MULTIPLICITY AND THE ŁOJASIEWICZ EXPONENT

ARKADIUSZ PŁOSKI

Institute of Applied Mechanics, Technical University
Kielce. Poland

0. Introduction

The purpose of this paper is to present some recent results concerning the Łojasiewicz exponent of a holomorphic mapping at an isolated zero. In Section 1 we recall well-known properties of multiplicity which we need later. Some basic facts about the Łojasiewicz exponent obtained by M. Lejeune-Jalabert and B. Teissier in their seminar at École Polytechnique in 1974 are presented in Section 2. Our approach is different from the original one: no use of the technique of normalized blowing-up will be made.

In Section 3 which is principal for this paper we compare two invariants of a holomorphic mapping f: its multiplicity $m_0(f)$ and Łojasiewicz exponent $l_0(f)$. Roughly speaking we are interested in the following question: what can be said about $l_0(f)$ when $m_0(f)$ is given?

As corollaries of results presented in this part of the paper we obtain some properties of Łojasiewicz exponents. For illustration let us quote the following: a rational number is equal to the Łojasiewicz exponent of a holomorphic mapping of C^2 if and only if it appears in the sequence

1, 2, 3,
$$3\frac{1}{2}$$
, 4, $4\frac{1}{3}$, $4\frac{1}{2}$, $4\frac{2}{3}$, 5, ...

Note that the fractional parts of this Łojasiewicz exponents and the number 1 form Farey's sequences

$$F_2 = \{0, \frac{1}{2}, 1\}, \quad F_3 = \{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\}, \dots$$
 (cf. [Co]).

The author would like to thank Jacek Chądzyński and Tadeusz Krasiński for many stimulating discussions.

1. The multiplicity of a holomorphic mapping

If h is a nonzero holomorphic function defined in an open neighbourhood of the origin $0 \in \mathbb{C}^n$, we denote by ord h its order, by in h the initial form of h,

354 A. PLOSKI

i.e., if $h = \sum_{i \ge m} h_i$, $h_m \ne 0$, is the expansion of h in a series of homogeneous polynomials then ord h = m, in $h = h_m$. By definition, we put ord $0 = +\infty$, in 0 = 0. For any holomorphic mapping $f = (f_1, \ldots, f_m)$: $(C^n, 0) \to (C^m, 0)$ (this notation means that f is defined near 0 and f(0) = 0) we define ord $f = \min_{i=1}^{m} (\operatorname{ord} f_i)$ and $\inf_{i=1}^{m} (\inf_{i=1}^{m} \dots, \inf_{i=1}^{m})$. It is easy to check the following characterisation of the order.

PROPERTY 1.1. Let $f = (f_1, ..., f_m)$: $(C^n, 0) \to (C^m, 0)$ be a nonzero holomorphic mapping. Then ord f is the largest number $q \in \mathbb{R}$ such that $|f(z)| \leq C|z|^q$ near 0 for some constant C > 0.

Note, that we shall use |z| to denote the maximum norm $\max_{i=1} |z_i|$. Let $f = (f_1, \ldots, f_n)$: $(C^n, 0) \to (C^n, 0)$ be a holomorphic mapping. We say that f is finite if 0 is an isolated point of $f^{-1}(0)$. If f is finite then there exist arbitrary small neighbourhoods U and V of the origin such that $U \ni z \to f(z) \in V$ is a proper mapping from U to V which is an unramified covering over an open, dense connected subset of V. We define the multiplicity $m_0(f)$ of f to be the number of sheets of this covering. This notion of multiplicity extends easily to the case of mappings between analytic sets (cf. [M]). Let us recall two useful estimates of multiplicity.

PROPOSITION 1.2 (cf. [Č], [P₂]). Let $f = (f_1, ..., f_n)$: $(C^n, 0) \rightarrow (C^n, 0)$ be a finite mapping. Then $m_0(f) \ge \prod_{i=1}^n \operatorname{ord} f_i$ with equality if and only if $(\inf)^{-1}(0) = \{0\}$.

PROPOSITION 1.3 (cf. [P₃]). Suppose that $g = (g_1, ..., g_n)$ is a polynomial mapping, finite at $0 \in \mathbb{C}^n$. Then

$$m_0(g) \leqslant \prod_{i=1}^n \deg g_i$$
.

One can compute the multiplicity $m_0(f)$ by taking restriction of f to a certain analytic curve. By a local (analytic) curve we mean an analytic 1-dimensional subset of an open neighbourhood of the origin. If a local curve $S \subset \mathbb{C}^n$ is irreducible at 0 then there exists a holomorphic injective mapping $p: (C, 0) \to (C^n, 0)$ such that S near 0 is the image under p of an open neighbourhood of $0 \in \mathbb{C}$.

LEMMA 1.4. If $S = \bigcup_{i=1}^k S_i$ is a decomposition of a local curve S in irreducible components and if p_i is a parametrisation of S_i then for any holomorphic function $h: (C^n, 0) \to (C, 0)$ the multiplicity $m_0(h|S)$ of the

mapping $h \mid S: (S, 0) \to (C, 0)$ is equal to $\sum_{i=1}^{k} \operatorname{ord}(h \circ p_i)$. In particular the multiplicity $m_0(S)$ of S is given by formula

$$m_0(S) = \sum_{i=1}^k \operatorname{ord} p_i.$$

Now, we can state the proposition which often facilitates the computation of multiplicity.

PROPOSITION 1.5 (cf. [Č]). Let $f = (f_1, ..., f_n)$: $(C^n, 0) \rightarrow (C^n, 0)$ be a finite holomorphic mapping such that the differentials $df_1(z), ..., df_{n-1}(z)$ are linearly independent on a dense subset of the curve $S = \{z : f_1(z) = ... = f_{n-1}(z) = 0\}$. Then

$$m_0(f) = m_0(f_n | S).$$

2. The Łojasiewicz exponent

Let $f = (f_1, \ldots, f_n)$: $(C^n, 0) \rightarrow (C^n, 0)$ be a finite holomorphic mapping.

DEFINITION 2.1. The *Lojasiewicz exponent* $l_0(f)$ of the mapping f at $0 \in C^n$ (or, briefly, the exponent of f) is the greatest lower bound of the set of all q > 0 which satisfy the condition: there exists positive constants C, R such that $|f(z)| \ge C|z|^q$ for all $z \in C^n$ such that |z| < R.

From Property 1.1 and from the above definition we have $l_0(f) \ge \text{ord } f$, hence $l_0(f) \ge 1$. The exponent $l_0(f)$ is an analytic invariant: if φ and ψ are local biholomorphisms then $l_0(\psi \circ f \circ \varphi) = l_0(f)$.

Moreover, one can check that $l_0(f)$ like $m_0(f)$ depends only on the local algebra of f. Let S be a local curve. It is useful to define $l_0(f|S)$ by replacing in Definition 2.1 the condition "for all $z \in C^m$ " by "for all $z \in S$ ". Obviously $l_0(f) \ge l_0(f|S)$. One checks easily

LEMMA 2.2. If $S = \bigcup_{i=1}^{k} S_i$ is the decomposition of S into irreducible components and if p_i is a parametrisation of S_i then

$$l_0(f \mid S) = \min_{i=1}^{k} \left(\frac{\operatorname{ord}(f \circ p_i)}{\operatorname{ord} p_i} \right).$$

Combining Lemmas 1.4 and 2.2, we get

$$l_0(f | S) = \min_{i=1}^{k} \left(\frac{m_0(f | S_i)}{m_0(S_i)} \right)$$

where

$$m_0(f | S_i) = \min_{j=1}^n (m_0(f_j | S_i)).$$

If $f = (f_1, ..., f_n)$: $(C^n, 0) \rightarrow (C^n, 0)$ is a finite mapping then for any direction $l = (l_1 : l_2 : ... : l_n) \in P^{n-1}$ the set $f^{-1}(Cl)$ is a local curve described near 0 by equations

$$l_i f_i(z) - l_j f_i(z) = 0$$
 for $i, j = 1, ..., n$.

The expression "for almost every $l \in P^{n-1}$ " will mean "there exist a Zariski open subset $\Omega \subset P^{n-1}$ such that for every $l \in \Omega$ ". The following theorem is due to M. Lejeune-Jalabert and B. Teissier.

THEOREM 2.3 (cf. [L-J-T]). Let $f = (f_1, ..., f_n)$: $(C^n, 0) \rightarrow (C^n, 0)$ be a finite holomorphic mapping. Then:

- (i) The exponent $l_0(f)$ is a rational number. Moreover, the least upper bound in the definition of Lojasiewicz exponent is attained.
- (ii) For almost every $l \in \mathbb{P}^{n-1}$ the exponent $l_0(f)$ is attained on the curve $f^{-1}(Cl)$: $l_0(f) = l_0(f | f^{-1}(Cl))$.

Our proof of Theorem 2.3 is based on the following observation.

LEMMA 2.4 (cf. [P₁]). Let $P(T) = T^m + a_1 T^{m-1} + \ldots + a_m$ be a distinguished polynomial at $0 \in C^n$ (i.e., a_1, \ldots, a_m are holomorphic near 0 and $a_1(0) = \ldots = a_m(0) = 0$). Then $\min_{i=1}^m \left(\frac{1}{i} \operatorname{ord} a_i\right)$ is the largest number $q \in \mathbf{R}$ such that there exist a constant C > 0 and a neighbourhood V of the origin such that

$$\{(w, t) \in V \times C \colon P(w, t) = 0\} \subset \{(w, t) \in V \times C \colon |t| \leqslant C |w|^q\}.$$

The proof of Lemma 2.4 is given in $[P_1]$. Let h be a holomorphic function defined near $0 \in \mathbb{C}^n$. To prove Theorem 2.3 we define: O(f, h) = the least upper bound of the set of all q > 0 which satisfy the condition: there exist positive constants C, R such that $|h(z)| \le C|f(z)|^q$ for all $z \in \mathbb{C}^n$ such that |z| < R. Analogously we define O(f|S, h) for any local curve $S \subset \mathbb{C}^n$.

One sees easily that the following equality holds

(1)
$$l_0(f) = \frac{1}{\min_{i=1}^{n} (O(f, z_i))}$$

where z_i : $C^n \to C$ are coordinate functions. Thus, the statements (i) and (ii) of Theorem 2.3 will follow from the properties:

(2) The number O(f, h) is rational and the least upper bound in the definition of O(f, h) is attained.

(3)
$$O(f, h) = O(f | f^{-1}(Cl), h) \quad \text{for almost every } l \in \mathbf{P}^{n-1}.$$

In order to check (2) and (3) let us consider the characteristic polynomial $P_h(T) = T^m + a_{1,h} T^{m-1} + ... + a_{m,h}$ of h relatively to f. The distinguished

polynomial $P_h(T)$ with holomorphic coefficients has the properties: a) $P_h(T)$ is of degree $m = m_0(f)$; b) there exist arbitrary small neighbourhoods U_0 , V_0 of the origin $0 \in \mathbb{C}^n$ such that the set $\{(w, t) \in V_0 \times \mathbb{C}: P_h(w, t) = 0\}$ is the image of U_0 under the mapping $z \to (f(z), h(z))$. Therefore the inequality $|h(z)| \leq C |f(z)|^q$, $z \in U_0$, is equivalent to the estimate

$$\{(w, t) \in V_0 \times C \colon P_h(w, t) = 0\} \subset \{(w, t) \in V_0 \times C \colon |t| \leqslant C |w|^q\}.$$

Hence, by Lemma 2.4 the least upper bound in the definition of Łojasiewicz exponent is attained. Moreover, we get the equality

(4)
$$O(f, h) = \min_{i=1}^{m} \left(\frac{1}{i} \operatorname{ord} a_{i,h}\right)$$

which implies the rationality of O(f, h). Hence (2) is established. The proof of (3) is similar.

We observe that the image of $f^{-1}(Cl)$ under the mapping $z \to (f(z), h(z))$ is given by equations $P_h(w, t) = 0$, $l_i w_j - l_j w_i = 0$; hence by Lemma 2.4 we get

(5)
$$O(f | f^{-1}(Cl), h) = \min_{i=1}^{m} \left(\frac{1}{i} \operatorname{ord}(a_{i,h} | Cl)\right).$$

Property (3) follows now from (4) and (5) since the set

$$\Omega = \{l \in P^{n-1}: \text{ ord } a_{i,h} = \text{ord } (a_{i,h}|Cl) \text{ for } i = 1, ..., n\}$$

is open in Zariski topology.

Note. Recently, J. Chądzyński and T. Krasiński (cf. [Ch-K]) showed, using the method of "horn neighbourhoods" due to Kuo (cf. [K-L]), that the exponent $l_0(f)$ of the finite mapping $f = (f_1, f_2)$: $(C^2, 0) \rightarrow (C^2, 0)$ is attained on one of the curves $f_1 = 0$ or $f_2 = 0$. This result does not extend to the case of three or more variables.

Indeed, if $f: \mathbb{C}^3 \to \mathbb{C}^3$ is given by $f(x, y, z) = (x^2, y^3, z^3 - xy)$, then $l_0(f) = 18/5$, $l_0(f | \{f_i = f_j = 0\}) \le 3$; hence $l_0(f)$ is not attained on the curves $f_i = f_i = 0$, $i \ne j$.

Combining Lemma 2.2 and Theorem 2.3(ii), we get

Corollary 2.5. Let Π be the set of all analytic paths $p: (C, 0) \to (C^n, 0)$. Then

$$l_0(f) = \sup_{p \in I} \left(\frac{\operatorname{ord}(f \circ p)}{\operatorname{ord} p} \right).$$

For almost all $l \in \mathbb{P}^{n-1}$ the sup is attained on the parametrisation of an irreducible component of the curve $f^{-1}(Cl)$.

The proposition given below completes Corollary 2.5 in the case where f is the gradient of a holomorphic function.

PROPOSITION 2.6 (cf. [T]). Let h be a holomorphic function near $0 \in \mathbb{C}^n$ having at 0 an isolated singularity. Then for almost every $l \in \mathbb{P}^{n-1}$: if p is a parametrisation of an irreducible component of the curve $P_l = (\operatorname{grad} h)^{-1}(Cl)$ then

$$\operatorname{ord}(h \circ p) = \operatorname{ord}(\operatorname{grad} h) \circ p) + \operatorname{ord} p.$$

Proof. Put $H_l = \{z \in \mathbb{C}^n : l_1 z_1 + \ldots + l_n z_n = 0\}$. It is a standard property of polar curves (cf. [T]) that the tangent cone $C_0(P_l)$ and the hyperplane H_l intersect only at the origin $0 \in \mathbb{C}^n$ for almost all $l \in \mathbb{P}^{n-1}$. Let $l \in \mathbb{P}^{n-1}$ be such that $C_0(P_l) \cap H_l = \{0\}$ and let p be the parametrisation of a component of the curve P_l . Differentiating and taking orders give

$$\operatorname{ord}(h \circ p) = \operatorname{ord}((\operatorname{grad} h) \circ p) + \operatorname{ord}(l_1 p_1 + \ldots + l_n p_n).$$

On the other hand, the condition $C_0(P_l) \cap H_l = \{0\}$ implies that ord $(l_1 p_1 + \ldots + l_n p_n) = \text{ord } p$. Therefore we have

$$\operatorname{ord}(h \circ p) = \operatorname{ord}((\operatorname{grad} h) \circ p) + \operatorname{ord} p$$

and Proposition 2.6 is established.

Using Proposition 2.6, the exponent $l_0(\text{grad }h)$ can be computed in terms of analytic invariants of the singularity (cf. [T]). In the case n=2 an interesting formula for $l_0(\text{grad }h)$ was given by Kuo and Lu (cf. [K-L], [T]).

3. Multiplicity and the Łojasiewicz exponent

Let $f = (f_1, ..., f_n)$: $(C^n, 0) \rightarrow (C^n, 0)$ be a finite holomorphic mapping. From formulae (1) and (4) in the proof of Theorem 2.3 we obtain

PROPOSITION 3.1 (cf. [P₁]). If $l_0(f) = p/q$ where p, q > 0 are relative prime integers then $1 \le q \le p \le m_0(f)$.

The above property shows that for a given $m \ge 1$, the set of all numbers $l \in \mathbb{R}$ such that there is a holomorphic mapping f satisfying the conditions $l_0(f) = l$ and $m_0(f) = m$ is finite. We shall determine these sets later for small values of $m_0(f)$.

In the proposition below, [x] denotes the integral part of the number x.

PROPOSITION 3.2 (cf. [A], [P₃]). For any finite holomorphic mapping $f: (C^n, 0) \rightarrow (C^n, 0)$ we have

$$m_0(f) \leqslant ([l_0(f)])^n$$
.

The proof of Proposition 3.2 is based on a lemma that is of independent interest.

LEMMA 3.3 (cf. [P₃]). If $g: (C^n, 0) \to (C^n, 0)$ is a holomorphic mapping such that ord $(g-f) > l_0(f)$ then g is finite, $l_0(g) = l_0(f)$ and $m_0(g) = m_0(f)$.

The proof of Lemma 3.3 is given in [P₃]. In order to prove Proposition 3.2 let us put g_i = the sum of all monomials of degree $\leq [l_0(f)]$ which appear in the Taylor series of f_i and let $g = (g_1, ..., g_n)$. Therefore ord $(g-f) > l_0(f)$ and from Lemma 3.3 and Proposition 1.3 we get

$$m_0(f) = m_0(g) \leqslant \prod_{i=1}^n \deg g_i \leqslant ([l_0(f)])^n.$$

Now, let $f: (C^n, 0) \to (C^n, 0)$ be a holomorphic finite mapping and let $l_0(f) = N + b/a$ where $N = [l_0(f)]$ and a, b are relative prime integers such that $0 \le b < a$. Combining Propositions 3.1 and 3.2 we get $aN + b \le N^n$, whence $a < N^{n-1}$ if b > 0. Summarizing, we have proved the following strengthened version of Theorem 2.3(i).

THEOREM 3.4 (cf. [P₃]). Let $f: (C^n, 0) \to (C^n, 0)$ be a holomorphic finite mapping. Then there exist integers N, a, b such that $l_0(f) = N + b/a$ with $0 < b < a < N^{n-1}$ or the exponent $l_0(f)$ is an integer.

Let L_n be the set of all numbers $l \in \mathbb{R}$ which possess the following property: there exists a finite mapping $f: (C^n, 0) \to (C^n, 0)$ such that $l_0(f) = l$. Obviously $L_1 = \{1, 2, 3, \ldots\}$. From Theorem 3.4 it follows that each of the sets L_n can be arranged in an increasing sequence. The mapping $(x, y) \to (x^{a+1} + y^a, x^{N-b}y^b)$, where 0 < b < a < N are integers, has the exponent equal to N + b/a. Therefore $L_2 = \{1, 2, 3, 3\frac{1}{2}, 4, 4\frac{1}{3}, 4\frac{1}{2}, 4\frac{2}{3}, \ldots\}$.

Let us note that the evaluation of L_n (n > 2) given in Theorem 3.4 is not exact. Now, we would like to present an estimate of the exponent of a holomorphic mapping in terms of the multiplicity and the orders of its components.

THEOREM 3.5 (cf. [Ch], [P₂]). Let $f = (f_1, ..., f_n)$: $(C^n, 0) \rightarrow (C^n, 0)$ be a finite holomorphic mapping. Then, we have

$$\max_{i=1}^{n} (\text{ord } f_i) \leq l_0(f) \leq m_0(f) - \prod_{i=1}^{n} \text{ord } f_i + \max_{i=1}^{n} (\text{ord } f_i).$$

The above estimate was proved by Chądzyński in [Ch] in the case of two variables n = 2, the general case $n \ge 2$ was done in [P₂]. We give here a new proof which is based on Theorem 2.3.

Proof of Theorem 3.5. We may assume, without loss of generality, that ord $f_i \leq \text{ord } f_n$ for i = 1, ..., n. Let $p: (C, 0) \to (C^n, 0)$ be a parametrisation of

an irreducible component of the curve $f_1 = \ldots = f_{n-1} = 0$. Then $f_n \circ p \neq 0$ near 0 and

$$\operatorname{ord}(f \circ p) = \operatorname{ord}(f_n \circ p) \geqslant (\operatorname{ord} f_n)(\operatorname{ord} p),$$

consequently we get

$$l_0(f) \geqslant \frac{\operatorname{ord}(f \circ p)}{\operatorname{ord} p} \geqslant \operatorname{ord} f_n = \max_{i=1}^n (\operatorname{ord} f_i).$$

In order to prove the second estimate let us consider the curves $S_k = f^{-1}(Ck+C)$ where $k = (k_1, ..., k_{n-1}) \in C^{n-1}$. Then S_k is an analytic curve given near 0 by equations

$$f_1 - k_1 f_n = \ldots = f_{n-1} - k_{n-1} f_n = 0.$$

Applying Sard's theorem to the mapping

$$U \setminus f_n^{-1}(0) \ni z \to \left(\frac{f_1(z)}{f_n(z)}, \ldots, \frac{f_{n-1}(z)}{f_n(z)}\right) \in \mathbb{C}^{n-1},$$

and Theorem 2.3, we find a point $k = (k_1, ..., k_{n-1}) \in \mathbb{C}^{n-1}$ such that the following conditions hold:

(1) the differentials
$$df_1(z) - k_1 df_n(z), \dots, df_{n-1}(z) - k_{n-1} df_n(z)$$

are linearly independent for $z \in S_k \setminus \{0\}$;

(2)
$$\operatorname{ord}(f_i - k_i f_n) = \operatorname{ord} f_i \text{ for } i = 1, ..., n-1;$$

(3)
$$l_0(f) = l_0(f | S_k).$$

Form (1) and Proposition 1.5 it follows that for any holomorphic function $h: (C^n, 0) \rightarrow (C, 0)$ we have

(4)
$$m_0(f_1-k_1 f_n, \ldots, f_{n-1}-k_{n-1} f_n, h) = m_0(h|S_k).$$

Therefore we get

(5)
$$m_0(S_k) \geqslant \operatorname{ord} f_1 \dots \operatorname{ord} f_{n-1}$$

Indeed, putting in (4) h = a linear form with sufficiently general coefficients we get with the help of Proposition 1.2:

$$m_0(S_k) = m_0(h | S_k) = m_0(f_1 - k_1 f_n, \dots, f_{n-1} - k_{n-1} f_n, h)$$

$$\geqslant \operatorname{ord}(f_1 - k_1 f_n) \dots \operatorname{ord}(f_{n-1} - k_{n-1} f_n) \operatorname{ord} h$$

$$= \operatorname{ord} f_1 \dots \operatorname{ord} f_{n-1}.$$

On the other hand let us note that setting $h = f_n$ in (4) gives

(6)
$$m_0(f_n|S_k) = m_0(f).$$

Let $S_k = \bigcup_j S_k^{(j)}$ be a decomposition of S_k into irreducible components. We may assume that $l_0(f \mid S_k) = l_0(f \mid S_k^{(1)})$. Now, we have

$$m_{0}(f) - \prod_{i=1}^{n} \operatorname{ord} f_{i} + \max_{i=1}^{n} (\operatorname{ord} f_{i}) = m_{0}(f) - (\prod_{i=1}^{n-1} \operatorname{ord} f_{i}) \cdot \operatorname{ord} f_{n} + \operatorname{ord} f_{n}$$

$$\geq m_{0}(f_{n}|S_{k}) - m_{0}(S_{k}) \operatorname{ord} f_{n} + \operatorname{ord} f_{n} = \sum_{j} (m_{0}(f_{n}|S_{k}^{(j)}) - m_{0}(S_{k}^{(j)}) \operatorname{ord} f_{n}) + \operatorname{ord} f_{n}$$

$$\geq m_{0}(f_{n}|S_{k}^{(1)}) - m_{0}(S_{k}^{(1)}) \operatorname{ord} f_{n} + \operatorname{ord} f_{n}$$

$$\geq \frac{m_{0}(f_{n}|S_{k}^{(1)})}{m_{0}(S_{k}^{(1)})} = l_{0}(f_{n}|S_{k}^{(1)}) = l_{0}(f_{n}|S_{k}) = l_{0}(f).$$

The estimate in Theorem 3.5 is the best possible.

EXAMPLE 3.6. Let m_1 , m_2 , $m \ge 1$ be integers such that $m \ge m_1 m_2$ and $m_2 \le m_1$. Let $f(z_1, z_2) = (z_1^{m_1} + z_2^{m_1+m-m_1m_2}, z_1 z_2^{m_2-1})$. Then ord $f_1 = m_1$, ord $f_2 = m_2$, $m_0(f) = m$ and $l_0(f) = m - m_1 m_2 + m_1$. Similarly we construct examples for n > 2 (cf. $[P_2]$).

Remark 3.7. In the notations of the proof of Theorem 3.5 we have

$$\begin{split} m_0(f) &= m_0(f_n|S_k) = \sum_j m_0(f_n|S_k^{(j)}) = \sum_j l_0(f_n|S_k^{(j)}) \, m_0(S_k^{(j)}) \\ &\leqslant \sum_j l_0(f) \, m_0(S_k^{(j)}) = l_0(f) \, m_0(S_k) \quad \text{ for almost all } k \in C^{n-1}. \end{split}$$

If n=2 then $m_0(S_k)=\text{ord } f$ (for almost all k) and we get the estimate

$$l_0(f) \geqslant \frac{m_0(f)}{\text{ord } f}.$$

Suppose that $f = (f_1, ..., f_n)$: $(C^n, 0) \rightarrow (C^n, 0)$ is a holomorphic mapping such that $(\inf)^{-1}(0) = \{0\}$. Then

$$m_0(f) = \prod_{i=1}^n \operatorname{ord} f_i,$$

by Proposition 1.2 and from Theorem 3.5 we get

COROLLARY 3.8. If $f = (f_1, ..., f_n)$: $(C^n, 0) \rightarrow (C^n, 0)$ is a holomorphic mapping such that $(\inf)^{-1}(0) = \{0\}$ then

$$l_0(f) = \max_{i=1}^n (\operatorname{ord} f_i).$$

Using Proposition 3.2 and Theorem 3.5 we obtain similarly

COROLLARY 3.9. If $f = (f_1, ..., f_n)$: $(C^n, 0) \to (C^n, 0)$ is finite, ord $f_1 = ... = \text{ord } f_n = k$ and $m_0(f) = k^n + 1$, then $l_0(f) = k + 1$.

We conclude this paper by computing the exponent $l_0(f)$ for small values of $m_0(f)$.

Proposition 3.10. The list below gives the exact evaluations of the exponent $l_0(f)$ for $m_0(f) \le 9$.

$m_0(f)$	ı	2	3	4	5	6	7	8	9
$l_0(f)$	1	2	3	2, 4	3, 5	3, 4, 6	$3\frac{1}{2}$, 4, 5, 7	2, 4, 5, 6, 8	$3, 4\frac{1}{2}, 5, 6, 7, 9$

We need three lemmas. We omit the standard proof of the following

LEMMA 3.11. If $f = (f_1, ..., f_n)$: $(C^n, 0) \rightarrow (C^n, 0)$ is a finite mapping such that r = rank(df(0)) < n then there exists a holomorphic mapping

$$\tilde{f} = (\tilde{f}_1, \ldots, \tilde{f}_{n-r}): (C^{n-r}, 0) \to (C^{n-r}, 0)$$

such that $m_0(f) = m_0(\tilde{f})$, $l_0(f) = l_0(\tilde{f})$ and ord $\tilde{f} \ge 2$.

LEMMA 3.12. If $f = (f_1, f_2)$: $(C^2, 0) \rightarrow (C^2, 0)$ is finite of multiplicity $m_0(f) = m$ and if ord f = 2 then

(*)
$$l_0(f) \in \{\frac{1}{2}m\} \cup \{\text{all integers } l \text{ such that } \frac{1}{2}m \leqslant l \leqslant m-2\}.$$

This evaluation is exact if $m \neq 5$.

Proof. In virtue of Theorem 3.5 and Remark 3.7 we have

$$\frac{m_0(f)}{\operatorname{ord} f} \leqslant l_0(f) \leqslant m_0(f) - \operatorname{ord} f_1 \operatorname{ord} f_2 + \max(\operatorname{ord} f_1, \operatorname{ord} f_2).$$

If ord f = 2 and $m_0(f) = m$ then we get

$$\frac{1}{2}m \leqslant l_0(f) \leqslant m-2.$$

Hence if $l_0(f)$ is an integer then (*) holds. If $l_0(f)$ is not an integer then we write $l_0(f) = b/a$, $2 \le a \le b$ with a, b relative prime.

Then we have $b \le m$ by Proposition 3.1 and $b/a \ge m/2$. Therefore we get a=2 and b=m. This proves the evaluation (*). Now, let $m \ge 4$ be an integer (we take $m \ge 4$ because $m_0(f) \ge (\operatorname{ord} f)^2 = 2^2 = 4$) and let l be an integer such that $\frac{1}{2}m \le l \le m-2$. Then $m-l \ge 2$ and $2(m-l) \le m$, so by Example 3.6 there is a holomorphic mapping $f = (f_1, f_2)$ such that $\operatorname{ord} f_1 = 2$, $\operatorname{ord} f_2 = m-l$, $m_0(f) = m$ and $l_0(f) = m-2(m-l)+\max(2, m-l) = l$. If $m \ge 7$ is an odd integer then for the mapping $f(x, y) = (y^2 - x^3, xy^{N-1})$, where $N = \left[\frac{1}{2}m\right]$, we have $m_0(f) = m$, $\operatorname{ord} f = 2$ and $l_0(f) = \frac{1}{2}m$. This shows that the evaluation (*) is exact.

LEMMA 3.13. Suppose that $f = (f_1, ..., f_n)$: $(C^n, 0) \to (C^n, 0)$ is finite. Let r = rank(df(0)). Then $m_0(f) \ge 2^{n-r}$. If $m_0(f) = 2^{n-r}$, then $l_0(f) = 2$, if $m_0(f) = 2^{n-r} + 1$, then $l_0(f) = 3$.

 \Box

Proof. By Lemma 3.11 there is a holomorphic mapping $\tilde{f} = (\tilde{f}_1, \ldots, \tilde{f}_{n-r})$ such that $l_0(\tilde{f}) = l_0(f)$, $m_0(\tilde{f}) = m_0(f)$ and ord $\tilde{f} \ge 2$. Then

$$m_0(f) = m_0(\tilde{f}) \geqslant \operatorname{ord} \tilde{f}_1 \ldots \operatorname{ord} \tilde{f}_{n-r} \geqslant 2^{n-r}$$

according to Proposition 1.2.

If $m_0(f) = 2^{n-r}$, then $(\inf)^{-1}(0) = \{0\}$ by Proposition 1.2 and $l_0(f) = l_0(\tilde{f}) = 2$ by Corollary 3.8. If $m_0(f) = m_0(\tilde{f}) = 2^{n-r} + 1$, then ord $f_1 = \dots =$ ord $f_{n-r} = 2$ by Proposition 1.2 and we get $l_0(f) = l_0(\tilde{f}) = 3$ by Corollary 3.9.

Proof of Proposition 3.10. Let $f: (C^n, 0) \to (C^n, 0)$ be a finite holomorphic mapping. Put $r_0(f) = \text{rank } (df(0))$ and assume $m_0(f) \le 9$. Then by Lemma 3.13 we have $r_0(f) \ge n-3$. Let us distinguish three cases.

Case 1. $r_0(f) \ge n-1$. According to Lemma 3.11 we may assume n=1, hence $l_0(f) = m_0(f)$.

Case 2. $r_0(f) = n-2$. By Lemma 3.13 we get $m_0(f) \ge 4$. Moreover $l_0(f) = 2$ if $m_0(f) = 4$ and $l_0(f) = 3$ if $m_0(f) = 5$. Assume that $m_0(f) \ge 6$. According to Lemma 3.11 we may assume n = 2, hence $r_0(f) = 0$, i.e. ord $f \ge 2$. From the inequalities $m_0(f) \ge (\operatorname{ord} f)^2$, ord $f \ge 2$ we get ord f = 2 or ord f = 3, since $m_0(f) \le 9$. We have ord f = 3 only if $m_0(f) = 9$ and ord $f_1 = \operatorname{ord} f_2 = 3$, hence $l_0(f) = 3$ by Corollary 3.8. Then we may assume ord f = 2. From Lemma 3.12 we get $l_0(f) = \frac{1}{2}m_0(f)$ or $l_0(f)$ is an integer from the interval $\left[\frac{1}{2}m_0(f), m_0(f) - 2\right]$.

Case 3. $r_0(f) = n-3$. Then by Lemma 3.13 we have $m_0(f) \ge 8$ with $l_0(f) = 2$ (if $m_0(f) = 8$) or $l_0(f) = 3$ (if $m_0(f) = 9$).

Summing up the results of the above reasoning we get Proposition 3.10.

References

- [A] J. D'Angelo, Real hypersurfaces, orders of contact and applications, Ann. of Math. (2) 115 (1982), 615-637.
- [Ch] J. Chądzyński, On the order of an isolated zero of a holomorphic mapping, Bull. Pol. Acad. Sci. Math. 31 (1983), 121-128.
- [Ch-K] J. Chadzyński and T. Krasiński, The Lojasiewicz exponent of analytic mapping of two complex variables at an isolated point, this volume, 139-146.
 - [Co] H. S. M. Coxeter, Introduction to Geometry, Wiley, New York 1961.
 - [Č] E. M. Čirka, Complex Analytic Sets, Nauka, Moscow 1985 (in Russian).
 - [K-L] T. C. Kuo and Y. C. Lu, On analytic function germs of two complex variables, Topology 16 (1977), 299-310.
- [L-J-T] M. Lejeune-Jalabert and B. Teissier, Cloture integrale des idéaux et equisingularité, Centre de Mathematiques, École Polytechnique, 1974.
 - [M] D. Mumford, Algebraic Geometry, vol. I, Springer-Verlag, Berlin 1976.
 - [P₁] A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Pol. Acad. Sci. Math. 31 (1983), 259-262.

- [P₂] A. Płoski, Sur l'exposant dune application analytique, I, Bull. Pol. Acad. Sci. Math. 32 (1984), 669–673.
- [P₃] -, Sur l'exposant d'une application analytique, II, Bull. Pol. Acad. Sci. Math. 33 (1985), 123-127.
- [P₄] -, On the growth of proper polynomial mappings, Ann. Polon. Math. 45 (1985), 95-107.
- [T] B. Teissier, Variétés polaires: 1 Invariant polaires des singularités d'hypersurfaces, Invent. Math. 40 (1977), 267-292.

Presented to the semester Singularities 15 February – 15 June, 1985