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MINIMAX CONTROL OF A SYSTEM
WHICH CANNOT BE OBSERVED WITHOUT ERROR

0. Imtroduction. The paper is devoted to the problem of minimax control
in the sense determined in [6]. It deals with the discrete-time linear stochastic
system with additive disturbances the distributions of which depend on an
unknown parameter. Various problems of minimax control of such a system
are solved under the assumption that the states of the system are exactly
observed (see [4]-[6]). In this paper it is assumed that the system cannot be
observed without error. This additional difficulty causes that the assumptions
about the disturbances are less general than the ones in the quoted papers.

The problem considered in the paper is exactly formulated in Section 1.
The Bayes and the minimax control strategies are found in Sections 2 and 3,
respectively. The results of both these sections are obtained under the
assumption that the distribution of the initial state is given. The problem of
minimax control when the initial state has a distribution depending on an
unknown parameter is considered in Section 4.

Another approach to minimax control and other systems are considered,

e.g, in [1]-[3].

1. Let us consider a discrete-time linear stochastic system defined by the
equations

(1) X,p=0X,tou,+v,V,, n=0,1,...,

where X, is a state variable, u, is a control, w, is a random actuation error
which is introduced into the system by exercising control, V,, V,,... are
random disturbances, and «,, 7, are given constants. We assume that the initial
state X, is a random variable having a normal distribution with mean m, and
variance g2. We denote this distribution by N (m,, g3).

We deal with the problem of control of such a system when we cannot
observe it exactly. Specifically, we assume that we observe a process
V., Y. o), n=0,1,..., where ' '
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(2) Y, =eX,+Z,

with ¢, being a given constant, Z, being a random variable having the
distribution N(0,07), o5 being known. It may also be true that ¢, # 0 and
o? = 0 for some value of n. The state X, at this stage can be observed exactly.

We assume that, for every n, w, has the distribution N (u,,, v2) and that
Vo, Vi, ... 18 a sequence of identically, normally distributed random variables
having the density

1
(3) S(/d) = —=cexp [
J

_(v—iq)z:l
2ng ’

2g

where g > 0 is a given constant, whereas A is an unknown parameter.
Let N denote the horizon of control. The horizon is assumed to be
a random variable with the distribution

M
PIN=k=p, k=0,1,...,M,py>0, ) p,=1.
k=0

We assume that the random variables N, X,, V,, @,, Z,(n =0, 1, ...) are
independent. _ . .
- The following data ‘are available at the time n:

Vn-.l:(VO,---a Vn-l), Y"—lz(YO""’ Yn—l)’ wnhl-_—(wo""’w”_l)’
Uﬂ“l = (uo, “eey u"__l).

For convenience we denote the vector (V" 1, Y"1, o"" !, U" 1) by W™

We assume that the control u, is a Borel function of W™ Let u,, ..., u,, be
the controls. The vector U = (uy, ..., u,,) is called a control strategy. For the
given control strategy U we define the risk function as follows:

4) R(A,U)=E, {Ellzv: [(X;, 4, ) AD (X, A, )"+ ku?]}

N .
9_-5 EPE}- Z Li(X;‘s 2':'ui)p
i=0

where E_ () denotes the expectation with. respect to the distribution of the
random variable N, E,() denotes the expectation with respect to the
distributions of the random variables X, w,, ¥, (n=0,..., M) when A is
a fixed parameter of density (3), A = [a}];,5,i =0, ..., M, are nonnegative
definite matrices, af} > 0, k, > 0.

For the prior distribution = of the parameter A and for the control strategy
'U we define a Bayes risk connected with = and U as follows:

r(z,U)=E,R(A,U),
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Where E_()) denotes the expectation with respect to the distribution 7. The
Bayes risk is here the cost of control.

 Acontrol strategy U * is called a Bayes control strategy (with respect to the
distribution ) if

r(n,U*) = inf r(n,U), -

Uedy

}Vhere 4, is the class of control strategies U for which r(x, U) exists, maybe
Infinite.

We sometimes have the information that nel’, where I’ is a known
Subclass of the class of all prior distributions of A. Let us denote the class of
Control strategies U for which r(n, U) exists for each nel” by 4,. A strategy
U is called a minimax control strategy with respect to I', I'MCS, if

supr(n,U) = inf supr(x, U).
nel Uedp mel

Our principal aim in this paper is to find I’ MCS under the assumption
thi}t I is the class of the prior distributions of the parameter 4 which have
Uniformly bounded second moments.

It is well known from decision theory that the minimax decisions are very
often found among the Bayes or extended Bayes decisions. Thus, in the next
Sec_tion we shall find the Bayes control strategies with respect to the conjugate
Prior distributions. '

_ 2 Let us suppose that the parameter A of density (3) has the prior
distribution ng, with the density

_ 2
(5) g, B,1r) = \/%exp[:—g(l—%) ],

V‘fhere B and r are real constants, # > 0. It is well known that then the posterior
distribution of the parameter 4 has the density

(6) gA/vr 1) =g @, Bp )

Where

0 B, = B+ng, r,,=r+nilV,-.
i=0

It is easy to verify that the conditional distribution of the random variable
V. given the vector ¥"~! has the density

® f(u/vn-1)=\/2—n—f—;—;exp[‘z%:(”""%) ]

Note that g(1/W") = g(4/V*~1) and f(o/W") = f(o/V""").
Since the distribution of the initial state X o 1s assumed to be a normal one
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and since each of the random variables V,,w,,Z, (n =0, 1, ...) has a normal
distribution, it can be seen that the conditional distribution of X, given W" at
each stage is again a normal distribution. We consider now the manner in
which this distribution (its mean and variance) changes from one stage of the
system to another.

We have already assumed that the distribution of X, is N (m,,g3). For
n=1,...,M let us denote the mean and variance of the conditional
distribution of X, given W", by m, and g2, respectively. Forn =0, 1, ..., M it
follows from (2) that after the value of Y, has been observed, the conditional
distribution of X,, given (W™, Y,), is a normal distribution for which the mean
m, and the variance g2 are as follows:

__oam,+gie,Y,

9) Coom, = 8292+0'2 == bnmn+tnY:| ’ gr% = b,,g,%.

Suppose now, for a given value of n(n =0, ..., M), that the conditional
distribution of X,, given (W", Y,), is a normal distribution with mean i, and
variance 2. By (1) it can be seen that for any choice of the control value u,, the
next state X,,, has a normal distribution for which the mean m,, , and the
variance g2,, are

(IO) mn+1 = anmn+wnun+'},nv;n gr%-(—l = ar%gr?

Thus the conditional distribution of X,, given W"(n = 1, ..., M), has the
density

T g;

where the values of the mean m, and the variance g2 can be calculated with the
help of (9) and (10) with the initial condition given by the known constants my,
and g3. Note that the variance g2 changes in a deterministic way from one
stage to another because neither the values of the observations nor the values
chosen for the controls affect the variance.

Using (5)}{11) the following conditional expectations can be calculated:

(11) h(x/W") = \/21 exp [—2;3 (x—m.,)z],

rﬂ
E(mn+ I/Wnsun) = anmn+:un1un+ynqﬂ—’
2 ’
E(mn+ l/W"’ un) = ar%mf +#n2ur% +?§42 B%"'zanl"'nlmnun
r r ‘
+ 27y qu, o+ 2au?nqmn—5+v3qh+ Or G tns
ﬂn i n BN
(12) B/ W) = o 1

B2, /W) = p2, 7 4 g Prr1
n ’ n+13 q ,8 ’
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r,
E (mn+ 1rn+ 1/Wn’ un) = anﬂn+ lmnﬁ_

n

rn
+:un1Bn+ 1unﬁ_

n

B a
+’an '1B+1+anﬂn+1ﬁ25

where E(/)-—E,: JE (1), pz = pay+v7, and ¢, is given in (9).

Now we shall look for the Bayes control strategy with respect to the
distribution given by (5). Let us suppose that we are at the n-th stage and we
start to control our system. Let us consider the problem of Bayes control in
such a case. At this moment the data W™ are known and the Bayes risk for this
Problem is the following:

ry(ns,,U,) =E,{E [i L;(X;,4,u): W'/N = n},

Where U, = (u,, ..., u,,). This risk can be transformed to the form (see [4])

M
(13) ry(mg,, Uy = E[Z %Li (X,-,A,ui)/W”],
Where i=n'‘n
M
= z p;-
i=k

It is easy to verify that for n = M we obtain
1

r
rM (nﬂ,rs UM) =Ty (75,3,.-, uM) = LM (mM, ﬁ_lu', UM) +a(M)gM+a§M’ﬁM
M

It can also be seen that u,, = 0 minimizes the above expression.

For n=0,1,..., M we denote infr,(zn,,, U,) by x,(m,). The infimum is
Un

taken over all control strategies U, for which the risk 7, (mg,,U,) exists.
With the help of dynamic programming methods we obtain the following
ellman equation for our problem:

(14) .(m) = me[z LL (Xl,l,ut)/W"]

i=h'"n

=infE{_L,,(X,,,,1,u,,)+E( f %Li(Xi,A,u,-)/W"“)]/W"}
v, WL i=n+17n

= infE{ L,(X,,Au,)
|

PR LE RN, E( § l Li(X,-,l,u,.)/W"“)]/W"}

Ny Upsr i=n+1Tn+1

= inf{E [L.(X,, A, u)/ W] +n—';:—lE[x,,+l(m..+ 1)/W”]},
n=0,1,..., M—1.

n
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Using (8), (11) and (14) we obtain

19 om =L, (mn,ﬁ’i,un)+aa"zgn rash

+5';f~‘E[x,,+1(mm)/W"], n=0,1,.., M—1.

It follows from the above considerations, in view of Bellman’s optimality
principle, that the control strategy U* = (uf, ..., ul) is the Bayes one if u}; =
and for the controls u¥, n = 0,1, ..., M —1, the right-hand side of (15) reaches
its minimum. Hence it results that for n=0,1,..., M—1 the following
equation determines the Bayes controls:

0 m,
(16) 2knu:‘ + au 71'+ lE [%n+1 (mn+ 1)/wn] !u,,=u:; = 0

We shall show that x,(m,) is of the following form:

ra T
+C,n+2D,m,+2E, " +F,.
n

(17) o () = A,mZ+2B,m, 7

B,
For n = M the formula (17) holds with

M M M M M
AM - (1(11), BM = a(12)’ CM = ag )v DM a(13)a EM = a(2 )’

(18) F, = ag, +—1—a‘M’+a‘M’
By
Assuming (17) to be true for n+1 and using (12) we obtain
i
(19) au n+1 (mn + 1)/Wn] = 2An+ I”’nZun + 2An+ la‘nﬂ'nlmn

+2An+1?ntun1qﬁ +23u+1nun1ﬁ +2Dn+15un1'

Note that we can use the formulae (12) in order to obtain (19), because
E(/W") = E(/W",f(W") for every Borel function f(-). This fact will also be
used in further considerations.

From (16) and (19) we infer that the optimal value u¥ of the control is
given by :

(20) . u: _ Tyt 1An+ 1%ty mn—'ﬂ,,_,_l (A”+ 1y"q+Bn+l)aun1 2‘_
nk.+m,, 14n+ 1Hn2 Tkt Ty 1Aps 1By B
Tt 1Dn 4 10y r,
— = ——an"—H"—-——T"‘_
Tokn+ 1, 1A4n+ 1l B.

Note that the constants P,, H, and T, are independent of f.
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If in the formula (15) we set u, = u¥, then, using the inductive assumption
and (12), we obtain

r 1 T
21) ) = L, (m g2 ) i + a2 (2

2
2
+ Uatih? +y2q% =+ 2004, Mk + 29,0, qui
n

"n

B,

In

B,

2
+ ar?gl%sntn +'Yr2|q Eﬁ&) ¥ 2Bn+ 1 (anmn_r_"_ + y’nlu: IE_ + '}’an%
B, i B. "B

q q

2 r
+7,,—B—)+Cn+ 1 (ﬂ_ﬁ +BB—+—1)+2D;.+ 1 (anmn"“ﬂu”: +7Vd ﬁ)

rﬂ
+2E,+1-}+F,.+1].

Substituting the right-hand side of (20) for u¥ in (21) we see that 3, (m,)
takes the form (17) with coefficients given by the following recursive formulae:

An = a(ln} +dnAn+ la'%Gn’
B, = af}+d,0,0,G,,
Cn = a(zn-'}- +du (Cn+ 1 + QnKn + yann+ l)a

+ 20, y,9m,

(22) Dn = a(1"1)"+ann+1anGn’

En = agl%+dn(Dn+iKn+En+1)’

1.
Fn = a(lrligr%+aggﬁ_+agg+dn[B£(An+1y§ﬂn+l+28n+1?n
1
+Cn+1_—)+An+1ar%gr%8ntn—Dn+ lnun1+Fn+l]’
ﬁn-l—l

Where

T k,+d A . v:

d=n+l, Gzn nu+1n, K="—,,H,,,
" ﬂ:” " kn+dnAn+1)u'n2 " 5 q g '

Qn = An+ 174 +'Bgl+1 .

The proof of the following theorem is now completed.

THEOREM 1. Let us consider the linear stochastic system described by (1)
and (2). Assume that

(i) the initial state X, is a random variable having a known distribution
N(my,g2), where m, and g% are given constants;

(i) V,,V,, ... are identically distributed random variables having density
(3) dependent on an unknown parameter A,

(iii) the prior distribution m,, of the parameter is given by (5);
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(iv) the control strategy U* (B, r) = (u§, ..., ul) is defined by

ul =0, ut= —P,,m,,—H,,lgﬂ—r,, n=0,1,..., M—1,
where m,, can be obtained from (9) and (10) with the initial condition given by the
known constant m,, B, and r,, can be obtained from (7), the constants P,, H,, T,
independent of B can be obtained from (20), (22) with the boundary conditions (18).
Then the strategy U*(B,r) is the Bayes control strategy.

3. In this section we deal with the problem of minimax control of the
stochastic system described in Section 1.

Let the class I"; of the prior distributions of the parameter A be defined as
follows: the dlstrlbutlon 7 belongs to Fl iff E A% <%, where » is a given
positive constant. We look for the minimax control strategy with respect to
such a class I';.

First, we consider the case where the parameter A and the control strategy
U are given. Then the distribution of the random variables Vo, ¥, ...is known
and the risk R(A, U) can be calculated. For this purpose we define the
truncated risk R,(4, U) as follows:

(23) R,(A,U)=E,E,[ Y L{(X,,A,u)/W"]}.

i=n

Note that R(4,U) = R, (4, U). The right-hand side of (23) can be transformed
to the form

M
R,(1,U) = EA[Z %Li(X,.,A,ui)/W"].
Calculations similar to those performed in (14) allow us to show that
R,(4,U) fulfils the following recursive relation:
Ry (A, U) = Ly (mpg, 4, upg) + 03y,
24)

R,(4,U) = Ly (m,, A,u) +aflgi + =1, [R, ., (1, UYW"],

n=0,1,..., M—1.

Let U*(8,r) = (u§, ..., u}y) be the Bayes control strategy with respect to
the distribution n, . For convenience we denote R, (4, U* (8,7)) by R,. Now we
look for the form of the risk R,. We apply the followmg equations Wthh can be
obtained using (5)+7) and (10):

Ei (mn+ I/Wn’ un) = am,+ By Y+ ')’nQA-,
25) B 0mis o/ W™, ) = adml o+ ol + 924247 + 20, g,
+ 2y, 1,1 9Au, + 20, 9,9Am, + 02 gae,t, + Vg,
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Ey(rns /W) =r,+44,
E,(r2, /W™ u)=r2 +2q/1rn +4%A% +4.
We shall show that R, is of the following form:
(26) R, = c'm} +cPr + cPA2+ 2¢Pm, A+ 2P A+ 2¢PA
+2¢Pm, +c, n=0,1,..., M.
For n= M this holds with

M) _ (M M) _ (M M) _ (M M) _ (M
Cf))—a(n), M =alP, M =a¥, M = o

(27)

M M) 2 M M M) _
90 = aigh +adf, P =0 =0,

Let us suppose that (26) is true for n+ 1. Then, using (24) and (25), we
Obtain the following expression for R,:

7
R, = L,(m,,i,u®)+af}g? +"T+£ [c8*V (aZm? + p, u* +y2q*A%
+ 200,y U7 4 27 00, GAUN + 20, y,9Am, + aZg2e t, +72q)
+ V(2 +2q0r, + GPA2 @)+ T VA2 + 2§V (o m, + p,  u¥ +y,94) A
+2e8T D+ qA) A4+ 2¢EH D A+ 268 D (am, + p uF +7,9) + 8 V].

Finding the terms which contain m2, r2, A%, m A, r,A, A, mr,, m,, r,, 1,
Tespectively, we see that (26) is true for n and the coefficients can be calculated
from the following equations:

=4, =8B, P=E, =D,
P = —-l—S,,iZ+d,,c‘{'“’,

gy A A 2B g e 20 )
) = — S, et ),

P = aflgs +afl+d,[ A, (03g2e.t, +yiq)+qcy+ Y
— M1 Dp i T, +§7 V],
Where the new constant S, independent of f is given by
Sy = Ha(mok,+ 7,y 1 Ay 1 fhar)-

Hence we have just proved the following lemma:
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LEMMA 1. The risk R(A, U*(8,7)) connected with the Bayes control strat-
egy U*(B,r) takes the form

R (4, U*(B,1) = c®’mi +c0r* + 22 + 2¢Pma + 2014+ 2¢0 4 + 2¢0my + ¢,
where the coefficients ¢{¥, i=0,1, ..., 7, can be obtained from the system of

equations (28) with the boundary conditions (27).

Note that the coefficients c{”, ¢, ¢{”, ¢! of the risk R, in contradistinc-
tion to the remaining ones, are dependent on B. The dependence can be
expressed as follows:

1 M-t g
) _ i
“ T[u z';n Blz,
1 8 M-1 S M-1 S.
P ==|h+q Y (—n?5-29 Y (i—-n)—':l,
U i=n+1 i i=n+1 B;
(29) 1{ M-1 S M—lS
n _ —py i i
“ T, _qz=§+1(l n) !2 .1271 ﬁ:],
1 [ M-1
C")"n— en+q Z (l_n)i‘;]:

where the constants h, and ¢, are independent of f and take the form
M-1 o
h, = nna(z"% + Z Tivq (A 17:‘242 +2B;, v.9+a$3 V),
M-1
€, = nn(a(ln{gr%"'ag%)'{_ Z Tiv1 [AH—I (aizgizaiti'*“}’?q)
— iy Diy T, +af{ Vg1 +af3 V).
Let us define the control strategy U (g) = (dg, ..., ty) by"
(30 Uy =0, d,=-~Pm—Hpo-T, n=0,1,...,M—1,

where g is a fixed constant, m, can be obtained from (9) and (10) with the initial
condition given by the known value m,, and P,, H,, T, are given in (20).

By the methods used in the proof of Lemma 1 the risk R(4, ﬁ(g)) can be
calculated. Finding the formula for the risk, using Lemma 1 and (29) one can
prove that the following equation is valid:

(31) R(4,U () = lim R(A,U*(8,7)).

o
r/f—e

It follows from Lemma 1 that for every prior distribution 7 of the
parameter 4 the Bayes risk r(n, U* (B,r)) takes the form

(32) r(n,U*(B,r) = cPE 12+ QcPmg + 201 + 26 E A+ cOmE +
+c0r% +2c0my + O & 0%p) E A2 +Z,(8,)E A+Z,(8,1),
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fWhE}re the coefficients ¢, Z, and Z, depend on the variables which are
Indicated in the parentheses. In view of the equations (31) and (32) it is clear

that for every prior distribution n of the parameter J the following equation is
true:

(33) r(x, U(Q)) = lim r(z, U*(B,7).
oo
r/B—e

Elementary analysis of the form of the coefficient Z, (8,7) shows that for
€very x > 0 the functions

LBy =2Z,8,/xp*—p) and  f,(B)=Z,(B,—/*B*—B), B> 1/,

are continuous and satisfy the condition f; (1/x) = f, (1/%). Using these facts; it
€an be shown that one of the following three conditions is fulfilled:

A. For each B > 1/, f,(B) > 0.

B. For each B> 1/x, £,(B) <O.

C. There exist § >0 and 7 for which

P2 +1/f=% and Z,(f,H=0.

It can also be seen that c¢§ > 0. This follows from Lemma 1 and from the
Obvious inequality R (4, U) = 0, which holds for each 4 and for each control
Strategy U for which the risk exists.

Now we are ready to solve the problem formulated at the beginning of the
Present section.

THEOREM 2. Let us consider the system described in Section 1. If the
asf“mptions (1) and (ii) from Theorem 1 are satisfied and if I, is the class of the
Prior distributions m of the parameter A which hold under the condition E_A% < x,
then there exists I MCS and

@) if the condition A is fulfilled, then U (/%) is [';MCS;

(ii) if the condition B is fulfilled, then U(—./x) is I'\MCS;

(iii) if the condition C is fulfilled, then U*(B,) is I',MCS.

In order to prove the theorem we use the following lemma:

LEMMA 2. Ler {rn,}¢ be a sequence of the prior distributions of the
Parameter 3, m,eI' and let {U)P and {r(m,,U)T be the corresponding
Sequences of Bayes strategies (with respect to m,) and Bayes risks. If U is
@ strategy for which the Bayes risk satisfies the condition

supr(n,U) < lim supr(x,,U,),
el k— o
then the strategy U is TMCS.
_ The above lemma is well known from decision theory (see [7]). We quote
It In the version given in [5]
Th Proof of Theorem 2. Let us suppose that the condition A is fulfilled.
en for each distribution mel'; we obtain
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r(r, U(/%) = tim r(n, U*(B,/xB>— B))

B

= lim [ BE A2+ f, BEA+Zy (B, /=B —B)]

f— o
< lim [ (B +1, (B/%+ Z, (B, /%67 — )]
B+
= lim |:c‘2°)(ﬁ)%+f1 (ﬁ)%\/%ﬁz—ﬂ+22(ﬁa\/ %ﬁz—ﬁ):l
fiRad:
= lim r(ng ypz—5, U* (B, /xﬁzfﬁ)).
f—

This inequality, in view of Lemma 2, implies that the control strategy
U (/%) is I';MCS. Similarly, it can be proved that the strategy U (—+/%) is
I' MCS when the condition B is fulfilled.

Now we consider the case where the condition C holds. Then for each
nel’; we have

r(n, U*(,7) = @ (F)E,A2+ Z, (B,AE,A+ Z, (B,
= PEA+Z,B.A D Px+Z,(B,7 =r(nz. U*(B,7).

If in Lemma 2 for each k we set m, = n3,and U, = U*(f,7), then we see
that U* (B,F) is I';MCS. Thus the theorem is proved.

Remark. The above result is very intuitive. Comparing it with the results
obtained in [4] or [5] it can be seen that the formulae giving the minimax
controls in our problem are similar to those obtained when the states of the
system are observed exactly. The only difference is the replacement of the exact
value X, by its expected value m,. This phenomenon occurs in various decision
problems involving quadratic loss functions.

4. In this section we deal with the problem of minimax control of the
system described in Section 1, but now we omit the assumption that both
parameters of the distribution of the initial state X, are known. Now we
assume that X, has the distribution N (m,g3), where g3 is a given constant,
whereas m is an unknown parameter. The parameter is assumed to be
a random variable independent of the random variables 4, V., w,, Z, (n = 0,
1,..).

Let now R(m, A, U) denote the risk R(4, U) (given by (4)) in the case where
the parameter of the distribution of X, is known and equal to m. Let 2 be
a prior distribution of the random vector (m, 1) and let I'" be a subclass of the
class of all such distributions. For such a risk, distributions and the class I’ we

define the Bayes risk, the Bayes and the minimax control strategies by the same
formulae as those given in Section 1.



Minimax control 165

Let U} (8, r) denote the Bayes control strategy defined in Theorem 2 in the
Case where the mean of X, is equal to 7 (ie., m, = n; see Theorem 2). Similarly,
let U, () denote the strategy given by the formula (30) in the case where we
Compute the control values under the assumption that m, = 7 (see (30) and (9),

(10)).
- Let I', be the class of the prior distributions & of the parameter (m, A) for
which the conditions

(34) E;m? <9, Eyl’<x

hqld, where 9 and » are given positive constants. Our aim is to find the
Minimax control strategy with respect to such a class I’ 2

Let us suppose that, although the state X, has the distribution with mean
®Qual to m, we use the strategy Uy (B,r). The methods used in the proof of
Lemma | and the formulae (24), (25) allow us to show that the risk takes the
f0110wing form in such a case:

(33)  R(m, 2, U3 (B,1) = cflm’+cin? + cifhmn +c0r + )42
+2ePmi+2¢nA + 2¢ri + 2¢LA+2¢%m
+2c3n + 2cQimr + 2cPnr + ¢},

Where ¢f® = {9 for i = 1, 2, 4, 5, 7, whereas the remaining coefficients in this
®Xpression can be obtained from the following equations:

) = af) +d,02 (c§i P +etucfs V),
g} = k,P2+d,[P}A,, (py+02c8s D — P, (2¢85 1 + bl 1))] )
c§} = d, (7b,c8s ' — Poot,piy RYY),
R = i+, (B, GRE -+, + i),
9 = et
cgl = af} +d,a, (i ¥ —4T, 1,  RYD),
) = cp—cfl,
e = da, (66 D ~3H o REY) 5
= —cft.
In these equations we have
R = 26V +(1+5,t,) B Y,

Whereas the remaining constants were given earlier. The boundary conditions
are the following:

M M M) __ M M) _ (M
b =alP, P =49, P =alp

2
B = = ) = PP =P = ff = 0.
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Similarly, one can prove that
(36) R(m,A,U,(g) = c§Im?+c®n? + c®imn + Qo + A2
+ 2c50mA +2¢0m A+ 2¢0 A0 + 2¢2A + 2c0m + 2¢Oy
+2c§imo +2cng + ¢},

where the coefficients which have not been defined previously can be obtained
from the equations

S
e} = +def7 Y,
n

C(zni = a(zni +dn (An+ 1?3‘12 + C(2"1+ 1) + 2'Bn+ l7nQ)9
c$) = al}+d,o, (v,aRYS + ¢4 Y),
= —ci,
S
=~ d, i,
nﬂ
= allgl+af}+k,To+d,[A,,.,(piq+olge,t,)
26l Ty V]
with the boundary conditions

M) _ (M M) _ (M M) _ (M) 2 - — M)
D =af?, AP =aD, N =affgl+aff, P =cf=c=0.

In the case where the expected value of X, is given and equal to # we
denote I';MCS by U,. It follows from Theorem 2 that the strategy U, exists
and it takes one of two different forms:

U,=Us(B,r) for some g,r or U,=1U,(o).

In the case which we consider ¢ may be equal to \/; or —\/;. Using the
formulae (35) and (36) it is easy ‘to verify that the risk R (m, A, U,) is a quadratic
polynomial with respect to m (independently of the form of U,). It can be
expressed as

(37) R(m,A,U)) = cim*+0,(n, )m+8,(n, 1,12,

where the functions 6, (-,) and 0, (-,,") satisfy the following condition: for every
distribution n of the parameter A

Eugl (ﬂs j‘) = 01 (ﬂs Eni): E1:02 (qs ]', 12) - 62 (ﬂa Eul: Enlz)'

The forms of the functions depend on the form of U, and they can be easily
obtained from the formula (35) or (36). We note also that the coefficient c{?) is
a positive constant (see the note before Theorem 2).

The following theorem is the main result of the present section.
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THEOREM 3. Let us consider the stochastic system described in Section 1.

Assume that
(i) the random variable X , has the normal distribution N (m, g2), where m is
an unknown parameter;

() V,,V,,...are identically distributed random variables having density (3)

€pendent on an unknown parameter 1

(ii) the parameters m and 1 are independent random variables;

. (3(iV) I’ is the class of prior distributions of the random vector (m, A) defined
Y (34).

Then

G if 01(\/52 4) = 0 for each /'Le(—\/;t, ﬁ), then the control strategy
U is I,MCs;

(i) if 6,(—./9, 4) < O for each A€ {—./x, \/x), then the control strategy
U_; is I,MCS.

Proof. Let us consider the case where the mean of X o 18 given and equal
to #. Note that the control strategy U, is the Bayes one. This is obvious when
U,= U¥(B,r) for some B and r. If U,= U,, (o) for any g, then, similarly as in
the proof of Theorem 1, one can easily verify that U, is the Bayes control
Strategy with respect to the distribution concentrated at the point g. We denote
Such a distribution by 4,. For convenience, we denote by =, the distribution
With respect to which the control strategy U, is the Bayes one.

_ }t follows from the independence of the parameters m and A that for each
distribution @ er , we have

(38) r(2,U) = E4E R (m, A, U),

W.her_e 2 and = are the marginal distributions of the distribution 2, 2 is the
fhstnbution of the parameter m, 7 is the distribution of the parameter 1. We
ntroduce the following notation:

r?xn,U)=r?,n,U) and r@,,n,U)=r(g,x,U).
Let I, be the class defined in Theorem 2. We shall show that

(39) supr(n,=n,U,) = r(n,n,,U,).

nely

First, let us consider the case where U, = U#(8,7). Then for each ne I, we
Obtain (see Theorem 2 and its proof)

r(n,n, UX(B,r) = E A2+ Z,(B,1)E A+ Z,(B,7)
| = PE A’ +Z,(B,1) < P+ 2Z,(B.7)
=r(n,ng,, Ur(B,1) =r(n,x,,U,).
Now, let us suppose that U,= U,, (ﬁ). Then for each nel'; we obtain



168 A. Grzybowski

r(”’ns ﬁn(\/;)) = hm r(n,n,U,’:‘(ﬁ,r))

p—oo_
r/B/x
= lim [ (BEA*+Z,(B,NEA+Z,(B,7)]
7y
< lim [0‘20)(3)%+Z1(ﬁ,")\/;“‘Zz(ﬁ:r)]
i+ v
= lim [c‘z‘”(ﬁ)%+zl(ﬁ,\/%ﬁ2—ﬁ)%\/%ﬁz—ﬁ'l'zz(ﬁn/ %ﬁz—ﬁ)]
=
= lim r(n, g szr—p, Ur(B,r/#B* — B))
J Rl ]

=r(1,8 7, U (/) = r(n,m,, U,).
Similarly, one can verify that an analogous inequality holds when

U,= U,,(—\/;). Since the above inequalities hold for each e I';, the equation
(39) 1s vahd.

Let us suppose now that 6, (\/5,/1) = 0 for each /le(—\/;,\/a_c). We
shall show that

(40) sup 1(2P,n, U ;3) = supr(ﬁ,n, U 5.

P xgel> nel'y

It follows from the above assumption and (37) that for each distribution
P xnel, the following relations are valid:

r(@,m,U ;) = ¢ Egm® +0,(,/9,E )Ezm+6,(./9,E 4, E_4?)
< 9+0,(/9, BN /3+0,(/3, A E QD) = r(6 5,7, U ).
Hence the equation (40) is true. Using the formulae (40) and (39) we obtain
supr(@,U 5= sup r(Z,=, U ;3) = sup r(\/g,n, Uy = r(\/ﬁ,nﬁ), U3

Del, P xnel, nelq

On the other hand, we know that the control strategy U vs 1s the Bayes one
with respect to the distribution 8 3xn v5- Therefore, if in Lemma 2 we set

M, =0 3xn,5and U, = Uy k=1,2, ..., we see that U ;3 is I',MCS. Thus
the part (i) of our assertion is proved.
In the same manner one can prove that (ii) is valid.
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