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EXPERIENCE IN COMPUTING OPTIMAL REGRESSION
BY BRANCH AND BOUND

0. For given predictor variables x,, x,, ..., X, and a predicted variable
Yy we consider an algorithm for search of the optimal subset of size k. The
Criterion of optimality is: the optimal subset should yield the largest deter-
mination coefficient R? xikbeing the square of the multiple correlation

y,xil .....
coefficient between the variable y and the variables x; , ..., x; . Instead of
performing an all-subset search we can use a branch and bound algorithm
a considerable number of subsets.

We describe an algorithm for finding the best subset using a branch and-
bound method.

Executing the calculations for pseudo-randomly generated data with an
assumed structure we indicate the circumstances when, applying the branch
and bound algorithm, we might save much time of computing.

1. Preliminary definitions, notation and statements. Suppose we have
P predictor variables x,, x,, ..., x, from which we want to predict the variable
Y called in the sequel the predicted variable.

The goodness of prediction of the variable y by the variables
X1, X5, ..., X, is measured by the square of the multiple correlation coefficient
R}ia. > called also the coefficient of determination.

Suppose we have n realizations of the considered predictor and predicted
Variables. The i-th realization (i=1,2,...,n) is denoted by x,,
Xi2s vevs Xips Vie

Let SS, denote the adjusted sum of squares of observed values of the
Predicted variable y:

) $S, = . (45"
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Using the method of least squares we can establish a linear function
J=by+bx,+... +b,x,

which, when applied to our data, gives the minimal value of the residual sum of
squares:

(2) SS(19 2a Ty p) = Z (yi_b()_blxil— v _bpxip)z'
i=1

The multiple correlation coefficient R%, , ., can be calculated as

(3) R%(I,Z ..... = lmss(ls 2: veey p)/SSy

The smaller the residual sum of squares, the better the approximation of
y by xq, X3, 005 Xpe

The starting point for all calculations is the adjusted cross-product matrix
A=(a),i=1,2,...,p+1,j=1,2,..., i, with elements defined as follows:

~

M:l{M:lM:

—i.r)(xls—f.s)’ r,s#p+ 1’

—
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(4) a,s = < (yl_.)_’)(xls_'i.s)’ r=p+la s # p+1a

o~

=97, r=s=p+1.
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It
[

To evaluate the residual sum of squares we do not need necessarily
evaluate the regression coefficients b, b,, ..., b,. Using the abbreviated
Gauss—Jordan pivoting [5], we can obtain directly the residual sum of squares.
In the sequel we use this algorithm. It is approximately three times faster than
the full Gauss—Jordan algorithm [1]. It can be used also for stepwise
calculations with steps performed upwards and backwards — with the
restriction that the variables should be removed from the regression set in the
reverse order as they entered it.

In the sequel we use the following property of the residual sum of squares:

PROPERTY 1. Suppose we have already calculated the residual sum of
squares for a set of h variables x, x,, ..., x,. After augmenting this set to a set of
m variables x,, X,, ..., x,,, m > h, we obtain the residual sum of squares for
m variables x,, x,, ..., x,,. The residual sum of squares obtained for regression

with a greater number of variables cannot be larger than that obtained for
a subset of those variables:

() SS(1,2,...,n>88(1,2,....,m), m>h.

This property is essential for further considerations.
Now we (!etermine a special notation for the residual sum of squares
obtained when introducing all but one out of p variables into the regression set:

(6) Q(—n=88(1,2,...,r—1,r+1,...,p), r=1,2,...,p.
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Thus Q(—r) is the residual sum of squares after introducing all but the r-th
variable into the regression set.

2. The algorithm. To find the best subset of size k we should evaluate (})
Sllbsets and for each of them evaluate the residual sum of squares. Generating
the subsets in a special way (the next subset is obtained from the preceding one
by the exchange of one vanable), we can save a considerable amount of
calculations when pivoting out only one variable from the regression set and
‘Pivoting in another variable. Say, we seek for the best k variables out of p. It is
Casy to see that all subsets of size k out of p can be divided into k + 1 subgroups
(called in the sequel also branches):

The (k+1)-st branch comprises only one set: 1, 2, ..., k.

The j-th branch (1 <j < k) comprises sets with the following structure:
first the integers 1, 2, ..., j—1, and next k—j+ 1 integers chosen from the set
U+1,..., p}.

The first branch comprises all k-tuples which can be chosen from the
lntegers 2,3,...,p.

It follows that the number of subsets to be investigated in the j-th branch,

I1<j<k+1,is (k'ij_-il). An example for p=7, k=3 is given in Table 1.

TABLE 1. The branches for subsets of size k = 3 which can be
chosen from p = 7 variables

Branch No. 1 2 3 4
Number of subsets 6 5 4 3
in the branch (3) (2) (1) (O)
The subsets 234 134 124 123

235 135 125

236 136 126

237 137 127

245 145

246 146

247 147

256 156

257 157

267 167

345

346

347

356

357

367

456

457

467

567
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Our clue is that the numeration of the variables is not arbitrary. It is
chosen in a special way. We proceed as follows. First for j=1,2,..., p we
evaluate the residual sums of squares Q(—1), Q(—2), ..., Q(— p) defined by (6).
Next we order them in descending magnitude. The resulting sequence is

7 Q(=j) = A—=j2) = ... 2 0(—Jp-

We relabel the variables according to (7).
From now up to the end of the paper we assume that the numeration
(order) of the variables is such that

(8) Q(—1)=20(-2)= ... 2 Q(—Dp).

Judging from (8) we could say that variable No. 1 has the greatest
importance when approximating y by x,, x,, ..., x,: excluding variable No. 1
we obtain the largest residual sum of squares, hence the worst approximation.
Conversely, excluding variable No. p, we obtain the smallest residual sum of
squares, which means that the (p— I)-tuples of variables without x, are better
than the (p—1)-tuples with x,. It follows that in some way the variable x,, is the
worst for evaluating y from the remaining p—1 predictor variables.

Continuing this argumentation we assume that the order of variables in (8)
is close to their importance for predicting y.

The quadratic forms Q(—1), Q(—2), ..., @(—p) impose definite bounds
for residual sums of squares evaluated for subsets of variables which can be
obtained when considering all predictor variables but the j-th one
G=1,2,...,p)

Specifically, no subset chosen from the variables 2, 3,..., p, when
introduced into the regression set, can give the residual sum of squares smaller
than Q (—1). Removing some further variables from the set {2,3, ..., p} we can
possibly increase the residual sum of squares, but never decrease it.

We start the calculations with the evaluation of the residual sum of
squares SS(1, 2, ..., k). This is simultaneously the residual sum of squares for
the branch No. k+1. We take this residual sum of squares as the current
minimum SS,,

Suppose that for some j,, 1< jo <k, after considering all subsets
belonging to the branches jg, j,+1,..., k+1, the current minimum is SS,.
Suppose further that this SS, is smaller than Q(—(j,—1)).

Using Property 1 we are sure that it is useless to investigate the subsets
belonging to the branches j,—1, Jo—2, ..., 1. Any subset from these branches
will give a residual sum of squares larger than the already obtained value SS,.
So we have only to investigate the subsets from the branches k, k—1,...,Jjo

Now suppose we are investigating the h-th branch (j, < h < k). The
structure of subsets belonging to this branch is such that at the first place we
have the integers 1,2,...,h—1, and at the remaining k—h+1 places the

integers chosen from the set {h+1, h+2, ..., p}. Together there are (kfz.?_l)
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Such subsets. We evaluate the residual sum of squares for all these subsets
S¢quentially and retain the indices and the residual sum of squares for that
Subset which has the residual sum of squares smaller than the current SS,. If
We find such a subset, we relabel the optimal (found up to this moment) set and
the current value SS,. All subsets from the A-th branch considered, we check
the inequality (h > 1)

©) SS, < Q(—(h—1)).

If this holds, we finish our calculations (we have found the optimal subset),
Otherwise we proceed evaluating further subsets and further branches.

3. An example of calculations. We use here a part of data presented in the
Paper by Liebhart et al. [6]. The predicted variable y is TLC (total lung
Capacity). The predictor variables are: age of the patient (x,), height of the
Patient (x,), and some simple spirometric values such as

VC (x,), FEV, (x,), FEF (x5), MMRF/MMFT (x¢), FEF/VC (x.).

~ We consider data obtained for the control group (adults with no
diagnosed respiratory disease) comprising n = 28 individuals (in fact, the
Control group considered in [6] was enlarged by adding 11 new individuals).
The adjusted cross-product matrix is given in Table 2.

We want to find k=3 predictor variables which give the largest multiple
Correlation coefficient R? with the predicted variable y.

According to the algorithm described in Section 2, we evaluate the

TABLE 2. Adjusted cross-product matrix for the considered example of predicting TLC (y) from

age (x,), height (x,) and some spirometric values (x,, ..., x,)
——
Variable X, X, X3 Xy
Xy 3281.4
X, —483.5 1830.4
X3 —39744.2 154320.7 19088867.8
X, —52788.5 122171.4 13821485.7 116755714
Xs 82.2 14158.0 15673211 1444394.2
Xg —530168.4 1027861.5 117016567.7 134574345.8
X 742.6 441.8 13948.8 76491.5
y —27964.9 227342.6 240471174 18275169.2
Means 41.1429 163.6429 3851.0714 2927.1429
Variabl
—_ nable Xs Xg Xq y
X 369238.3
Xg 30001623.5 4244512806.2
X 55134.8 4550028.0 125809
y 2346617.5 158672548.7 102292.8 35227468.6
\
Means 287.8286 19817.1888 74.6105 5414.9249
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residual sums of squares @(—1), @(—2), ..., Q(—7). Dividing each of them by
Ssy = Z (yi—.}_;)za
i=1

we obtain the standardized residual sums of squares ((—1),
0(—2), ..., @ (=7). Ordering them from the largest to the smallest one, we
obtain the sequence

(100 9(-2=0(-3)=20(—1)=0(-6)=0(—4 = 0(-5 = 0(-7.
The appropriate values of these standardized residuals are

0(-2)= 0097711, (§(—3)=0.071971, QJ(—1)= 0071132,
O(—6) = 0.069851, Q@(—4)=0067922, Q(—5)=0.067922,
O(—7) = 0.064342.

The new ordering of variables according to (10) is

neworder 1 2 3 4 5 6 7

oldorder 2 3 1 6 4 5 7

The search for the optimal subset is presented in Table 3.

The starting set is the set {1, 2, 3} (in the old numeration the set {2, 3, 1}).
The standardized residual sum of squares for this subset equals

SS, = S8(1, 2, 3) = 0.0784

and is larger than 0(—3) = 0.071132.

It follows that we should investigate the branch No. 3. Here we consider
four subsets. One of them (the subset {1, 2, 6} in the~ new numeration) gives the
standardized residual sum smaller than the actual SS,, therefore we retain the
subset {1, 2, 6} as the actually best set with the relabelled value SS, = 0.0773.
This value is still larger than Q(—2) = 0.071971, therefore we should inves-
tigate the subsets belonging to the branch No. 2. Now we have to investigate 10
subseir:i. None of them gives a standardized residual sum of squares smaller
than SS, = 0.0773. It follows that the subset {1, 2, 6} (in the new numeration)
remains the actually optimal subset.

Before proceeding to evaluate the subset belonging to the branch No. 1 we
check the inequality

SS, < 0(—1).

We obtain 0.0773 < 0.097711, and hence this inequality is satisfied.
It follows that every subset belonging to the branch No. 1 will give
a standardized residual sum of squares larger than 0.097711, therefore we

cannot obtain here a residual smaller than the actual residual SS,. Hence our
search is terminated.

In this example, instead of considering 35 subsets, we needed to evaluate
only 15 subsets to find the optimal one.
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TABLE 3. An example of search for the optimal subset of size k =3 out of p = 7 variables

Variables in the subset Standardized residual . .
Multiple correlation

sum of squares .
. .q . coefficient Rfm I
SS(ll, Iy, 13) 1¥igeXis

ili iz: i3

old numeration new numeration

Branch No. 4 comprising the starting set

231 123 0.0784 0.9216

Branch No. 3 — has the bound J(—3)= 0071132

236 124 0.0869 0.9131

234 125 0.0858 09142

235 126 0.0773* 0.9227+*

236 127 0.0869 0.9131
—_— ,

Branch No. 2 — has the bound Q(—2) = 0.071971

216 134 0.1804 0.8196
214 135 0.0974 0.9026
215 136 0.1556 0.8444
217 137 0.1857 0.8143
264 145 0.1124 0.8876
265 146 0.1650 0.8450
267 147 0.1905 0.8095
245 156 0.1176 0.8824
247 157 0.1732 0.8268
257 167 0.0973 0.9027
Branch No. 1 — has the bound (1) = 0.097711
\
316 234 0.1343 0.8657
314 235 0.1155 | 0.8845
315 236 0.1211 0.8789
317 237 0.1213 0.8787
364 245 0.1244 0.8756
365 246 0.1172 0.8828
367 247 0.1187 0.8813
345 256 0.1204° 0.8796
347 257 0.1201 0.8799
357 267 0.1236 0.8764
164 345 0.1301 0.8699
165 346 0.5474 0.4526
167 347 . 08146 0.1854
145 356 0.1599 0.8401
147 357 0.1568 0.8432
357 367 0.1236 0.8764
645 456 0.1326 0.8674
647 457 0.1481 0.8519
657 467 0.1625 0.8375
— 457 567 0.1507 0.8493

6~ Zastos. Mat. 20,2
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4. Experience with some generated data. We carried out two experiments
with generated data. In the sequel we describe these experiments and then
compare their results.

4.1. The first experiment. In the first experiment we generated p pseudo-
-random values from the uniform distribution (0, 1). Thus we obtained
realization of the variables x,, x,, ..., x,. Next we generated another pseudo-
-random value u from the uniform distribution U(0, 1). The value for the
“dependent” variable y was then calculated as follows:

(11)

In our experiment we considered a = 3.

Repeating this procedure n =50 times we obtained the data arrays
X[1:50, 1:p] and Y[1:50] comprising n artificial realizations of the variables
Xy, Xp5 ---5 Xp, ¥. Note that in fact the random variable y depends only on the
first p/2 vanables x,, x,, ..., Xp2e

The covariance matrices calculated for the generated data were the
starting point for the all-subset search. The CPU times of computing on the
ODRA 1305 computer using the algorithm described in Section 2 are given in
Table 4. In the same table, times needed by an algorithm using the full
all-subset search, described, e.g., by Bartkowiak [1] are shown in brackets.

y=X+x,+ ... +X,,+ua.

TABLE 4. Average CPU times (in minutes) of computing, on the ODRA 1305 computer, the best
subset using a branch and bound method and times of computing using an all-subset search (in
brackets). p is the number of considered variables, k is the size of the subset

P k 1+-4 5+7 8-+11 12+15
Experiment 1
8 0.02 [0.03] 0.02 [0.03] - -
12 0.11 [0.11] 005 [0.33] 005 [0.21] -
16 052 [0.37] 1.31 [4.39] 041 [9.13] 013 [3.02]
Experiment 2. Helmert matrices
8 003 [0.03] 002 [0.03] - -
12 014 [0.11] 032 {[0.33] 005 [0.21] -
16 0.61 [0.37] 3.50 [4.39] 294 [9.13] 0.15 [3.02]

The CPU times presented in Table 4 are means from calculations for 10

fnatrices. We assumed consecutively p = 8, 12, 16. Next we have been search-
ing for an optimal subset of size k, with k in 3 groups: 1 <k<4,5<k<7,
and 8 <k < 12.

. In Table 4 one can see that for p = 8 the search of the best subset is very
quick and the gain in computing time is small. For p = 12 we have no gain
when searching a subset of size 1< k<4, and a substantial gain when
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s"fil'ching a subset of size 5 < k < 7 (0.33 mins. by the traditional method, 0.05
mins. by the new method) and of size 8 < k < 11 (0.21 mins. by the traditional
method, 0.05 mins. by the new method). |

For p = 16, when searching for a subset of size 1 < k < 4, using the new
method we need even more time (we have here to evaluate all subsets and
Perform some additional calculations to evaluate the bounds for the branches
and introduce the new order of variables). A substantial gain in CPU time is
Obtained when searching for subsets of size k> 5.

4..2. The second experiment. In the second experiment we constructed the
COvariance matrices using Helmert matrices. We say that H is a Helmert matrix
if for a given p its elements are determined by the formula ([8], p. 33)

@ =[]
0

“:ith K’ being the first row (of dimension 1x p) of H,,,, b’ = (1/\/1;)1;,, where
I, = [1,1,..., 1] is a vector of p’s, and with H, being the last (p—1) rows of
H,, p> While the r-th row of H, takes the form '

1 —r
1, 0, -1 x forr=1,2,...,p—1.
L/r(r+1) Jre+1) oY ’] P

It can be shown that H is orthogonal.
Using a Helmert matrix H and a diagonal matrix D, -

D = diag(dl, dz, teey dp),
We construct the matrix C: |
(13) C = HDH'.

It is €asy to prove that the matrix C constructed according to formula (13) is
Symmetric: |

C' = (HDHY = HD'H' = HDH =C.

) Qne can see an analogy between formula (1) and the spectral decom-
Position of a square matrix C: :

(14) o C = AAA,
Where 4 = (a,, a,, ..., a,) are fhe eigenvectors and
A = diag(d,, 4,, ..., 4)

are the eigenvalues of the matrix C.
Assuming nonnegative values of D = diag(d,, d,, ..., d,) and constructing
¢ matrix C according to formula (13) we obtain a matrix which is
Donnegative definite. ‘
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The elements.of D may be given values in descending order. They may be
interpreted as eigenvalues of C with H = (hy, h,, ..., h,) as eigenvectors.

After normalizing the matrix H (or A) to comprise orthonormal vectors we
have the equality (see, e.g., [7])

(15a) tr(C) = fai
: i=1
or
(15b) tr(C) = f d,.
: i=1

Equality (11) or (12) means that the sum of the diagonal elements of the
matrix C can be reproduced using the eigenvalues and eigenvectors of this
matrix. Specifically, according to (15a) or (15b), the sum of the diagonal
elements ¢,,, ¢55,...,¢,, can be reproduced (explained) by the diagonal
elements 4,,4,,...,4, or d,,d,,...,d,. If the considered variables are
interdependent, and the reason for the interdependence is that there exist a few
number of factors (principal components) which cause the interdependence
among the variables, then a few vectors with their eigenvalues often suffice to
reproduce the matrix C quite good.

Assuming different values of d,, d,, ..., d, and using appropriate Helmert
matrices, we can construct matrices with various interdependence structure.

In our second experiment we assumed d; = p—i+1 fori=1,2,..., p-
Then we calculated the auxiliary matrix T = HD'/?,

Next we generated realizations of a p-variate random variable according
to the following rule of constructing observations with a given covariance
matrix C, presented, e.g., in [9] or [2]:

1° Find a matrix T such that TT' = C.

2° Generate p independent pseudo-random values

z2=1(2y,23,..., 2,

from the normal distribution N , 1).

3° Compute x = (x,, x,, ..., x,) as x = Tz.

After obtaining x,, x,, ..., x, according to points 1°, 2°, 3° presented
above, we constructed y in the usual way using formula (11).

Proceeding in this way we generated 10 groups of data matrices, each of
them comprising 50 “observations” Xy, X3, ... Xp, ¥ COnstructed using the
rules presented above. From these data we calculated the covariance matrices.
Next we have been searching for the best subset. The average CPU times
needed for finding the optimal subset of size k are given again in Table 4.

One can see that for p = 12 a substantial gain is obtained in the last class
of the values of k(8 < k < 11). For p = 16 we obtained a substantial gain when
searching for a subset of size k > 8: for 8 < k < 11 the CPU time decreased
from 9.13 mins. (the traditional method) to 2.94 mins. (the new method).
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Similarly, searching for a subset of size 12 < k < 15 we needed 3.02 mins. using
the traditional method and only 0.15 mins. using the new method.

4.3. Comparison of results. 1t happened that the internal interdependence
Structure between the variables considered in experiment No. 1 and experiment
No. 2 is similar. This may be seen by inspecting the diagrams exhibiting the
Percents of exhaustion of the diagonal diag(C) by successive eigenvalues of this
Matrix. Fig. 1 shows these percentages for the first matrices from each
Xperiment. The similarity of the interdependence structure is the reason for the
Similarity of the CPU time obtained for various variants of the calculations.

% A % A
100} . 100} L
[ ] . [ ]
[ ]
80'- .. 80+ . °
60| . E1 p=8 80l * E2 p=8
40 ¢ * :
B * 401 4
20-. , 20|-o
L 1 1 L 1 | | P 1 A1 i | 1 1 -
2 4 6 8 10 12 1% k 2 4 6 8 10 12 1% k
% A % A
100- ‘ . ... 100— . ...
80¢ . 80+ o
[ ] L ]
e N I 60 . * g2 p=12
wlk * ] S
b .
QF, 20,
1 L 1 L1 ] 1 - L £ 1 | 1 ] 1 - :
2 4 6 8 10 12 % k 2 4 6 8 10 2 % k
% A %A
100t ...,.- 100} Leess
80} ..o 80} ...
60} . 60 o’
. E1 p=16 o E2 p=16
Wl e P wl P
[ ] L ]
0 20 *
® L ]
| 1 1 L 1 | 1 - S S N | I l i Lo
2 4 6 8 10 12 14 k 2 4 6 8 10 12 16 k

Fig. |, Percentage of exhaustion of the diagonal of the covariance matrix by the first k eigenvalues

E1 — experiment No. 1, E2 — experiment No. 2, p — pumber of considered variables

5. Final conclusions and remarks. Using the branch and bound method we
“an expect a substantial gain in CPU time when the predicted variable
Y depends on fewer than p variables.

All the considerations concerned with the best subset search in regression
analysis can be applied immediately to the best subset search in discriminant
analysis with 2 groups of data, provided that an optimal subset is defined as
Such one that gives the largest Mahalanobis distance between these two
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groups. An example of the application of this principle in discriminant analysis
is shown in [3]. :
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