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0. Introduction

The purpose of this paper is to present some recent results concerning the
Yojasiewicz exponent of a holomorphic mapping at an isolated zero. In
Section 1 we recall well-known properties of multiplicity which we need later.
Some basic facts about the Lojasiewicz exponent obtained by M. Lejeune-
Jalabert and B. Teissier in their seminar at Ecole Polytechnique in 1974 are
presented in Section 2. Qur approach is different from the original one: no
use of the-technique of normalized blowing-up will be made.

In Section 3 which is principal for this paper we compare two invariants
of a holomorphic mapping f: its multiplicity m,(f) and Lojasiewicz exponent
lo(f). Roughly speaking we are interested in the following question: what
can be said about [,(f) when mgy(f) is given?

As corollaries of results presented in this part of the paper we obtain
some properties of Lojasiewicz exponents. For illustration let us quote the
following: a rational number is equal to the lojasiewicz exponent of a
holomorphic mapping of C? if and only if it appears in the sequence

1, 2, 3, 34, 4, 43, 4}, 43, 5, ...

Note that the fractional parts of this Lojasiewicz exponents and the number
1 form Farey’s sequences

F,=1{0,%,1}, Fy=1{0,%,44%1},... (cf [Co).

The author would like to thank Jacek Chadzynski and Tadeusz Krasin-
ski for many stimulating discussions.

1. The multiplicity of a holomorphic mapping

If h is a nonzero holomorphic function defined in an open neighbourhood of
the origin 0e C", we denote by ord h its order, by in A the initial form of h,
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ie, if h= Z h;, h, # 0, 1s the expansion of h in a series of homogeneous
polynomials/then ord h = m, in h = h,. By definition, we put ord0 = + a0, in
0 = 0. For any holomorphic mapping f = (f, ..., fu): (C", 0) = (C™, 0) (this
notation means that f is defined near 0 and f(0) =0) we define ord f

= min(ord f;) and infl = (inf,, ..., inf,). It is easy to check the following
i=1
characterisation of the order.

ProperTY 1.1, Let f =(f;. ..., fm): (C", 0) = (C™, 0) be a nonzero holo-
morphic mapping. Then ordf is the largest number qeR such that
|f ()| < C|z|* near O for some constant C > 0.

n

Note, that we shall use |z] 10 denote the maximum norm max |z;|. Let f
i=1

=(f1, .-, f): (C", 0) = (C", 0) be a holomorphic mapping. We say that f is
finite if O is an isolated point of f ~'(0). If fis finite then there exist arbitrary
small neighbourhoods U and V of the origin such that Usz — f(z)eV is a
proper mapping from U to V which is an unramified covering over an open,
dense connected subset of V. We define the multiplicity mo(f) of f to be the
number of sheets of this covering. This notion of multiplicity extends easily
to the case of mappings between analytic sets (cf. [M]). Let us recall two
useful estimates of multiplicity.

ProrositioNn 1.2 (cf. [C], [P,]). Let f =(fy,....[ ): (C, 0)—(C", 0)
be a finite mapping. Then my(f) = []| ord f; with equality if and only if
(in 1 (0) = {0}.

ProrosiTioN 1.3 (cf. [P3]). Suppose that g =1(g,, ..., g,) is a polynomial
mapping, finite at 0e C". Then

my(g) < [] degg:.

i=1

One can compute the multiplicity m,(f) by taking restriction of f to a
certain analytic curve. By a local (analytic) curve we mean an analytic 1-
dimensional subset of an open neighbourhood of the origin. If a local curve
S < C" is irreducible at O then there exists a holomorphic injective mapping
p: (C,0)—(C", 0) such that S near O is the image under p of an open
neighbourhood of 0e C.

k
Lemma 14. If S= U S; is a decomposition of a local curve S in

i=1
irreducible components and if p; is a parametrisation of S; then for any
holomorphic  function h: (C", 0) =»(C, 0) the multiplicity mqg(h|S) of the



MULTIPLICETY AND THE LOJASIEWICZ EXPONENT 355

k

mapping h|S: (S, 0) =(C, 0) is equal to ) ord(hop). In particular the multi-
i=1

plicity mo(S) of S is given by formula

k

my(S) = Y. ordp;.
i=1
Now, we can state the proposition which often facilitates the computation
of multiphcity.

ProposiTioNn 1.5 (cf. [C]). Let f=(f1,---,[2): (C", 00— (C", 0) be a
finite holomorphic mapping such that the differentials df,(z), ..., df,- (2) are
linearly independent on a dense subset of the curve S =1{z: fi(z)=...
= f,-1(2) =0}. Then

mo(f) = mo(f]8).

2. The lLojasiewicz exponent
Let f =(f}, ..., [ (C*, 0)—(C", 0) be a finite holomorphic mapping.

DeriniTion 2.1. The lojasiewicz exponent l,(f) of the mapping f at
0e C" (or, briefly, the exponent of f) is the greatest lower bound of the set of
all ¢ > 0 which satisfy the condition: there exists positive constants C, R
such that |f(z)| = C|z|? for all ze C" such that |z} < R.

From Property 1.1 and from the above definition we have /,(f) = ord f,
hence l,(f) = 1. The exponent ly(f) is an analytic invariant: il ¢ and y are
local biholomorphisms then [, (y o f o) = l5(f).

Moreover, one can check that I,(f) like mqy(f) depends only on the
local algebra of f. Let S be a local curve. It is useful to define I,(f|S) by
replacing in Definition 2.1 the condition “for all ze C™ by “for all zeS™.
Obviously I,(f) = lo(f|S). One checks easily

k
Lemma 22, If §= {J S; is the decomposition of S into irreducible

i=1

components and if p; is a parametrisation of S; then
L ford(fop)
l S) = _— ]
o(f1S) I.T?( ord 7,
Combining Lemmas 1.4 and 2.2, we get

_E (mo(f]S)
lo(fls) - E‘? ( mq (S;) )

where

mo(f15) = min(mq(f;| ).

i=1
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If f=04,....0):(C",00—(C",0) is a finite mapping then for any
direction I = (I, :1,:...: 1 )e P""! the set f " !'(Cl) is a local curve described
near 0 by equations

L= fiz)=0 fori,j=1,...,n.

The expression “for almost every /e P"~'” will mean “there exist a Zariski
open subset 2 < P"~! such that for every /e Q”. The following theorem is
due to M. Lejeune-Jalabert and B. Teissier.

THEOREM 2.3 (cf. [L-J-T]). Let f =(f;,....0): (C", 0) = (C", 0) be a
finite holomorphic mapping. Then:

(1) The exponent ly(f) is a rational number. Moreover, the least upper
bound in the definition of tojasiewicz exponent is attained.

(ii) For almost every le P"~' the exponent l,(f) is attained on the curve

STHED: L (f) = (f1/71(CD).
Our proof of Theorem 2.3 is based on the following observation.

LemMMA 24 (cf. [P,])). Let P(T)=T"+a, T™ '+ ... +a, be a distin-

guished polynomial at 0e C" (i.e., a,, ..., a,, are holomorphic near 0 and a, (0)
m (]

=...=a,(0) =0). Then min (—, ord ai) is the largest number gec R such that
i=1 \!

there exist a constant C > 0 and a neighbourhood V of the origin such that

{w, )eVxC: P(w, 1) =0} < {(w, De¥VxC: |t| < C|w|%}.

The proof of Lemma 2.4 is given in [P;]. Let h be a holomorphic
function defined near 0e C". To prove Theorem 2.3 we define: O(/f, h) = the
least upper bound of the set of all g > 0 which satisfy the condition: there
exist positive constants C, R such that |h(z)] < C|f(z))? for all ze C” such
that |z] < R. Analogously we define O(f|S, h) for any local curve S < C".

One sees easily that the following equality holds

1
(1) lo(f) =—;

“11:1 (0. z))

where z;: C"— C are coordinate functions. Thus, the statements (i) and (ii) of
Theorem 2.3 will follow from the properties:

(2) The number O(/, h) i1s rational and the least upper bound
in the definition of O(/f, h) is attained.

(3) O(f,=0(f1f"(CD, h) for almost every le P""'.

In order to check (2) and (3) let us consider the characteristic polyno-
mial P,(T) = T"+a,, T" '+ ... +a,, of h relatively to f. The distinguished
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polynomial P,(T) with holomorphic coefficients has the properties: a) P,(T)
is of degree m = my(f); b) there exist arbitrary small neighbourhoods U,,
Vo of the origin 0&C" such that the set {(w, 1)eVy; xC: P,(w, 1) =0} is the
image of U, under the mapping z —=(f(2), h(z)). Therefore the inequality
h(2)] < C|f(2)|%, zeU,, is equivalent to the estimate

{w, e Vo xC: Py(w, t) =0} < {(w, )e Vo xC: 1] < C|w|?}.

Hence, by Lemma 2.4 the least upper bound in the definition of Lojasiewicz
exponent 1s attained. Moreover, we get the equality

4 o(f,h= nﬁn G ord ai_b)

i=1

which implies the rationality of O(f, h). Hence (2) is established. The proof of
(3) is similar.

We observe that the image of f~!(Cl) under the mapping z
— (f(2), h(z)) is given by equations P,(w, t)=0, L w;—lw, =0; hence by
Lemma 24 we get

% O(f1f~*(C), h) = m"iln Gord (a,-,,,|Cl)).

i=1
Property (3) follows now from (4) and (5) since the set
Q={leP"': orda;, =ord(a,|C)) for i=1, ..., n}
is open in Zariski topology.
Note. Recently, J. Chadzynski and T. Krasinski (cf. [Ch—K]) showed,
using the method of “horn neighbourhoods” due to Kuo (cf. (K-L]), that the
exponent ly(f) of the finite mapping [ = (f;, f3): (C?, 0) - (C?, 0) is attained

on one of the curves f; = 0 or f; = 0. This result does not extend to the case
of three or more variables.

Indeed, if f: C* - C? is given by f(x,y, z) =(x3, y?, 22 —xy), then
lo(f) = 18/5, I,(f11fi =f; =0}) <3; hence l,(f) is not attained on the
curves fi = f; =0, i #J.

Combining Lemma 2.2 and Theorem 2.3(ii), we get

CoroLLary 2.5. Let IT be the set of all analytic paths p: (C, 0) — (C", 0).
Then

d
lo(f) = sup (Oroigsp)).

pell

For almost all e P"~! the sup is attained on the parametrisation of an
irreducible component of the curve f~'(CI).
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The proposition given below completes Corollary 2.5 in the case where f
is the gradient of a holomorphic function.

ProposiTioN 2.6 (cf. [T]). Let h be a holomorphic function near 0ec C"
having at 0 an isolared singularity. Then for almost every leP""': if pis a
parametrisation of an irreducible component of the curve P, = (grad h)”!(C))
then

ord (ho p) = ord((grad h) o p)+ord p.

Proof. Put Hi=1{zeC" l;z,+ ...+1,z,=0}. It is a standard property
of polar curves (cf. [T]) that the tangent cone C,(P) and the hyperplane H,
intersect only at the origin Oe C" for almost all le P"~'. Let le P! be such
that Co(P)~H, = {0} and let p be the parametrisation of a component of
the curve P,. Differentiating and taking orders give

ord(hop) = ord ((grad o p)+ord(l; p; + ... +1,p,).

On the other hand, the condition Cy(P)n H,= {0} implies that
ord(l, py+ ... + 1, p,) = ord p. Therefore we have
ord(ho p) = ord((grad h)o p)+ord p
and Proposition 2.6 is established. O
Using Proposition 2.6, the exponent [y (grad h) can be computed in terms

of analytic invariants of the singularity (cf. [T]). In the case n=2 an
interesting formula for Iy (grad h) was given by Kuo and Lu (cf. [K-L], [T]).

3. Multiplicity and the Lojasiewicz exponent

Let f =(f;, ..., [.): (C", 0)—(C", 0) be a finite holomorphic mapping. From
formulae (1) and (4) in the proof of Theorem 2.3 we obtain

PropositioN 3.1 (cf. [P,]). If lo(f) = p/q where p, q > 0 are relative
prime integers then 1 < g < p < my(f).

The above property shows that for a given m > 1, the set of all numbers
le R such that there is a holomorphic mapping f satisfying the conditions
lo(f) =1 and my(f) =m is finite. We shall determine these sets later for
small values of mgy(f).

In the proposition below, [x] denotes the integral part of the number x.

ProposiTioN 3.2 (cf. [A], [Ps]). For any finite holomorphic mapping
[ (C", 0) = (C", 0) we have

mo(f) < ([l (N])"-
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The proof of Proposition 3.2 is based on a lemma that is of independent
interest.

LemMma 3.3 (cf. [P3]). If g: (C", 0) = (C", 0) is a holomorphic mapping
such that ord{(g—f) > lo(f) then g is finite, lo(g) = lo,(f) and my(g) = my(f).

The proof of Lemma 3.3 is given in [P;]. In order to prove Proposition
3.2 let us put g; =the sum of all monomials of degree < [lo(f)] which
appear in the Taylor series of f, and let g =(g,, ..., g,). Therefore
ord(g—f) > lo(f) and from Lemma 33 and Proposition 1.3 we get

ma(f) = molg) < [ degg, < ([N

Now, let f: (C", 0) = (C", 0) be a holomorphic finite mapping and let
lo(/) = N+bjfa where N = [l,(f)] and a, b are relative prime integers such
that 0 < b < a. Combining Propositions 3.1 and 3.2 we get aN+b < N",
whence a < N"~!' if b> 0. Summarizing, we have proved the following
strengthened version of Theorem 2.3(i).

THEOREM 34 (cf. [P3]). Let f: (C", 0) = (C", 0) be a holomorphic finite
mapping. Then there exist integers N, a, b such that l,(f) = N4 bfa with 0
<b<a< N"! or the exponent 1,{f) is an integer.

Let L, be the set of all numbers /e R which possess the following
property: there exists a finite mapping f: (C", 0) — (C", 0) such that [,(f) =L
Obviously L, = {1, 2,3, ...}. From Theorem 34 it follows that each of the
sets L, can be arranged in an increasing sequence. The mapping (x, y)
—(x®* 1437 xV"*y%), wherte 0 <b <a < N are integers, has the exponent
equal to N-+b/a. Therefore L, ={1,2, 3,34, 4,45, 45, 4%, ...

Let us note that the evaluation of L, (n > 2) given in Theorem 3.4 is not
exact. Now, we would like to present an estimate of the exponent of a
holomorphic mapping in terms of the multiplicity and the orders of its
components.

THeoREM 3.5 (cf. [Ch], [P,]). Let f =(fi, -.-, f;): (C", 0)—=(C", 0) be a
finite holomorphic mapping. Then, we have

m;x(ordﬁ) Llo(f)Y < mo(f)— [n] ordﬁ-i-m;x(ord £).
i=1 i=1 i=1

The above estimate was proved by Chadzynski in [Ch] in the case of
two variables n = 2, the general case n > 2 was done in [P,]. We give here a
new proof which is based on Theorem 23.

Proof of Theorem 3.5. We may assume, without loss of generality, that
ord f<ordf,fori=1,..., n Let p: (C, 0)—(C", 0) be a parametrisation of
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an 1rreducible component of the curve fi =...=f,_, =0. Then fop#0
near 0 and

ord(f op) = ord(f,0p) = (ord f,)(ord p),

consequently we get

ord(f op)
lo(f) ?‘—O}EP—*

In order to prove the second estimate let us consider the curves §, =
S Y (Ck+C) where k =(k;,...,k,_,)eC""'. Then S, is an analytic curve
given near 0 by equations

Si—kifo=...= fo-1—kn1 [ =0.

Applying Sard’s theorem to the mapping

02 (B, S o
U\ £ 1 (0)22 (f..(z)""’ )<

and Theorem 2.3, we find a point k =(k, ..., k,~,)eC"" ! such that the
following conditions hold:

(1) the differentials df; (z) —k, df,(2), ..., df,_ 1 (2) —Kk,_ (df,(2)

= ord f, = m:u( (ord f;).
i=1

are linearly independent for z €S§,\ (0};
(2) ord(fi—k; f)=ord f; for i=1,..., n—1;

3) lo(f) = lo(f154)-

Form (1) and Proposition 1.5 it follows that for any holomorphic
function h: (C", 0) - (C, 0) we have

(4) mo (fy —ki fos - Jam 1 —Kn 1oy 1) = Mo (h]Sy).
Therefore we get
(5) my(Sy) =ordf, ...ordf,_,.

Indeed, putting in (4) h = a linear form with sufficiently general coefficients
we get with the help of Proposition 1.2:

mo (Sy) = mo(h|S) = mo(fi —ky fas - s fom 1 —kn—1 Sos B
zord(fy—ky f)...od(f,-,—k,_, f,)ord h
=ordf, ...ord f,_,.
On the other hand let us note that setting h = f, in (4) gives

(6) mo(fal 82) = my(f).
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Let S, =S be a decomposition of S, into irreducible components. We

may assume that Io(f]S,) = lo(f| S{"). Now, we have
mo () - nl ord f; + Iixi'alx (ord f) = mo( f)—('_']_illl ord f;)- ord £, +ord f,
> mo(£,15) —mo(S) ord f,+0rd f, = 3 (mo (| 5) — mo (S) ord £,)+ ord
= mo (f,1S4") —mo (Si) ord f,+ord f, J

(1)
SMUal ) s 1o (18 = ().

mq (SL")
The estimate in Theorem 3.5 is the best possible. O
ExampLE 3.6. Let my, m,, m =1 be integers such that m > m, m, and
m, <my,. Let flzy,25) = @7 +230 ™ ™™ 2, 2527"Y. Then ordf; =m,,

ord f, = my, my(f) =m and ly(f) = m—m; my+m;. Similarly we construct
examples for n > 2 (cf. [P,]).

Remark 3.7. In the notations of the proof of Theorem 3.5 we have

mo (f) = mo(folSp) = Em° (ol S = Z lo (fa| S¥) mo (S
ngo(f)mo(S,?)) = lo(f)mo(S,) for almost all keC" 1.

If n=2 then my(S;) = ord f (for almost all k) and we get the estimate

my(f)
IOU)ZB}E}T'

Suppose that f =(f,,...,f): (C", 00— (C", 0) is a holomorphic mapping
such that (inf)”!(0) = {0]. Then

n

mO(f) = H Ord.ﬂa

i=1
by Proposition 1.2 and {from Theorem 3.5 we get
"CoroLLARY 38. If f=(f1,....[n): (C", 00— (C", 0) is a holomorphic
mapping such that (inf)~!(0) = {0} then
lo(f) = max(ord f;).
i=1

Using Proposition 3.2 and Theorem 3.5 we obtain similarly

CororLary 39 If [ =(f;,.. . f) (C,0O)—=(C",0) is (finite,
ord f, =...=ord f, =k and mo(f) =k"+1, then I,(f)=k+1.
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We conclude this paper by computing the exponent ly(f) for small
values of mgy(f).

ProposiTioN 3.10. The list below gives the exact evaluations of the
exponent lo(f) for mo(f) < 9.

mo(f) [ U213l a5 ]| 6 7 8 9

(f) | 1]2]3]24[3.5]3.4.6[3.4,5712.4,5.6,8(3,4,.5.6,7,9

We need three lemmas. We omit the standard proof of the following

LemmMa 311 If f =(f1, ..., f): (C", 0) = (C", 0) is a finite mapping such
that r =rank (df (0)) < n then there exists a holomorphic mapping

=i fas): (€77, 00> (€7, 0)
such that mo(f) = mo(f), lo(f) = lo(f) and ord f = 2.

Lemma 3.12. If f =(f;,f3): (C* 0)—~(C? 0) is finite of multiplicity
mo(f)=m and if ord f = 2 then

(%) lo(f)e {3m} U {all integers | such that im <!<m—2}.
This evaluation is exact if m # 5.

Proof. In virtue of Theorem 3.5 and Remark 3.7 we have
mo(f)
ord f

If ordf =2 and my(f) = m then we get

im<l(f)<m=-2.

< o (f) < mp(f)—ord f, ord f, + max(ord f;, ord f3).

Hence if I,(f) is an integer then (») holds. If /,(f) 1s not an integer then we
write lo(f) = b/a, 2 < a < b with a, b relative prime.

Then we have b < m by Proposition 3.1 and b/a > m/2. Therefore we get
a=2 and b=m. This proves the evaluation (x). Now, let m >4 be an
integer (we take m > 4 because my(f) = (ord f)? = 22 =4) and let | be an
integer such that sm < /< m—2. Then m—{>2 and 2(m—) < m, so by
Example 3.6 there is a holomorphic mapping f = (f, f3) such that ord f;
=2 ordfy=m-I, my(f)=mand lo(f) =m-2(m—D+max(2, m=-) =L If
m=7 is an odd integer then for the mapping f(x, y) = (y2—x3, xy" 1),
where N = [§m], we have mo(f) =m, ord f = 2 and I,(f) = $m. This shows
that the evaluation (x) is exact. O

LemMma 3.13. Suppose that f = (f,, ..., [,): (C", 0) = (C", 0) is finite. Let
r = rank (df (0)). Then my(f) = 2""". If mo(f) = 2"7", then ly(f) = 2 if me(f)
=2"""+1, then l;(f) = 3.
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_Proof. By Lemma 3.11 there is a holomorphic mapping f
=(fy, ..., fu—r) such that [y(f) = Ilo(f), mo(f) = my(f) and ord f > 2. Then

mo(f) = mo(f)B Ofdfl ordﬁ,_’ >t

according to Proposition 1.2.
If mo(f)=2"", then (inf)"'(0) = {0} by Proposition 1.2 and I (f)
= lo(f) = 2 by Corollary 3.8. If my(f) =mo(f) =2"""+1, then ord f; = ...

= ord f,_, = 2 by Proposition 1.2 and we get Io(f) = I, (f) = 3 by Corollary
39. O

Proof of Proposition 3.10. Let f: (C", 0) =(C", 0) be a finite holomor-
phic mapping. Put r,(f) =rank (df (0)) and assume m,(f) <9. Then by
Lemma 3.13 we have ry(f) > n—3. Let us distinguish three cases.

Case 1. ro(f) = n—1. According to Lemma 3.11 we may assume n = 1,
hence lp(f) = my(f).

Case 2. ro(f)=n—-2. By Lemma 3.13 we get my(f) = 4. Moreover
lo(f) =2 1f mg(f) =4 and [4(f) =3 if my(f) = 5. Assume that my(f) = 6.
According to Lemma 3.11 we may assume n = 2, hence ro(f) =0, i.e. ord f
> 2. From the inequalities mq(f) = (ord f)?, ord f > 2 we get ord f =2 or
ord f = 3, since my(f) < 9. We have ord f =3 only if mq(f) =9 and ord f;
= ord f, = 3, hence I;(f) =3 by Corollary 3.8. Then we may assume ord f
= 2. From Lemma 3.12 we get Iy (f) = §mgo(f) or lo(f) is an integer from the
interval [¥mq(f), mo(f)—2].

Case 3. ro(f)=n-3. Then by Lemma 3.13 we have my(f) = 8 with
lo(f) =2 (f mo(f)=18) or Io(f) =3 (il me(f)=9).

Summing up the results of the above reasoning we get Proposition 3.10.

]
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