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1. Introduction

In [4] Oxtoby remarks that “there is nothing paradoxical in the fact that a
set that is small in one sense may be large in some other sense” (Chapter I).
The notions of smallness where the author refers to are “measure zero” and
“first category”. Indeed, there are subsets U of the real line R which have
Lebesgue measure zero (so which are small in one sense) but whose comple-
ment R—U = U’ is contained in a countable union of nowhere-dense closed
sets (so U’, the complement, 1s a set of first category and hence small in
another sense). Both these notions, namely measure zero and first category,
were intended to be mathematical formalizations of the notion of “negligible,
or small, set”. So it may not be paradoxical, but it is certainly very
unfortunate that there exist such sets, ike the set U — R mentioned above,
which seem to be small but whose complements also seem to be small (where
can one expect a “general point” of R, in U or in it’s complement?).

It seems that in applications to physics and engineering, and also in
computer simulations, the measure theoretic notions are the relevant ones.
On the other hand it seems to be unclear how to generalize the notion of
sets of measure zero to Banach-manifolds like Diff" (M) (the space of C'-
diffeomorphisms of M to iself) which play an important role in the theory of
differentiable dynamical systems, and on which one needs a notion of “small
sets”.

A concrete example where one sees the paradoxes arrising from these
two notions of small sets is the following. It is known that the elements
¢ Diff"(S"), §! is the circle, r > 1, which have an irrational rotation number
form a set of first category ([5]). On the other hand it is known that for any
C'-curve y: [a, b] —Diff"(S'), r = 3, such that the rotation numbers of y(a)
and y(b) are different, the set M(y) = {ue[a, b]| y(x) has an irrational
rotation number} has positive Lebesgue measure ([1]). This example is
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related with questions like: will two (weakly) coupled oscillators “in general”
get rationally related frequences due to the interaction?

In this paper we discuss the notation of *“null set”. In the finite
dimensional case a null set is just a set which is both of 1st category and has
Lebesgue measure zero. It turns out that this notion of null set can be
generalized to the Banach manifolds one considers in dynamical systems. The
set of ¢ eDiff"(S!), r = 4, with irrational rotation number, is not a null set.

In discussing the various notions of “small sets” we found it usefull, in
order to make the discussion more systematic, to introduce the *“Fubini
property” and the “mapping property”. With these we roughly mean the
following (the precise definitions must be adapted to the various situations):

A notion of “small sets” has the Fubini property if, whenever N « X x Y
is a small subset of X x Y, there is a small subset Ny < X such that for each
xe X ~Ny, Nn({x} xY) is a small subset of {x} x Y.

A notion of “small sets” has the mapping property if, whenever N — Y is
a small subset, there is a small subset N < C(X, Y) (C(X, Y) is a space of
mappings from X to Y) such that for feC(X, Y)—N, f~'(N) is a small
subset of X.

For applications in dynamical systems, especially in bifurcation theory,
the mapping property is very important. The examples in the next section
show that the relation between first category, measure zero and the mapping
property is quite unexpected. They also generalize the above mentioned
paradox about diffeomorphisms of the circle with irrational rotation number.

This paper is an extension of [9]; part of the examples in the next
section was already available in that paper — the present treatment is
simpler and the results more general. The discussion of Fubini property,
mapping property and null sets is new.

2. Examples

The purpose of this section is to show that for each k, m > 1 and each subset
M < {0, ..., m}, there is a subset Ry, = R™ and a subset N, = C*(R", R™)
for each n < m (C*(R", R™) denotes the space of C¥ maps from R" to R™) such
that:

(i) N, is a set of first category for all n;

(i) for feC*(R", R)—N,, f~'(Rp,) has measure zero if n¢ M and
has full measure if ne M.

If we denote elements of C*(R", R™)— N, by generic maps then the
above statement says that the fact that for generic f: R" = R™ f~'(A) has
measure zero (or full measure) does not imply anything for g~ '(4), g: R”
— R™ generic, whenever n # n'.

The above statement follows once we can prove it for the case M
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={m',m+1,m+2, ..., m}:for the general case one just takes complements
unions and intersections of Ry ,’s with M of the above special form.

It is even enough to prove the above statement only for M = {m]. To
see this, let Ry, = R™ be a subset so that generic C*-mappings f/: R" — R™
satisfy /'~ !(Ry,) has measure zero if n < m' and full measure if n=m'.

Let n: R"— R™ be a canonical projection. Then Ry, =7~ '(Rpp )
corresponds to M = {m’, m'+1, ..., m}. In order to see this we observe that
for a given projection =: R"'—»R”", and considering inverse images of
n~'(Rapy), by maps feC*(R", R™), we can just as well consider inverse
images of Ry, by maps fe C*(R", R™). This means that for n < m' we are
done. For n > m', or even n > m', it is well known that for generic maps
feC*(R", R™) (1e for maps not belonging to some fixed N = C*(R", R™) of
first category), K(f) = {xeR"| rank(df), <m'}, the critical set of f, has
Lebesgue measure zero. From this and the rank theorem it follows that for
such generic f, f ~'(A) has measure zero (or full measure) whenever A has
measure zero (or full measure). This implies that for generic f e C*(R", R™),
for n2m, 7' (n”'(Ry,)) has full measure.

From now on we fix M = m} and k and write R instead of Ry,
for the set to be constructed. First we make a set R,, < I"‘(a)
X1, ..., Xm)| {xil <a! such that the Lebesgue measure of [™(a)— is
less than ¢ and such that for generic feR"— R™, n<m, f~"(R,,) = qb

Let B be the Banach space of C*-maps from R™"! to R™, restricted to
"~ '(1) = {(xy, ..., Xm-1)| |x;] < 1}. This Banach space is separable; let
{fi}Z be a dense sequence in B. For each je N, we take a §;-neighbourhood
of f;(I" (1)) out of I"(a). We take the §; so small that the Lebesgue
measure of I™(a), intersected with this &;-neighbourhood, is smaller than
277-¢. R,, is obtained from I™(a) by removing all these &;-neighbourhoods.

Clearly the Lebesgue measure of I™(a)—R,, is smaller than ¢. R,, is
closed by construction so the set of /2 R"~! — R™ such that f(I" " '(1))"R,,
= ¢ is open. By construction, this last set is dense (it contains }{f!'2))
Hence there is a subset of first category N,,_;,,; = C*(R"™!, R™) containing
all maps f with f(I""'(1)) nR,, # ¢. Observe that, for the same R,,, and
any n < m, we have that

Nn,a,:,l = {fECk(R", Rm)l f(ln(l))mRa,e ?‘5 ¢}
is also a set of first category in C*(R", R™). Next we define

=Ry, and N,= ) No;iis
i=1 i=1

where the definition of N,,,, is obtained by replacing I"(1) by I"(r) in the
definition of N, ,, ;.

It is now clear that for n <m, feC"(R", R")—N,, f*(R) = ¢. It is also
clear that N, is of first category and that R has full measure in R™. As we
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saw before, for generic f€C*(R™, R™), £~ '(R) has full measure. This con-
cludes the proof of our claim for M = {m} and hence, by the above remarks,
of our claim in general.

Note that our proof works both for the strong and for the weak
topology on C*(R", R™).

3. Fubini property

According to the theorem of Fubini, if N © X x Y is a set of measure zero in
the product of the measure spaces X and Y, then there is a set Ny = X of
measure zero such that for every xe X — Ny, Nn({x} xY) is a set of
measure zero in {x! xY > Y.

A corresponding property holds for sets of first category (i.e., sets
contained in a countable union of nowhere-dense closed sets) instead of set
of measure zero, assuming that X and Y are separable topological spaces;
this was proved by Kuratowski and Ulam [3].

On R", or on any finite dimensional differentiable manifold, we have
both notions: measure zero (with respect to the Lebesgue measure class) and
first category (with respect to the usual topology). In this situation we define
a null set as a set which is both of first category and has measure zero. We
shall now prove that also null-sets have the Fubini property.

ProprosITION. Let X and Y be finite dimensional differentiable manifolds
and let N c X xY be a null set in the above sense. Then there is a null set
Nyx < X such that, for any xe X—Nx, Nn({x} xY) is a null set in {x} xY
~ Y.

Proof. Since a countable union of null sets is again a null set, we may
assume that N is closed (instead of being a countable union of closed sets)
and has measure zero (from the fact that N has measure zero it follows that
N cannot have interior points; since N 1s closed this means that N must be
nowhere dense). We take a compact set W c Y and define

Xw = {xe X| Nn({x} x W) has positive measure}.

Since Y can be covered by countably many compact subsets, it is enough to
show that for any compact W, X}, is a null.set (since N n({x} x W) is always
closed it is a null set if and only if it has measure zero). From Fubini’s
theorem we know that X, has measure zero, so we only need to show that
Xy is a set of first category, even only that X, is a countable union of
closed set. We prove that the complement of X is a countable intersection
of open sets.

We fix a measure m on Y which is of the same measure class as the
Lebesgue measure; U, = {xe X| m(N n({x} xY)) <&}, where we use the
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“same” measure on {x} x Y as on Y. We claim that U = X, and that U,

contains a neighbourhood of X,. The first statement follows from the
definitions. For xe X — Xy, N n({x} x W) is a compact set of measure zero
in {x} x¥ ~ Y. Hence, for é > 0 sufficiently small, the é-neighbourhood of
N n({x} x W) in ({x} x Y) has measure smaller than ¢. Since N is closed and
W is compact, there is a neighbourhood V of x in X such that, whenever
x'eV, Nn({x'} xW) is contained in a S-neighbourhood of N n({x} x W),
identifying {x} xW and {x'} xW in the obvious way. This means that
¥V = U, and hence that U, contains a neighbourhood of X — X,. This means
that X — X, is a countable intersection of open sets and hence that Xy is a
null set. As we saw before, this completes the proof of the proposition. (]

4. Mapping property

Let X and Y be topological spaces; we assume X to be separable. C(X, Y)
denotes a set of continuous (or differentiable) mappings from X to Y; we
assume C(X, Y) to have a topology such that for each xe X, the map
Ev,: C(X, Y)— Y, defined by Ev.(f) = f(x), is continuous and open.

ProrosiTiON. Let N <Y be a set of first category. Then there is a
subset N < C(X,Y) of first category such that for any feC(X, Y)—N,
ST Y(N) is a subset of Y first category.

Proof. Without loss of generality we may assume that N is a closed
nowhere-dense set. By assumption there is a countable dense set {x,}2, in
X.Let N, = {feC(X, Y)| f(x)e N}; from the assumptions on the topology
of C(X, Y) it follows that N, is a set of first category. Define N = |J N;. For

feC(X, Y)=N, fY(N)is closed (since N is closed) while the complement of
f~Y(N) contains all points x;, i =1, 2, ..., and hence is dense. This means
that f~!(N) is of first category. 0

The above proposition means that sets of first category have the
mapping property (provided that the above assumptions on, the topologies of
C(X, Y) and X are satisfied). A corresponding property for sets of measure
zero is not known. In fact, even for X, Y finite dimensional vector spaces and
C(X, Y) the set of continuous or differentiable mappings from X to Y, one
doesn’t know how to construct a measure on C(X, Y) for which the
mapping property holds.

In order to discuss the mapping property for null sets we first need to
extend this notion to spaces like C(X, Y). Thuis will be done in the next
section.

Finally we point out that, heurnstically, the Fubini property “imples”
the mapping property, at least in some cases. For X, Y, C(X, Y) as above
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and the evaluation map Ev: X xC(X, Y) =Y, defined by Ev(x, f) = f(x), is
open and continuous, we have: For each set N <Y of first category,
Ev~1(N) is also of first category. Using the Fubini property we see that there
is a subset N < C(X, Y) of first category such that for any fe C(X, Y)—N,
(X x{f})nEv '(N) is a set of first category in (X x |f}) and hence that
f~1(N) is a set of first category in X.

The only reason why this last argument does not work for sets of
measure zero is that we have no measure on C(X, Y) such that Ev!
transforms sets ol measure zero in Y to sets of measure zero in X xC(X, Y).

5. Generalized null sets

Let X be a space of C*-vector fields, C*-diffeomorphisms, or C*-endomor-
phisms on a manifold M. X, denotes the space of n-parameter families of
elements in X in the following sense: X, is the space of C*-vector fields, C*-
diffeomorphisms, or C*-endomorphisms on M xR" which are compatible
with the projection =: M x R” — R" (in the sense that the composition of the
dynamics with n gives the trivial dynamics on R"). It is clear that the same
construction, leading from X to X, can be carried out when X consists of
dynamical systems preserving some extra structure, like Hamiltonian dynami-
cal systems, divergence {ree dynamical systems etc. However it can also be
applied to X; (/-parameter families of dynamical systems). In that way we
obtain (X),),. It is clear that (X)), ~ X,.,. We take on all spaces X, the C*-
Whitney topology for dynamical systems on M xR" (for the following
arguments it makes no difference whether we use the weak or the strong
topology). It is clear that we can identify the elements of X, with maps from
R" into X.

We define a null set in X as a subset N < X which 1s of first category
and which has the properly that for each n > 0, there is a set of first category
N, © X, such that for fe X,—N,, f~'(N) has measure zero.

LemMma. For Nc X and N, c X, as above, N, is a null set.

Proof. Using the identification (X,), ~ X,+, We  consider
N,iw ©(X,),. By assumption N,,, is a set of first category. For any
fe€Xpin—Npsw, f: R°"" — X we have that £~ !(N) has measure zero. We
can also represent f as /- R” — X,. We note that x'e R” belongs to f ~*(N,) if
and only if £ =1 (N) n(R" x {x'}) has positive measure in R" x {x'}. Hence, by
Fubini’s theorem, for f¢(X,), —Np+n» J '(N,) has measure zero. By as-
sumption N, is of first category.

In contrast with the examples in Section 2 we have for N < X the
following.
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LEMMA. Let N c X be a set of first category and let N < X, be defined
as N, = {feX,| f~'(N) has positive Lebesque measure). If some N, is of first
category and if 0 <n' < n, then also N, is of first category.

Proof. We first prove that the complement of N, in X, is dense. Let
f'eXy. feX, is defined as f = f'-n with n: R"— R" a linear projection.
Since N, is a set of first category, there is f, arbitrarily near f, with fe X,
— N,. From thjs and the Fubini theorem we find an f* near f” with /"~ '(N) a
set of measure zero. So we only have to show that U, =X, —N, 1s a
countable intersection of closed sets. Without loss of generality we may
assume that N c X is closed. We obtain neighbourhoods of U, by taking

Upoa='1f€Xy| f 1 (N)I"(a) has measure smaller than &};
m Upoapi = Uy

(see also the proof of the proposition in Section 3). From the last lemma it
follows that, when we take X = R", the generalized null sets in R" are just the
sets of first category with measure zero. O

It follows from the above results that null sets have the mapping property, at
least as far as maps f> R" — X in X, are concerned. The Fubini property does
not generalize to the infinite dimensional case for null sets (as far as we
know).

6. Generic properties

If X is a topological space, one says that a property P is generic for the
points (or elements) of X if the set of points, which does rot have property P,
is a set of first category. There are many properties known to be generic for
the case that X is a space of mappings or a space of diffeomorphisms (or
another space of dynamical systems). The proofs, that these properties are
generic, are always based either on transversality or on semi-continuity. For
example, the Kupka-Smale theorem ([2], [8]) and its generalizations are
based on transversality; on the other hand, the closing lemma ([6], [7]) is
based on semi-continuity.

The transversality theorem ([10]) is usually stated as: Let X be the space
of C'-maps from R" to R™, let S < R™ be a smooth submanifold, then, for
generic fe X, [ is transverse with respect to S. In fact the proof gives a
stronger statement: for generic elements f ¢ X, (or f R™ — X), m' = m there
is a null set N, = R™ such that for each ge R™ — N,,., f(q) is transverse with

" respect to S. This implies that the set of elements of X = C!(R", R™), which
are not transverse with respect to S, is a null set not only a set of first
category. (The fact that we had to restrict to m’ 2> m is no problem, see the
second lemma in Section 35).
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The arguments based on semi-continuity on the other hand do not
provide null sets as exceptional sets: to prove however that these exceptional
sets arc no null sets is very hard, it has only been achieved with the C"closing
lcmma on the circle ([S]. [1].

From the above it should be clear that the type of paradoxes, mentioned
in the introduction, are only possible with generic properties, for which the
exceptional set is not a null set. For properties which hold for all elements
not belonging to some null set (hke transversality and the conclustons of the
Kupka—-Smale theorem), I propose to use the term “properties which hold
almost always”. This in analogy with the terminology in probability theory,
and because ol Lhe fact that this notion is compatible with the measure
theoretic notions.
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