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THE NUMERICAL COMPUTATION
OF A CLASS OF DIVERGENT INTEGRALS

Abstract. The object of this paper is to present a method of evaluatmg a class of divergent
integrals by replacing part of the integrand by a truncated series of shifted Chebyshev polynomials,
the resulting integral then being computed exactly. _

1. Introduction. As is well-known, a variety of problems in theoretical
‘Physics lead to divergent integrals. In this paper we shall present a method for
the numerical computation of a class of divergent integrals of the form

n I(a) = f:ﬂf(t)dt

in which a < —1 and 2a is non-mtegral and where the function f'is assumed to
be regular in some region containing the interval (0, 1).
~ First, however, let us assume that f(f) = 1 and that

| 1

2 La) = [rdt.

.0
For a> —1

L(a) 1/a+1),

but for a < —1 and non~1ntegral expression (2) has no meaning since the
lntegra] d;verges Using generalised function theory however, thls mtegral is
interpreted as (see [4})

3) L@= | AHO-HE-1)d=1/a+l), a<—1,

Where ‘
(i) H(t) denotes the ‘Heavisilde Unit function defined by

- {0, t<0O,
H(t)={1 t>0
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(i) the generalised function t*H(z) is defined by

1 dar
t) = (e**PH(z
CHE) (a+1).. (a+p)dt”‘ ())
where p is any integer such that a+p > —1.
If we now assume f (t) = T¥(t), where T*(¢) denotes the shifted Chebyshev
polynomial of degree n in ¢, then expression (3) may be used to evaluate
integrals of the form '

@) | M,(@) = [ T30t
f |

for a < —1. Indeed, as one may expect, for- a < —1 and non-integral,
generalised function theory interprets this integral as

M, (a) = oj? T (H()—H(t—1))dt
from which it is easy to decitﬁ:e (see [4], pp. 31 and 32)
(1) T | (=1 Tx"™(1)
(@+1) (a+1)(a+2) (a+1)...(a+n+1)

This is the Hadamard finite part of the integral in (4) and is what one would
formally obtain from (4) by repeated integration by parts if all the con-
tributions from the lower limit (which are infinite) were omitted.

As we have already pointed out, in this paper we shall present a method
for the numerical approximation of integrals of the form (1) where the function
f is assumed to be regular in some region containing the interval (0, 1).

- To begin, the function f in (1) may be approximated by a finite sum of
shifted Chebyshev polynomials

) M,(a) =

N

(6) fO=Y"a,T*p, 0<t<l,

n=0

where the double prime indicates that the first and last terms in the sum are to
be halved.
It is well-known that the coefficients in (6) are glven by (see [2])

7 | = —Z F cos(nrs/N),

where ‘
F = f((cos(ns/N)-l—"I)/Z)"" , 8
Several efficient algorithms are available fpr their computation ([1], [3]). By

substituting (6) into (1) it follows that
N

(8) (@)~ YY" a,M,(a).

n=0
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2. The numerical evaluation of M, (a). The shifted Chebyshev polynomial
T3 (2) satisfies the differential equation (see [6])

) 2t(1—1)y"—(2t— 1)y +2n%y = 0.
Differentiating (9) p times and letting t = 1 we see that
2 _
ryeron) =20 Do), o<pen—t.

@2p+1)

If the general term in (5) is denoted by u;, that is
(=Y T¥O0)

I a+1)..(a+j+1)

then
-2 n°—j ,
10) “iv1 = (a+]+2)(2]+1) O<j<n-l
and hence
(11) My (@)= Y u;
j=0

Expression (10), starting with u, = 1/(a+1), and (11) may now be used to
valuate the M, (a)’s. Incidentally, it is not difficult to see that this method will
be sensitive to rounding errors.

Finally, numerical experiments suggest the absolute value of M,(a)
increases as n— oo, and so we turn our attention to the asymptotic behaviour
of a general term of (8). In fact, several authors have already derived the
asymptotic behaviour of the coefficients a, as n— oo under the assumption the
function f has certain properties, for example regularity within a specified
domain (for a summary see [5]), and therefore we only derive the asymptotic
behaviour of M,(a) as n— oo.

3. Asymptotic behaviour of M,(a) as n— o0, a fixed.

THEOREM 1. For any fixed number a < —1 and such that 2a is non-integrdl
We have

M, (a) ~(—1)'const/n?*2  as n— 0.
Proof. By making the substitution t = cos?(xn/2) in (4) it follows that
1
(12) M,(a) = nR [ k(x)e~ 2" dx,
0

Where

k(x) = cos?**1(xn/2)sin(xn/2), y=n/2.
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Following Lighthill’s prescription [4] the asymptotic behaviour of the
integral in (12) may be derived from the behaviour of the Fourier Transform
(F.T) :

(13) M, (a) = }D k(x)e 2" H(x)H(1 —x)dx = Qjo z(x)e;zy"’“'dx,

where z(x) = k(x)H (x)H(1 —x) coincides with k(x) in the interval (0, 1) and is
zero elsewhere.

The behaviour of the F.T. in (13) depends cntlcally on the behavmur of
z(x) in the neighbourhood of its singularity at x = 1 (and not on its behaviour
in the neighbourhood of x = 0 as applying the present analysis at the point
x = 0 shows). Indeed if, corresponding to the singularity at x = 1, a function
J(x) can be constructed that is a linear combination of functions of the types

x—1), |x—1'sgn(x—1), |x—1"Inj]x—1], [|x—1In]x—1|sgn(x—1)

for different y and is such that z(x)—J(x) has an absolutely integrable p-th
derivative in a neighbourhood of x = 1 and which also has as its F.T.

(14) m,= [ J(x)e”2*™dx,

then Lighthill showed that an asymptotic expansion for M, (a) is
(15) | M,(@)=m,+0(™")

as n— oo. |

In order to apply Lighthill’s result we define a function h(x) (which is
continuous and has continuous derivatives at x = 1) by

k(x) = (1 —x)**** h(x).

- The construction of J (x) is now obtained from the Taylor expansion of
h(x) about the point x =1, that is

(16) w=""% < PRI e 1 H —%)

s=0 s! 4
Lighthill ([4], p. 43) actually lists the F.T. that we shall require, namely

) . i(b+s+1-4y)n;12(b+s)!
17 : 1— bh+s — = 2yxni = €
( ) ‘ ._J' ( JC) H(l x)e dx . (2n|y|)b+s+1 4

where b+s is non-integral.
From (14)17) for a < —1 and such that 2a is non-integral it follows that

M@ p+[2§|1-2 (—1F*"h(1)cos((2a+s+2)7/2) Qa+s+ 1)}
TC' s=0 s!(nn)2a+s+2

+0(n™7%),
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that is
M, (a) ~ (—1)"const/n?°*2,
as required. '
4. Numerical example. The computation of the following example was
performed on the Prime 9955 computer at Leeds Polytechnic using double
Precision except for the computation of the moments which, because of the

sensitivity of (10) and (11) to rounding errors, was performed in quadruple
Precision:

i
[ £7225/(1+ 1)dt = 4.174990989.
0

From Theorem 1 with g = —2.25 and [6], p. 50, line 4.7-7, it follows that,
for the function 1 () = 1/(1+1),

|a, M, (—2.25)| ~ const(3—2,/2/'n*5 >0 as n—oo.

In this example our method requires twenty terms of (8) to give the value
of the integral correct to 9 decimal places (see Table 1), the Chebyshev
Coefficients having been approximated by using (7) with N = 19 and the
moments by using (10) and (11).

Acknowledgement. The author wishes to express his gratitude to the
Teferee for his extremely useful comments and suggestions.

TABLE 1
k aM,
0 —1.1313708499
1 1.7470129473
2 1.7429327930
3 0.8350807383
4 0.2950893294
5 0.0886153356
6 0.0240047777
7 0.0060586537
8 0.0014519784
9 0.0003345069
10 0.0000747006
11 10.0000162674
i2 0.0000034693
13 0.0000007272
14 0.0000001503
15 0.0000000306
16 0.0000000057
17 0.0000000019
18 0.0000000002
19

0.0000000001

g = Zastosowania Mat. 204
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