any x, where the function is finite. The set of points x for which $M_p(x) = \infty$ is contained in the interval $(-\alpha, \alpha)$, $\alpha < \infty$;
- $(N)_1(1)$ For every $p \in N$, there is $p' \in N$, p' > p, such that $M_p M_{p'}^{-1} \in L^1(2)$.

Given such a system of functions M_p , we denote by $\mathscr{K}\{M_p\}$ the set of all infinitely differentiable (smooth) functions $x \mapsto \varphi(x)$, $x \in \mathbb{R}$, for which the countably many norms

$$\|\varphi\|_{p} := \sup \{M_{p}(x)|\varphi^{(q)}(x)|; \ q \leq p, \ x \in R\}$$

are all finite.

⁽¹⁾ This condition is a part of condition (N) in [1], p. 111.

⁽²⁾ L^1 is the space of Lebesgue integrable function on R. If $M_p(x) = M_{p'}(x) = \infty$ we set $M_p(x)M_{p'}^{-1}(x) = 0$.

It was shown in [1], p. 28, that $\mathcal{K}\{M_p\}$ is a complete countably normed space.

The space of all continuous linear functionals on $\mathcal{K}\{M_p\}$ is denoted by $\mathcal{K}'\{M_p\}$.

If all the functions $M_p(x)$, $p \in \mathbb{N}$, are finite on \mathbb{R} and if the following condition holds:

(P) For every $p \in N$ and $\varepsilon > 0$ there are $p' \in N$, p' > p, and k > 0 such that if |x| > k or $M_p(x) > k$, then $M_p(x) < \varepsilon M_{p'}(x)(^3)$,

then ([1], Chapter II 2.5) the Schwartz space \mathscr{D} is a dense subspace of $\mathscr{K}\{M_p\}$ and the identity mapping $i: \mathscr{D} \to \mathscr{K}\{M_p\}$ is continuous. In this case the space $\mathscr{K}'\{M_p\}$ can be identified with a subspace of the space \mathscr{D}' of Schwartz distributions.

Elements of $\mathcal{K}'\{M_p\}$ will be called $\mathcal{K}'\{M_p\}$ -distributions.

Clearly, any subsequence of a sequence M_p generates the same space of test functions.

We denote by L^1_{loc} the space of locally Lebesgue integrable functions and identify every complex-valued function $u \in L^1_{loc}$ with the distribution defined by

$$\langle u, \varphi \rangle = \int_{\mathbf{R}} u(x) \varphi(x) dx, \quad \varphi \in C_0^{\infty}.$$

Following [6], we say that a $\mathscr{K}'\{M_p\}$ -distribution u is regular if there exists a function $u \in L^1_{loc}$ such that $u\varphi \in L^1$ for every $\varphi \in \mathscr{K}\{M_p\}$ and

$$\langle u, \varphi \rangle = \int_{\mathbf{R}} u(x) \varphi(x) dx.$$

The set of all regular $\mathscr{K}'\{M_p\}$ -distributions will be denoted by $(\mathscr{K}'\{M_p\})_r$.

Remark. In this paper, functions and distributions are defined on R. With suitable technical changes all results of this paper can be formulated with R^n instead of R.

Function which generates a non-regular $\mathcal{K}'\{M_p\}$ -distribution. We assume that a sequence M_p satisfies conditions (1)-(3) and (N)₁.

Observe that those conditions imply that constant functions define regular $\mathcal{K}'\{M_p\}$ -distributions.

Lemma 1. Let r_k , $k \in N$, be a sequence of positive integers such that $r_1 > \alpha + 2(^4)$, $r_{k+1} > r_k + 3$, $k \in N$, and let $a_k = \max \{M_k(x); x \in [r_k - 1, r_k + 2]\}$. If $\Omega \in C_0^{\infty}$, $0 \le \Omega \le 1$, supp $\Omega \subset [-1, 1]$, and $\omega \in C_0^{\infty}$, $0 \le \omega \le 1$,

⁽³⁾ If M_p is finite on R, then (P) is equivalent to $\lim_{|x| \to \infty} M_p(x)/M_{p'}(x) = 0$. The last condition is stated in Theorem 3 as $(N)_2$.

 $^(^4)$ See $(^3)$.

supp $\omega \subset [0, 1]$, $\int_{0}^{1} \omega(t) dt = 1$, then the function

$$\psi(x) = \sum_{k=1}^{\infty} \frac{1}{a_k} (\Omega(t - r_k) * \omega(t))(x)$$

is a non-negative function from $\mathcal{K}\{M_p\}$ with unbounded support, where

$$(\Omega(t-r_k)*\omega(t))(x) = \int_0^1 \Omega(x-t-r_k)\omega(t) dt.$$

Proof. We only have to prove that $\psi \in \mathcal{K}\{M_p\}$. For given $p_0 \in N$ and $j \leq p_0$

 $\sup_{x \in R} \{ |\psi^{(j)}(x)| \ M_{p_0}(x) \}$

$$\leq \sup_{k \in \mathbb{N}} \left\{ \frac{1}{a_k} \cdot \max \left\{ M_{p_0}(x); \ x \in [r_k - 1, r_k + 2] \right\} \int_0^1 |\omega^{(j)}(t)| \, dt \right\}.$$

Since max $\{M_{p_0}(x); x \in [r_k-1, r_k+2]\} \le a_k$ for $k \ge p_0$, we obtain

$$\sup_{x\in\mathbb{R}}\left\{|\psi^{(j)}(x)|\,M_{p_0}(x)\right\}<\infty\,,\quad j\leqslant p_0.$$

Let f be a non-negative continuous function equal to zero for $x \le \alpha$ such that

$$f(x)\psi(x)\notin L^1,$$

where ψ is from Lemma 1. We define a function F by

$$F(x) = \int_{0}^{x} f(t) dt, \quad x \in \mathbf{R}.$$

THEOREM 1. The function

$$x \mapsto A(x) = \frac{d}{dx} e^{iF(x)}, \quad x \in \mathbf{R},$$

defines a $\mathcal{K}'\{M_p\}$ -distribution by

$$\varphi \mapsto -\int e^{iF(x)} \varphi'(x) dx, \quad \varphi \in \mathcal{K} \{M_p\}.$$

This $\mathcal{K}'\{M_p\}$ -distribution is not regular.

Proof. Let ψ be a function from Lemma 1. Since |A(x)| = f(x) we have $A\psi \notin L^1$.

If we suppose that $\lim_{|x|\to\infty} M_p(x) = \infty$, $p \in N(^5)$, then one can prove that

$$\lim_{k\to\infty}\int_{-k}^{k}if(x)e^{iF(x)}\varphi(x)dx=-\int_{\mathbb{R}}e^{iF(x)}\varphi'(x)dx.$$

⁽⁵⁾ In this case if $\varphi \in \mathcal{K}'\{M_p\}$ and $|x| \to \infty$, then $\varphi(x) \to 0$.

Characterizations of the space $(\mathcal{K}'\{M_p\})_r$. We shall give characterizations of the space $(\mathcal{K}'\{M_p\})_r$ when the sequence M_p satisfies, besides conditions (1)-(3) and (N)₁, the following ones:

- (4) For every $p \in N$ there is Y_p such that M_p is non-decreasing on (Y_p, ∞) and non-increasing on $(-\infty, -Y_p)$;
- (5) For every $p \in N$ there are $p' \in N$ and $X_p > 0$ such that $M_p(x+1) \leq M_{p'}(x)$ for $x > X_p$ and $M_p(x-1) \leq M_{p'}(x)$ for $x < -X_p$.

We shall always assume that $X_p \ge Y_p$, $p \in \mathbb{N}$.

First, we shall prove Lemmas 2 and 3 which are analogous to Lemmas 1 and 2 from [6]. From these lemmas characterizations of the space $(\mathcal{K}'\{M_p\})_r$ will directly follow. These characterizations will be given in Theorem 2 and this theorem is analogous to Theorem 1 from [6] (and a generalization of this theorem).

Observe that condition (5) implies the existence of a sequence p_k and a sequence X_{p_k} such that

(5')
$$M_{p_k}(x+1) \leq M_{p_{k+1}}(x) \quad \text{for } x \in (X_{p_k}, \infty) \quad \text{and}$$

$$M_{p_k}(x-1) \leq M_{p_{k+1}}(x) \quad \text{for } x \in (-\infty, -X_{p_k}).$$

LEMMA 2. Let M_p be a sequence of functions which satisfies the above conditions and let r_k be a sequence of positive numbers such that $r_1 > \alpha + 1$, $r_{k+1} > r_k + 1$ and $r_k > X_{p_k}$, $k \in \mathbb{N}$ (6).

There exists a smooth non-negative function $x \mapsto \gamma(x)$, $x \in \mathbb{R}$, such that:

- (a) $\gamma \in \mathcal{K}\{M_n\}$;
- (b) $\gamma(x) \ge M_{p_k}^{-1}(x)$ (7) for $x \in \{x; r_k + 1 \le |x| \le r_{k+1}\}, k \in \mathbb{N}$.

Proof. Let ω be the function used in Lemma 1 and let $\varphi \in C_0^{\infty}$ be such that $\varphi(0) = 1$, $\varphi(1) = 0$, $0 \le \varphi(t) \le 1$ for $t \in [0, 1]$, $\varphi^{(k)}(0) = \varphi^{(k)}(1) = 0$ for $k \in \mathbb{N}$ and φ decreases on [0, 1] (8).

The functions

$$x \mapsto (M_{p_k}^{-1} * \omega)(x) = \int_0^1 M_{p_k}^{-1}(x - t) \omega(t) dt,$$

$$x \in [r_k, r_{k+1} + 1], \quad k = 2, 3, ...,$$

have the following property:

$$M_{p_k}^{-1}(x) \leq (M_{p_k}^{-1} * \omega)(x) \leq M_{p_k}^{-1}(x-1) \leq M_{p_{k-1}}^{-1}(x),$$

 $x \in [r_k, r_{k+1} + 1], \quad k = 2, 3, ...$

⁽⁶⁾ α is introduced in (3) and X_{p_k} , $k \in \mathbb{N}$, in (5).

 $^(^{7}) M_{p_{k}}^{-1} = 1/M_{p_{k}}.$

⁽⁸⁾ The function φ is quoted in [5], p. 154.

Let us put

$$\gamma(x) = (M_{p_1}^{-1} * \omega)(x), \quad x \in [r_1, r_2);$$

$$\gamma(x) = (M_{p_{k-1}}^{-1} * \omega)(x) \varphi(x - r_k) + (M_{p_k}^{-1} * \omega)(x) (1 - \varphi(x - r_k)),$$

$$x \in [r_k, r_k + 1), \quad k = 2, 3, ...;$$

$$\gamma(x) = (M_{p_k}^{-1} * \omega)(x), \quad x \in [r_k + 1, r_{k+1}), \quad k = 2, 3, ...$$

In the same way, by using the function ω_1 , $\omega_1 \in C_0^{\infty}$, $\omega_1 \ge 0$, supp $\omega_1 \subset [-1, 0]$, $\int_{-1}^{0} \omega_1(x) dx = 1$, we construct the function γ on the intervals $(-r_2, -r_1]$, $(-r_k - 1, -r_k]$, $(-r_{k+1}, -r_k - 1]$, $k = 2, 3, \ldots$ We define the function γ on the interval $(-r_1, r_1)$ to be smooth, non-negative and to vanish on $(-\alpha, \alpha)$.

Since γ satisfies condition (b) by construction, we shall show that γ satisfies (a).

For a fixed $s \in N$ and $i \le s$, on the intervals $[r_k + 1, r_{k+1}), k = 2, 3, ...$, we have

$$|M_{s}(x)\gamma^{(i)}(x)| \leq M_{s}(x)|M_{p_{k}}^{-1} * \omega^{(i)}(x)| \leq M_{s}(x)M_{p_{k}}^{-1}(x-1)\int_{0}^{1}|\omega^{(i)}(x)| dx$$

$$\leq C_{i}M_{s}(x)M_{p_{k-1}}^{-1}(x), \quad \text{where } C_{i} = \int_{0}^{1}|\omega^{(i)}(x)| dx,$$

and on the intervals $[r_k, r_k+1)$, k=3, 4, ..., we have

$$\begin{split} M_{s}(x)|\gamma^{(i)}(x)| &\leq M_{s}(x) \left(\sum_{j=0}^{i} \binom{i}{j} | (M_{p_{k-1}}^{-1} * \omega^{(i-j)})(x)| \, |\varphi^{(j)}(x-r_{k})| + \\ &+ \sum_{j=0}^{i} \binom{i}{j} | (M_{p_{k}}^{-1} * \omega^{(i-j)})(x)| \, |(1-\varphi(x-r_{k}))^{(j)}| \, \right) \\ &\leq M_{s}(x) \left(\sum_{i=0}^{i} \binom{i}{j} C_{i-j} D_{j} M_{p_{k-2}}^{-1}(x) + \sum_{i=0}^{i} \binom{i}{j} C_{i-j} D_{j} M_{p_{k-1}}^{-1}(x) \right), \end{split}$$

where $D_j = \sup \{ |\varphi^{(j)}(x)|; x \in [0, 1] \}.$

Similar inequalities hold for $x \in (-r_{k+1}, -r_k-1]$, k = 2, 3, ..., and $x \in (-r_k-1, -r_k]$, k = 3, 4, ...

These inequalities imply $\gamma \in \mathcal{K} \{M_p\}$.

Remark. For the investigations of non-negative generalized functions from $\mathcal{K}'\{M_p\}$ the following conditions on the sequence M_p are assumed in [3], p. 147:

- (a) condition (1);
- (b) the M_p , $p \in N$, are infinitely differentiable outside some neighbourhood of zero (the same for all p) and are nowhere infinite;

(c) for any $p \in N$ there are numbers q(p), a_p and C_p such that if $x \ge a_p$ and k = 0, 1, ..., p, then

$$|(1/M_{q(p)}(x))^{(k)}| \leq C_p/M_p(x).$$

These conditions directly imply that there exists a function σ from $\mathcal{K}\{M_p\}$ such that $\sigma(x) = 1/M_{q(p)}(x)$ for $r_p + 1 \le x \le r_{p+1}$, where r_p is a sequence of positive numbers such that $r_p > a_p$ and $r_{p+1} > r_p + 1$, $p \in \mathbb{N}$. The proof of this assertion is the same as the proof of Lemma 1 in [6].

Lemma 2 directly implies:

LEMMA 3 (9). If $f \in L^1_{loc}$, $f \notin (\mathcal{K}'\{M_p\})_r$, then there exists a non-negative function $\gamma \in \mathcal{K}\{M_p\}$ such that $f\gamma \notin L^1$.

Proof. See [6], the proof of Lemma 2.

Following [6], we define Λ to be the set of locally integrable functions f such that for some $p \in \mathbb{N}$, $f M_p^{-1} \in L^1$.

If for some x, $M_p(x) = \infty$, then we take $1/M_p(x) = 0$.

Also, we denote by $\mathcal{K}\{M_p\}_{\infty}$ the vector space of functions f defined almost everywhere on R for which the countably many norms

$$q_k(f) := \operatorname{ess sup} \{ M_k(x) | f(x) |; \ x \in \mathbb{R} \}, \quad k \in \mathbb{N},$$

are all finite; we equip this space with the topology defined by this sequence of seminorms. Clearly, $\mathcal{K}\{M_p\}_{\infty} \subset L^1_{loc}$.

If $\sigma \in \mathcal{K}\{M_n\}$ and $f \in \Lambda$ then

$$f(x)\sigma(x) \leq (f(x)/M_{p}(x))(\sigma(x)M_{p}(x))$$

almost everywhere on R. Using this fact we obtain the following characterization of the space $(\mathcal{K}'\{M_p\})_r$:

THEOREM 2. (10). Let $f \in L^1_{loc}$. The following conditions are equivalent:

- (i) $f \in (\mathcal{K}'\{M_p\})_r$;
- (ii) $f \in \Lambda$;
- (iii) $\mathscr{K}\{M_p\}\ni\theta\mapsto f\theta\in L^1$;
- (iv) $\mathscr{K}\{M_p\}_{\infty}\ni\theta\mapsto f\theta\in L^1$;
- (v) mapping (iv) is continuous.

Proof. See [6], the proof of Theorem 1.

We shall give one more useful characterization of the space $(\mathcal{K}'\{M_p\})_r$. But one more assumption has to be made. First we introduce the following notion:

A function $f \in L^1_{loc}$ is called an M_p -function iff there exists $k \in N$ such that $fM_k^{-1} \in L^{\infty}$, where L^{∞} is the space of measurable essentially bounded functions on R.

⁽⁹⁾ See [6], Lemma 2.

⁽¹⁰⁾ See [6], Theorem 1.

THEOREM 3. If a sequence M_p satisfies conditions (1)–(5), (N)₁ and the following one:

 $(N)_2$ (11) for every $p \in N$ there exists $p' \in N$ such that

$$M_p(x) M_{p'}^{-1}(x) \rightarrow 0$$
 as $|x| \rightarrow \infty$,

then for $f \in L^1_{loc}$ the following conditions are equivalent:

- (i) $f \in (\mathcal{K}'\{M_p\})_r$;
- (ii) The function $x \mapsto \int_{0}^{x} |f(t)| dt$, $x \in \mathbb{R}$, is an M_{p} -function.

Proof. (i) \Rightarrow (ii). Let $f \in (\mathcal{K}'\{M_p\})_r$ and let A > 0 be such that

$$\int_{\mathbf{R}} |f(t)/M_p(t)| dt \leqslant A.$$

For $|x| > \alpha$ and for suitable C_1 and C_2 we have

$$\begin{aligned} \left| \int_{0}^{x} |f(t)| \, dt \right| &\leq \left| \int_{0}^{a} |f(t)| \, dt \right| + \left| \int_{a}^{x} |f(t)| \, dt \right| \leq C_{1} \left(1 + M_{p}(x) \left| \int_{a}^{x} |f(t)| \, M_{p}^{-1}(t) \, dt \right| \right) \\ &\leq C_{1} \left(1 + M_{p}(x) A \right) \leq C_{2} M_{p}(x). \end{aligned}$$

This implies the assertion.

(ii) \Rightarrow (i). Let us suppose that $F(x) = \int_{0}^{x} |f(t)| dt$ is an M_p -function, i.e., $FM_r^{-1} \in L^{\infty}$ for some $r \in N$. Let $r' \in N$ be the number corresponding to r in (N)₁, and r'' the number corresponding to r' in condition (5).

We define a function $x \mapsto N_{r''}(x)$ by

$$N_{r''}(x) = (M_{r''}^{-1} * \omega)(x), \quad x > X_{r''} + 1, \quad \text{and}$$

 $N_{r''}(x) = (M_{r''}^{-1} * \omega)(x), \quad x < -X_{r''} - 1 \ (^{12}).$

Let $a > X_{r''} + 1$. From $M_{r''}^{-1}(x) = \int_{0}^{1} M_{r''}^{-1}(x) \omega(t) dt \leq \int_{0}^{1} M_{r''}^{-1}(x-t) \omega(t) dt$ we obtain $M_{r''}^{-1}(x) \leq N_{r''}(x)$ if $x \geq a$. Similarly one can prove that $M_{r''}^{-1}(x) \leq N_{r''}(x)$ if $x \leq -a$.

Since $N'_{r''}(x) = (M_{r''}^{-1} * \omega')(x)$, $x \ge a$ and $N'_{r''}(x) = (M_{r''}^{-1} * \omega'_1)(x)$, $x \le -a$, we obtain for some C > 0

$$|N'_{\bullet''}(x)| \leq CM_{\bullet''}^{-1}(x-1), \quad x \geq a$$

and
$$|N'_{r''}(x)| \leq CM_{r''}^{-1}(x+1), \quad x \leq -a$$
.

We will prove that $fM_{\star}^{-1} \in L^{1}$. Since

$$|f(x)|/M_{r''}(x) \le |f(x)|N_{r''}(x)$$
 for $|x| \ge a$

⁽¹¹⁾ Condition (N), and (N)₂ together constitute condition (N) from [1], p. 111.

⁽¹²⁾ ω and ω_1 are introduced in the proof of Lemma 2 and $X_{r''}$ is from (5).

and $f \in L^1_{loc}$, it is enough to prove that

$$\lim_{A \to \infty} \int_{a}^{A} |f(x)| N_{r''}(x) dx \quad \text{and} \quad \lim_{A \to -\infty} \int_{A}^{-a} |f(x)| N_{r''}(x) dx$$

exist. This will imply that

$$\int_{a}^{\infty} |f(x)| N_{r''}(x) dx < \infty, \qquad \int_{-\infty}^{-a} |f(x)| N_{r''}(x) < \infty$$

and that $fM_{r'}^{-1} \in L^1$.

Condition (N)₂ implies that $F(A) N_{r''}(A) \rightarrow 0$ as $A \rightarrow \infty$. Thus

$$\lim_{A\to\infty}\int_a^A|f(x)|\,N_{r''}(x)\,dx=-F(a)\,N_{r''}(a)-\lim_{A\to\infty}\int_a^AF(x)\,N_{r''}'(x)\,dx.$$

The last limit exists because

$$\left| \int_{a}^{\infty} F(x) N'_{r''}(x) dx \right| \leq \int_{a}^{\pi} F(x) |N'_{r''}(x)| dx \leq C \int_{a}^{\infty} F(x) M_{r''}^{-1}(x-1) dx$$

$$\leq C \operatorname{ess sup}_{x \in R} \{ |F(x)| M_{r}(x) \} \int_{a}^{\infty} M_{r}(x) M_{r'}^{-1}(x) dx < \infty.$$

Similarly one can prove that $\lim_{A \to -\infty} \int_{A}^{-a} |f(x)| N_{r''}(x) dx$ exists. This completes the proof.

Remark. If f is an M_p -function, then $\int_0^x |f(t)| dt$, $x \in \mathbb{R}$, is also an M_p -function. We shall prove it.

Let $fM_r^{-1} \in L^{\infty}$ and r' be the natural number corresponding to r in $(N)_1$. If $Y = \mathbb{R} \setminus (-\alpha, \alpha)$ we have

$$\int_{Y} |f(t)/M_{r'}(t)| dt \leq \operatorname{ess sup}_{x \in \mathbb{R}} \{ |f(x)| M_{r}^{-1}(x) \} \int_{\mathbb{R}} M_{r}(t) M_{r'}^{-1}(t) dt.$$

Thus $f \in (\mathcal{K}'\{M_p\})_r$ and Theorem 3 implies the assertion.

Examples 1. The space \mathcal{S}'' is generated by the sequence $x \mapsto M_p(x) = (1+|x|)^p$, $p \in \mathbb{N}$, which satisfies conditions (1)–(5) and (N) (13).

- 2. The space \mathcal{K}'_r , $r \ge 1$, investigated in [4] and [7] is generated by the sequence $x \mapsto M_p(x) = \exp(p|x|^r)$, $p \in N$. This sequence satisfies conditions (1)–(5) and (N).
- 3. The space $W_{M,a}$, $a \in \mathbb{R}$, where $x \mapsto M(x)$, $x \in \mathbb{R}$, is a convex function defined in [2], Chapter 1, investigated in [2], is generated by the sequence $x \mapsto M_p(x) = M(a(1-1/p)x)$, $p \in \mathbb{N}$. This sequence satisfies (1)-(5) and (N).

⁽¹³⁾ See (11).

4. The space proj $W_{M,1/q}^q$, where $x \mapsto M(x)$, $x \in \mathbb{R}$, is a convex function as in 3, and $W_{M,A}^q$, $q \in \mathbb{N}$, A > 0, is the space defined in [8], p. 330, is generated by the sequence $x \mapsto M_p(x) = M(px)$ which also satisfies (1)–(5) and (N).

References

- [1] I. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. 2; Spaces of Fundamental and Generalized Functions, Academic Press (1968).
- [2] -, -, Generalized Functions, Vol. 3; Theory of Differential Equations, Academic Press (1967).
- [3] I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4; Applications of Harmonic Analysis, Academic Press (1964).
- [4] G. Sampson and Z. Zieleźny, Hypoelliptic Convolution Equations in \mathcal{K}_p , p > 1, Trans. Amer. Math. Soc. 223 (1976), 133–154.
- [5] Z. Szmydt, Fourier transformation and linear differential equations, PWN, Warszawa 1977, Reidel Publ. Company, Dordrecht, Holland.
- [6] -, Characterization of regular tempered distributions, Ann. Polon. Math. 41 (1983), 255-258
- [7] S. Sznajder and Z. Zieleżny, Solvability of Convolution Equations in \mathcal{K}_1 , Proc. Amer. Math. Soc. 57 (1976), 103-106.
- [8] J. Wloka, Über die Gurevič-Hörmanderschen Distributionsräume, Math. Ann. 160 (1965), 321-362.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF NOVI SAD YUGOSLAVIA

Reçu par la Rédaction le 1984.07.02