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On regular ¥ {Mp}-distributions

by Stevan PiLirovi¢c (Novi Sad, Yugoslavia)

Abstract. The characterizations of regular tempered distributions given by Z. Szmydt [6]
are generalized to the characterizations of regular ¥~ {M,}-distributions, where M, is a sequence
of functions which satisfies suitable conditions. For a class of these spaces a new characterization
of regular " {M,}-distributions is given which implies, in particular, a new characterization of
regular tempered distributions.

Basic notions. Spaces of " {M,}-type are introduced and investigated in
[1]. Here we shall quote the definition of these spaces and some of their
properties.

Let x —»M (x), pe N, be real-valued functions defined on R (N is the set
of natural numbers and R the set of real numbers) which satisfy the following
conditions:

(1) lsMp(x)sMp+l(x)7 pEN’ xeR;
(2) For any fixed xe R there are only two possible cases:
M, (x)=0 forall p or M,(x) <o for all p;

(3) M, is continuous with respect to x at any x, where the function is
finite. The set of points x for which M,(x) = oo is contained in the
interval (—a, a), & < 00;

(N); (") For every peN, there is p'e N, p' > p, such that M, M, 'e L' (?.

Given such a system of functions M,, we denote by # {M,} the set of’ all
infinitely differentiable (smooth) functions x—@(x), xe R, for which the
countably many norms

llily :=sup {M,(x)|¢(x)|; ¢ < p, xe R}

are all finite.

(") This condition is a part of condition (N) in [1]}, p. 111.
(}) L' is the space of Lebesgue integrable function on R. If M,(x) = M, (x) = oo we set
M,(x)M ;' (x) = 0.
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It was shown in [1], p. 28, that ¢ {M,} is a complete countably
normed space.

The space of all continuous linear functionals on ¢ {M,} is denoted by
A {M,}.

If all the functions M,(x), pe N, are finite on R and if the following
condition holds:

(P) For every pe N and ¢ > O there are p'e NV, p' > p, and k > 0 such
that if [x] > k or M,(x) > k. then M,(x) <&M, (x)(),

then ([1], Chapter II 2.5) the Schwartz space & is a dense subspace of
A (M.} and the identity mapping i: ¥ — X" {M,} is continuous. In this case
the space X" {M,] can be identified with a subspace of the space &’ of
Schwartz distributions.

Elements of »” {M,} will be called X" {M }-distributions.

Clearly, any subsequence of a sequence M, generates the same space of
test functions.

We denote by L._the space of locally Lebesgue integrable functions and
identify every complex-valued function ue L}_ with the distribution defined
by

u, 9> = [u(x)p(x)dx, ¢@eCq.
R

Following [6], we say that a " {M}-distribution u is regular if there
exists a function ue L such that upe L' for every pe ¥ {M,} and

W, ) = [u(x)p(x)dx.
R

The set of all regular #” {M,}-distributions will be denoted by (X" {M,}),.

Remark. In this paper, [unctions and distributions are defined on R.
With suitable technical changes all results of this paper can be formulated
with R" instead of R.

Function which generates a non-regular " { M }-distribution. We assume
that a sequence M, satisfies conditions (1)+3) and (N),.

Observe that those conditions imply that constant functions define
regular " {M}-distributions.

LemMma 1. Let r,, ke N, be a sequence of positive integers such that
ry>a+2(*), resq >rct+3, keN, and let g, = max {M,(x); xe[r,—1, r,+2]}.
If QeCf, 0<Q2<1, suppQc[-1,1], and weC§, O0<w<],

) If M, is finite on R, then (P) is equivalent to lim M,(x)/M, (x) =0. The last

x|~
condition is stated in Theorem 3 as (N),.
() See (3.



Regular X" {Mp)-distributions 33

1
supp w < [0, 1], fw(t)dt =1, then the function
(o]

@®

1
yx)= 3 ;(Q(t—rk)*w(t))(x)

k=1%k

is a non-negative function from X M } with unbounded support, where
(Qt—r)*o®))(x) = jQ x—t—r)w(t)dt.

Proof. We only have to prove that y e ¥ {M,}. For given p,e N and
J< po
sup {WY (x)| M, (x)}

xeR
1

1
< sup {a -max {M, (x); xe[r,—1, rk+2]} jlw‘”(f)l dt}.
keN k

0

Since max ’Mpo(x) xe[rn—1, rn+2]} <aq for k> p,, we obtain

sup WP (x) M, (x)} <o, Jj<po.

Let f be a non-negative continuous function equal to zero for x <a
such that '
Sy ()¢l

where Y is from Lemma 1. We define a function F by

= }f(t)dt, xeR.
0

THEOREM 1. The function

iF(x)
b

XI—bA(x)=—e XER,

dx
defines a A" {M}-distribution by
o — [efP o' (x)dx, @eX {M,}.

This X" {M}-distribution is not regular.
Proof. Let ¢ be a function from Lemma 1. Since |4(x)| = f(x) we have

Ay ¢ L.
If we suppose that lim M,(x) = co, pe N(°), then one can prove that

|x] =0

iF(x)

k
lim [ if (x)eF?o(x)dx = — [P ' (x)dx.
R

k= —k

(®) In this case il @e ¥ {M,} and |x| — 0, then @(x)— 0.

3 — Annales Polonici Math. XLVIILI
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Characterizations of the space (" {M,}),. We shall give characteriza-
tions of the space (X" {M,}), when the sequence M, satisfies, besides
conditions (1)H3) and (N),, the following ones:

(4) For every pe N there is Y, such that M, is non-decreasing on (Y,, «)
and non-increasing on (—o0, —Y));

(5) For every peN there are p'e N and X, >0 such that M, (x+1)
M, (x) for x> X, and M,(x—=1) < M, (x) for x < - X,.

We shall always assume that X, > Y,, peN.

First, we shall prove Lemmas 2 and 3 which are analogous to Lemmas
1 and 2 from [6]. From these lemmas characterizations of the space
(X" (M,}), will directly follow. These characterizations will be given in
Theorem 2 and this theorem is analogous to Theorem 1 from [6] (and a
generalization of this theorem).

Observe that condition (5) implies the existence of a sequence p, and a
sequence X, such that

M, (x+1 )< M
M, (x—-1)< M

) psq (X)) for xe(X,, o) and
m+1(x) for xe(—oo ka)'

LemMA 2. Let M, be a sequence of functions which satisfies the above
conditions and let r, be a sequence of positive numbers such that r; > a+ 1,
a1 >n+land r,> X, , keN (%).

There exists a smooth non-negative function x+y(x), xe R, such that:
(@) ye A (M,}; .
(b) y(x) = M, ' (x) () for xe{x; n+1<|x| <reyy}, keN.

Proof. Let  be the function used in Lemma 1 and let e C§ be such
that ¢(0) =1, @(1)=0, 0< (1) <1 for te[0, 1], ¢®(0) = ¢® (1) =0 for
ke N and ¢ decreases on [0, 1] (3).

The functions

x—=(M, ! ) jM "x=Nw(t)dt,

xelr, e +11, k=2,3,...,
have the following property:
M, () S (Mp ! +0)(x) S M (x—1) < ML (x),
xelr, i+ +1], k=2,3,...

(®) a is introduced in (3) and Xp,» ke N, in (5).
N oag-1

() M;' = M,

(®) The function ¢ is quoted in [5], p. 154.
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Let us put
y() =My ' *+@)(x), xelry, ra);
Y(0) =M, L *0) () @(x—r)+(M,! x0)(x) (1 —@(x—ry),
xelr, n+l), k=23,..; .
Y0 =Mp!*0)(x), xe[rn+1,n.y), k=23, ...
In the same way, by using the function w,, w,eCg, o, =0,
supp wy; < [—1, 0], [cu,(x)dx—l we construct the function y on the

intervals (—r,, —r,], ( 1, —r.), (—=ris1, —1—11, k=2,3,... We de-
fine the function y on the mterval (—r,, ry) to be smooth, non-negative and
to vanish on (—a, a). ‘
Since y satisfies condition (b) by construction, we shall show that y
satisfies (a).
For a fixed se N and i <s, on the intervals [r,+1,r.4,), k=2,3,.

we have
1

IM(x)y? () < My (x)IM,, ! 0 (x) < M, (x) M, " (x—1) [l (x)| dx

SCGM(x)M,! (x), where C; = [lo®(x) dx,

and on the intervals [r,, r,+1), k =3,4, ..., we have

M@ <M (3 (.

j=0M

N AR (e )
j=0"J

)I(M;.‘_ L+ @) ()| (x—r)l +

< Ms(x)(z (

')C,»_,-D M, ()+ Z ( )c, ;DML l(x)),

=0 j=0 N

where D; = sup {|o" (x)|; xe[0, 1]}.

Similar inequalities hold for xe(—r,4y, —r—1], k=2,3, ..., and xe
(=re—1, —nrJ, k=3,4, ...

These inequalities imply ye X {M}.

Remark. For the investigations of non-negative generalized functions
from X" {M,} the following conditions on the sequence M, are assumed in
[3], p. 147:

(a) condition (1);

(b) the M, pe N, are infinitely differentiable outside some neighbourhood
of zerp (the same for all p) and are nowhere infinite;



36 S. Pilipovi¢

(c) for any pe N there are numbers q(p), a, and C, such that if x > q,
and k=0, 1, ..., p, then

|(1/Mq(p) (x))(k)l < Cp/M,(x).

These conditions directly imply that there exists a function ¢ from
A {M_,} such that o(x) =1/M,,(x) for r,+1<x<r,,,, where r, is a
sequence of positive numbers such that r, >a, and r,,; >r,+1, pe N. The
proof of this assertion is the same as the proof of Lemma 1 in [6].

Lemma 2 directly imples:

Lemma 3 (°). If feLy., f¢(A"{M,}),, then there exists a non-negative
function ye A {M,} such that fy¢L'.

Proof. See [6], the proof of Lemma 2.

Following [6], we define A to be the set of locally integrable functions f
such that for some peN, fM,'eL".

If for some x, M,(x) = oo, then we take 1/M,(x) = 0.

Also, we denote by X {M,}, the vector space of functions f defined
almost everywhere on R for which the countably many norms

g (f):=ess sup {M,(x)|f (x)}; xeR}, keN,

are all finite; we equip this space with the topology defined by this sequence
of seminorms. Clearly, ¥ {M,}, = L.
If e X {M,} and feA then

f(¥)a(x) < (f )M, (x)) (o (x) M (x))
almost everywhere on R. Using this fact we obtain the following charac-
terization of the space (X" {M,)}),:

Tueorem 2. (*%). Let feLl.. The following conditions are equivalent:
() fe(H" (M,)),;

(i) fed;

(1m1) f{Mp}aG — f0eL!;

(iv) X (M} o300 fBeL!;

(v) mapping (iv) is continuous.

Proof. See [6], the proof of Theorem 1.

We shall give one more useful characterization of the space (X" {M,}),.
But one more assumption has to be made. First we introduce the following
notion: .

A function fe L), is called an M ,-function iff there exists ke N such that
fM_ e L™, where L® is the space of measurable essentially bounded func-
tions on R..

(°) See [6), Lemma 2.
(*9) See [6], Theorem 1.
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TheoreM 3. If a sequence M, satisfies conditions (1)H5), (N), and the
following one:

(N), (*1) for every pe N there exists p'e N such that
M,(x)M,'(x) =0 as |x| - o,

then for felLl. the following conditions are equivalent:

(i) fe(AH"{M}),;

(i) The function x— [|f(t)dt, xR, is an M ,-function.

(]
Proof. (i)=(ii). Let fe(X#"{M,}), and let 4 >0 be such that
IS /M)de < A.
R

For |x| > « and for suitable C; and C, we have
If1/ (0)idt| < |f1f (@ de|+|)1f 0N dt| < Cy (1+M,(x)|fIf () M, ' (1) dt])
0 0 a a

SC(1+M,(x)4) < C, M, ().

This implies the assertion.

(i) = (i). Let us suppose that F(x) = jlf(t)l dt is an M -function, ie,
0

FM, 'e L™ for some re N. Let ¥e N be the number corresponding to r in
(N),, and r” the number corresponding to r' in condition (5).
We define a function x+—N,.(x) by

N,.(x) = (M +w)(x), x>X,.+1, and
Nr”(x) = (Mr_”l *O))(X), x < _Xr"_l (12)'

1 1
Let a> X,.+1. From M;!'(x) = (M7 ' (x)a()dt < [M; . (x—t)w(t)dt
] 0

we obtain M, .!(x) < N,.(x) if x>a. Similarly one can prove that
M (x) < N, (x) if x< —a.
Since N,.(x)=(M;'+w)(x), x>=a  and N,.(x)=(M;"*w})(x),
x < —a, we obtain for some C >0
INJ (0] < CM, ' (x=1), x>a

and  [N..(0)] < CM;'(x+1), x< —a.
We will prove that fM, 'eL'. Since

Lf CN/M, () < |f(X)| N, (x)  for |x| > a

(*') Condition (N), and (N), together constitute condition (N) [rom [1], p. t11.
(*!?) v and w, are introduced in the proof of Lemma 2 and X,. is from (5).
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and fell, it is enough to prove that

Aljm ]'lf(x)l N,.(x)dx and 4l_l'mw jlf(x)lN (x)dx
exist. This will imply that
(NN, (e <0, [ 1 (N9 <
and that fM 'el'.
Condition (N), implies that F(A)N,.(4)— 0 as A — co. Thus

A A
lim [If (9| N, (x)dx = —F(@) N,.(@)— lim [F(x) N} (x)dx.

A—-wm g A—-® g

The last limit exists because

|1 F () N (x)dx| < | F(x)|N,. (%) dx < C [F(x)M 1 (x—1)dx
< C ess sup {|F (x)| M, (x)} jM,(x) M (x)dx < oo.
xeR a :

Similarly one can prove that lim | |f(x)| N, (x)dx exists. This com-
A—-—x 4

pletes the proof.

Remark. If f is an Mfunction, then [|f(t)|dt, xeR, is also an M-
o

function. We shall prove it.
Let fM; 'e L™ and r be the natural number corresponding to r in (N),.
If Y =R\(—a, a) we have

[1f (/M. (1) dt < ess sup {f N M7 (%)} [ M, () My (1) de.
Y xe R

Thus fe(X”{M,}), and Theorem 3 implies the assertion.

ExampLEs 1. The space " is generated by the sequence x+— M (x) =
(14]x])”, pe N, which satisfies conditions (1)+(5) and (N) ('?).

2. The space X, r > 1, investigated in [4] and [7] is generated by the
sequence x — M, (x) = exp(p[xl’), pe N. This sequence satisfies conditions (1)~
(5) and (N).

3. The space Wy ,, ac R, where x+—M(x), xeR, is a convex function
defined in [2], Chapter 1, investigated in [2], is generated by the sequence
x+—M,(x) = M(a(l—1/p)x), pe N. This sequence satisfies (1}«5) and (N).

(IJ) See (ll)‘
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4. The space proj Wy ,/,, where x —M (x), xe R, is a convex function as

g~ x

in 3, and Wy 4, qe N, A > 0, is the space defined in [8], p. 330, is generated
by the sequence x M ,(x) = M(px) which also satisfies (1}{5) and (N).

Ry
(2]
(3]
(4]
(5]
(el
(71
(8]
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