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For the investigation of the singular Poincaré duality homomorphism
[KpFi,], of the theorems of Lefschetz type in intersection homology
[FiKp,], and of the Vanishing Theorem for Stein spaces [FiKp,] we need
the homomorphism

1= pp: Hy(X, P,)— Hy(X, P

for appropriate perversities p and g. Obviously u is an isomorphism if the
complexes P, and P, are quasi-isomorphic, thus, in order to investigate the
obstructions against y being an isomorphism, it is natural to identify such
perversities p and ¢; we call them quasi-isomorphic perversities on X and
analyze the corresponding equivalence relation.

An equivalence class turns out to be an “interval” [Ilp, up], where, with
respect to the partial ordering p < q, the perversity Ip is the lower bound and
up the upper bound of the perversities quasi-isomorphic to p. The
homomorphism pu,, exists in a natural manner if there exist perversities
p'ellp, up] and g'e(ly, uq] such that p’ < gq’; we extend this to a partial
ordering p — ¢ such that the operations p+—lp and pr~sup, which are not
monotonous with respect to < (see Section 4), are so with respect to <. For
so called “dualizing” perversities the investigation runs much along the same
lines as in the case of coefficients in a field, while in the general situation new
difficuities arise.

Our main concern is the intersection homology of complex spaces. But
the formal part of the theory does not depend on the existence of a complex
structure, thus we consider in this article n-dimensional pseudomanifolds X
with a topological stratification X (specific properties of complex spaces are

* Partially supported by DAAD and Stefan Banach Center.
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discussed in [FiKp;]). If X is not a p-homology manifold, then there exists a
nonzero j such that H’ P, does not vanish. In order to measure how much X
fails to be a p-homology manifold, we introduce the obstruction trdpezoid
OT,(X). Its generalization to a pair of perversities p < g provides the
essential information for the properties of the homomorphism u,,; the
defining invariants a(p, q) and b(p, q) provide the improved and more
symmetric version of the Main Lemma in [KpFi] depicted below:

/i == injective onto =,z

ipq !
S A — N

for j = 0 alp.q)  alog) 1 n-b(pg)-1  n-blp.g) n

The definition of the invariant a(p, q) is rather easy: it is the maximal
natural number a such that P, and P, are quasi-isomorphic up to order a;
the number b(p, q) can be characterized in a similar way. Hencg, it remains
to investigate the invariants a(p,q) and b(p,q). Let k, denote the
codimension of the p-singular subset of X and p*: =t —p the complementary
perversity. Then

a(p, q) > max(a(q), up(k,)),

b(p, g) > max(b(q), (Ig)* (k)),

a(p, q) =2 b(q*, p*) if p and g are dualizing,

b(p, q9) = a(q®, p*+1)—1 if q is dualizing,
where the numbers aép) = a(o, p) and b(p) = b(o, p) are easily read of from
the Deligne complex P, itself. Moreover, a(—, —) and b(—, —) are

monotonous in both variables with respect to the partial ordering p — g.
If X is a complex space that is a set-theoretic local complete intersection, then
singularities, then, by [KpFi, 5.22],

b(p) > max({p* (k,), a(p)—1).
If X is a complex space that is a set-theoretic local complete intersection, then
a(ps ‘I)?d—‘Z, b(p’ Q)?d—Z,

where d is the complex codimension of the singular locus X' of X. This is a
consequence of [FiKp;]. Section 4 offers some examples that may illustrate
classes of quasi-isomorphic perversities and also the problems with forming
lower or upper bounds of perversities.

We are particularly indebted to S. lojasiewicz for the invitation to
participate in the Semester on Singularity Theory of the Stefan Banach
Center and to the Department of Mathematics at the University of
Warsaw where we could discuss and carry out our ideas on intersection
homology of complex spaces.
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0. Notations and preliminary remarks

0.1. We use the following notations, according to [Bo, V] and [KpFi],
which differ a little bit from that in the basic articles [GoMPh,] and
[GoMPh,]:

R — denotes a principal ideal domain, L a locally constant sheaf of
R-modules with finitely generated stalks;

X — denotes an R-orientable pseudomanifold of topological dimension
n with a topological stratification

X=(Q)=Xn—u—1 CXn—nC CZ:XH—.&: =XH—ZCX"=X)

where X denotes the singular subset of X, set §;:= X;\X;_, and U;
:= X\X,-;, then U;, =U;uS,.;, and 0: U; = U;,, denotes the
inclusion mapping;

¢ — denotes a family of supports on X such that Hj(X;, F) =0 for
every i = j+ 1 and for every sheaf F that is locally constant on the strata of
X;; moreover, we set E(¢) : = K%K;

p — denotes a perversity, i.e. a mapping p: Ny, U {0} = NuU {00} such
that p(2) =0, p(o) =0 and p(i) < p(i+1) < p()+1 for every ie N,,; in
particular there are the zero-perversity o, the top-perversity f, the lower
middle perversity m, the upper middle perversity n, and the complementary
perversity p* =t—p of p; for se N set

(p—s)(j) : = max(0, p(j)—s),
(p+3)(j) : = min(j—2, p(j)+s);

if g is another perversity, the functions min{(p, g) and max(p, q) are again
perversities;
P,:= xP,L — denotes the Deligne complex with coefficients in L;
I,HY(X, L) : = Hy (X, P,L) — is the j-th intersection homology
module of X with respect to the perversity p.

0.2. According to the construction of the complex P, we frequently
have to extend properties from U; to U;,,. Then, for xe§,_;, denote the
link of x with respect to X with L= L, denote with U= R""'x¢&(L) a
distinguished neighbourhood of x in X, and set U’ : = U\S,_; = R"**1 x L.

03. If u: P,—P, is a morphism, then there exists a distinguished

q

triangle (depending on u)

T(p.q) ‘1 /
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and for xeS,_;, there exist inclusions

H(U', Q). il j<pli),
(0.3.1) H Q. .= {HP,,, if j=p@)+1,
0, if j 2 max(p, 9)()+1.
Proof. There exists a commutative diagram with Q" := Q,,
Wiy o R ——— -

|
ﬂL rl [ lﬂ
(k) Hg) — Wg) —u™'(Uk)

By the attachment condition [Bo, V.2.3], the homomorphism B is bijective
for j < p(i), by the vanishing condition f is obviously injective otherwise; an
analogous result holds for y. The Five Lemma implies

HQ, o H(U', Q) for j< pli),

while the other inctusions follow obviously from the upper exact sequence.

[l
1. Quasi-isomorphic perversities

The . construction of intersection homology modules via the
hypercohomology H,(X, P, L) suggests the introduction of the following
equivalence relation:

1.1. DeriniTioN. Given a pseudomanifold X, we call two perversities p
and q quasi-isomorphic on X with respect to L (p = q) if there exists a quasi-
isomorphism yP,L = yP, L.

Note that the relation “=" is of a local nature: if, for every point xe X,
there exists an open neighbourhood U, of x such that p = g with respect to
Ljy,, then p=q on X with respect to L. This follows immediately from the
fact that the axioms characterizing P, L up to quasi-isomorphism (cf. [Bo,
V.4.7]) concern essentially only the local behaviour of P, L.

In Lemma 1.3 we shall see that the corresponding equivalence class of a
perversity p is a “closed interval” [Ip, up] with respect to the partial ordering
p < q; for explicit examples see Section 4.

1.2. LemMma. If p and q are perversities such that p = q, then

min(p, q) = p = g = max(p, q).
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Proof. We induct on i in order to show
Pl-'nin(qu) I U; = Pli I U; = P‘I I U; = P;nax(P-‘I) I U;-
The case “i = 2" is obvious. For the step “i = i+ 1" we use the inclusion
mapping
0: U,' (s Ul'+l'

We may assume that p(i) < q(i); then the construction of the Deligne
complex yields on U, ,:

Prine.ay = T<ptiy ROy (Proinipgy | U) = T<pay RO, (Pply) = P, = P,
= T oy RO (Polu) = T<qy ROy (Pruipay | 0) S Proaxipaar- U
The preceding result allows us to associate to a given perversity p two
new perversities [p = p and up = p: we call
lp : = min{g; q = p}
the lower bound, and
up : = max{q; q = p}
the upper bound for p.

1.3. LemMma. For two perversities p and q the following statements are
equivalent:

(i) p=gq;
(i) Ip < q < up;
() for every i = 2 we have
H P,{s_, =0 for every j>q()+]1,
H'P,|s =0 for every j= p(i)+1.
Proof. The implications (i) = (ii) and (i) = (iii) are immediate.
(i) = (1)) We prove by induction on i that
P;:IU,A;P“U,-
The case “i = 2” is evident. For the step “i = i+1” we may assume that
p(i) < q (i), since (1) and (i) are symmetric with respect to p and q. Then we
obtain on U, :
P, =1, RG.(PHU,) = Tgpi) RG;(P.HU,-) = T piy (Py)s
by induction hypothesis. The second part of (iii) implies that
H Py, =0 forj=p@+1;
hence
TP =P, on Uy,
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(1) = (1) Since p=Ip<gq and q < up = p, we obtain p < g as well as
q < p; consequently p = g (cf. Def. 2.3 and the discussion following 1t). []

14. Remark. In particular, we obtain the following characterization of
Ip and up:

1. Ipis the minimal perversity q < p such that H/ P,is, _, =0 for every
i and every j = q(i)+1,

2. up is the maximal perversity g = p such that HjP;|s,,_,. =0 for
every i and every j = p(i)+1.

For applications of the duality theory it is important to get information
about the complementary perversity p*. For that reason, we consider a
particular class of perverSities:

1.5. DerFiNITION. A perversity p is called dualizing on X with respect to
R if the natural morphism

6, PR —>DP,R [-._ n]

of [KpFi, §5] is a quasi-isomorphism.

We give some examples and counterexamples:

1.6. Remark. Let p be a perversity. Then

(@) p is dualizing in each of the following cases:

() p=oorp=t;

(i) p=p+1, in particular for p =1,

(iti) R is a field,

(ivv X=(X, %) and H™*1 P, is a torsionfree sheaf;

() p is dualizing iff

(v) p* is dualizing,

(vi) for every finitely generated torsion module T, the complexes P, T

L
and (P,R)® T are quasi-isomorphic;

(y) p need not be dualizing even if p = o; in particular, p = q does not
imply that p* = g*.

Proof. (1), (in) and (iv) follow from [KpFi], (ii) will be proved in 1.9, (vi)
is a consequence of [GoSi] (in that paper a pseudomanifold X is called
locally p-torsionfree if p is dualizing on X with respect to Z). (v) follows

immediately from biduality [Bo, V.8]. For (y) we use this example: for m > 2
set

mX3 1= V(Ppiy; 25 +2i+23),

and R = Z; by [FiKp, 2.2] there are only two different classes of perversities,
represented by o @*m2>~n and m+1 ¢, thus o* =t & n=m* O
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For the next result, note that for X = X3 and R = Z this holds:
(uo)* £ lo*, (Im)* £ um®*, (l)* # ut*.

1.7. LemMa. If p is a dualizing perversity, then

(up)* < Ip* £ p* L (Ip)* < up*.
If R is a field or L is torsion, then
Ip* =(up)* and up* =(lp)*.

Proof. In order to prove the inequalities let us first assume that p*
= (Ip)*. Then (Ip)* < up* by Lemma 1.3, and it follows that

Ip* < p* <(Ip)* < up*

is a chain of quasi-isomorphic perversities. Since p* is dualizing as well, we
obtain a similar chain with the perversity p* instead of p. An application of
the *-operator yields in particular that

(up)* < lp*.

We now have to verify that P, L = Py, L. Since this is a local problem and
since L has finitely generated stalks, it is enough to consider the cases that L
= R and that L is a constant torsion module 7. By [KpFi, 5.10] there exists
a commutative diagram

T

> P(.fp)'T

= =4

D gy l1-
Dﬁg‘rn-n]—ﬂ——»‘““’l rl DA, T(1-n)

o~
=

Hence, the natural morphism P,, T — Py, T is a quasi-isomorphism. For the
case L = R we use the natural morphism (see [KpFi, § 5])

6,: P,,R—DP,R[—n].

Then there exists an analogous diagram

R ———— Piy)*R
ot ldp io’p
OR'R(-n] Duggpl-nl af {-nl DR, RI-n]

where 6,, is a quasi-isomorphism by Remark 1.8 below. Thus
P,.R = P,,.R.

Now assume that up and up* are dualizing (then, by Remark 1.8, alil
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perversities g = p respectively g = p* are dualizing as well, e.g., if R is a field)
or if L is torsion. Then the first part of Lemma 1.7 is also true with up
respectively up* instead of p and thus

(up)* = (lup)* = (Ip)* = p*,

i.e., (up)* = Ip*; since also (up)* < Ip*, we obtain (up)* = Ip*. If we dualize
this equation and apply it to p* instead of p, then the second equality
follows. O

18. Remark. If pis a dualizing perversity, then so is every perversity
q with Ip < g < p. If moreover Ip* < (up)*, then every perversity g = p is
dualizing.

Proof. We only have to show that the complex DP,R[—n] satisfies
the axioms for the complex P, (see the discussion of o, above Lemma 5.4 in
[KpFi]). The only (possibly) missing property is that

Hat+1 DP,[-n]ls,_, =0 for 2<i<u.

Since p =~ ¢ by Lemma 1.3, there exists a quasi-isomorphism
DP,R[—n] =DP,R[—n] = P,,.
By assumption, p* < g*; consequently,
H P, l|s, _,=0 forj>q*@+1
implies the missing vanishing condition. Now it suffices to consider
complementary perversities in order to obtain the second statement. O

We know already that the analogue of Remark 1.8 for Ip does not hold.
The following result tells us that a perversity p is quasi-isomorphic to a
dualizing perversity provided that

Ip(i) <up(i) unless p(i) =i—2:

19. ProrosiTioN. If p= p+1, then p is a dualizing perversity.

Instead of giving a direct. proof, we refer to Proposition 3.10, which
obviously implies the result.

In Remark 1.6 (y) we have seen an example such that o = p does not
imply o* = p*. However, we can show this:

1.10. CoroiLLARY. If 0= p+1, then o* = p*.

Proof. From Lemma 1.3 we obtain that Ip = 0. Hence, p = p+1, and p
is dualizing by Proposition 1.9. Now Lemma 1.7 applies:

p* = (Ip)* = o*. 0O
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2. The obstruction trapezoid

A main topic in [KpFi] was to compare the intersection homology modules
for two perversities p < q by means of the canonical morphism

Hpg: P, — Py

Obviously, such a morphism also exists if we replace p or ¢ with quasi-
isomorphic perversities. Hence, it is natural to try to carry over the partial
ordering “<” to a partial ordering “<” in the set of equivalence classes of
quasi-isomorphic perversities. The naive attempt “[Ip, up] = [lg, uq] if there
exists perversities p' = p and ¢’ = q such that p’ < q™ is not satisfactory, since
that does not define a transitive ordering (see Section 4). For that reason we

adopt a more axiomatic point of view (see 2.3). We start with some formal
considerations:

2.1. DeriNiTioN. Let §° be a complex of sheaves on X, assume that S
is X-cc. For an open subset W — X set

ag(S) :=supla; H'S |y =0,j < a},
bw(S) :=sup{b; H'S'|y.s,_, =0,j2i-1-b,0<i<uj.
For a family of supports ¢ on X set
a /8) := max {aw(S); E(p) =« W c X}
"by(S) := max {by(S); E(¢) = W c X}.
Note that gy (S) = a0 = bg(S) iff §'|p = 0.
The following simple result is needed for induction proofs:
22, Lemma. Hi(X,8) =0 for j<ayS) and for j=n—b(S5)—1.
Proof. Since H (X, §) = Hy(W, §) for E(¢) c W — X, we may assume
that W = X. There exists a spectral sequence
¥ =Hy(X,H'S) = H}"(X,5).
Thus the result is obvious for j < a,(8"); since dimsupp H'S' < n—2~b,(S’)
—t, we also obtain the vanishing for j > n—b,(S)—1. O
We arc interested in the following situation:
23. Derinmmion. For a pseudomanifold X, a sheaf L as in 0.1 and two

perversities p and g, set p — q if there exists a commutative diagram of
morphisms

. Fpq
R {2

12 - Banach Center t. 20
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where yu,, and p,, are the canonical morphisms (cf. [KpFi, 0.2]). A chain
p<qcr is always understood to be “commutative”, ie., p, = p, pu, for
the corresponding morphisms.

If p < g, then Mor(P, P)) = Mor(P,|y,, P;lv,), by [Bo, V.9.2]; hence,
p ©q where p,, is the canonical morphism as considered in [KpFi]. The
notion “c” extends “<” to a partial ordering of the set of eguivalence
classes of perversities for fixed X and L: while the transitivity is obviously

true, the anti-symmetry can be seen in the following way: if p = q and g < p,
then there exists a diagram

. Epp
F—r—5
N lqp
P

which commutes on U, and thus everywhere, and in which pu,, is quasi-
isomorphic to the identity. Interchanging p and g we see that these two
perversities are quasi-isomorphic. An interesting application of quasi-isomor-
phic perversities is in [GoMPh;]. If Z itself is a stratum, then p g iff
Ip < ug.

In general, it is not clear whether u,, s uniquely determined by p and g;
nevertheless, we shall show the following in Lemma 2.5: For the distinguished
triangle

AL RL

T(p. q) M /

Ggl = Gy

the numbers a4 (Q,,) and b,(Q,,) depend on p and g, but not on y,,, which is
obvious for p < g since then p,, is uniquely determined. Thus we may define

ag(p, q) = ay(Qp) and  b(p, q) : = by(Qy,)

(for simplicity we usually omit ¢ and L in the notations). Furthermore, it
follows that a(p, q) and b(p, q) do not change if p and g are replaced with
quasi-isomorphic perversities. Besides the obvious fact that Q. |y, =0, for
induction proofs we shall use this consequence of Lemma 2.2:

24. CoroLLARY. Let p and q be perversities such that p — q, and let x
be a point in S,_;.
(i) If HQplu, =0 for j<a, then

H'Q,. .=0 for j <min(a, p(i)).
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) If HQuls,_ =0 for j=l-b=1if I<i—1, then
HQ,. .=0 for i—b-2<j< p(i.

Proof. By (0.3.1), it suffices to show that H/(U’, Q,,) vanishes for the s
under consideration. We apply Lemma 2.2. The case (i) 1s immediate with U’
instead of X; in the case (i) we use the link L of x in X, which is of
dimension i —1:

H (U, Q,) = H(L Q,1)=0
for j 2dim(L)—b—-1=i—-b-2. U

We now intend to prove that a(u,,) : = a(Q,) and b(u,,) : = b(Q,,)

depend only on p and ¢q. For that purpose we need a “truncation” of
perversities: for ce N set

T<.p:= min(p,0+c), 1°°p:= max(p, t—c).
25. Lemma. If p < q is realized by a morphism p,.. P,— P,, then
(i) = MAX{C; T P =T g},
b(u,) = max{c; 1> p=t1>°q].
Proof. Let us first show this auxiliary result
(2.5.1) a(te.p.P)=c, b(p,1>p=c.
Set r : = t¢.p; for the first inequality it suffices to prove by induction on i
HQ, |y, =0 forj<ec.
This is obvious for i =2. For the step “i = i+1” we may assume that
‘r(i) <p(i) (and thus ¢ =r(i),

since, otherwise r = pon [2, ..., ] and thus P;|, = P,jy, . For a point

x€S,_;, Corollary 24(i) implies H'Q,,, =0 for j<c¢=r(i) by induction
hypothesis.

Now set s : = t>°p; for the second inequality it suffices to prove by
induction on i

HQLls,_, =0 forj>l-c-1if I<i-1.

For the step “i = i+1” we may assume in the same way that s(i) > p(i) and
thus s(i) =i—c—2. For a point x€S,_;, then H/Q, . =0 for j=>s(i)+1
=i—c—1 by (03.1).
Now we can prove (2.5): set Q" : = Q,,; in order to show that
a .= max {C, TgeP ;t‘\:cq} < a(.u'pq)’

b:= max{c;t> p=1>q} <b(u,)
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it suffices to verify by induction on i that
HQ|y =0 forj<a,
HQls,_,=0 forj=l-b-1if | <i.

For the step “i = i+1” we may use Corollary 2.4 in the case that j < p(i).
Forj > p(i)+1 there is an inclusion H’ Q; < H’ P, , for x €S, _; (cf. 0.3); hence,
it suffices to verify

H'P,,=0 for pi)+1<j<q(), j<aorjzi-b-1.
If j < a, then (2.5.1) implies
HP, ~HP, ,,=~HP,_,.~HP,, =0.

§@Hx — T gh* = £ gbvx =

If j=zi—b—1, then we obtain in the notation of 0.2 for the link L of x, )
which is of dimension i—1,

0=HP,, »H P,

t2bp x

= H P>y H/ (L, P;zb)

X j<q)

[

= H(LP)=HU, P)

Jzi-

JH Py

[y

Now we have to show
maxi{c;te. p=t
max {¢c; 1> px1

That is equivalent to
P._, =P and P, =P, .

T<aP = T Tgad tZ
The first statement is easy to see, since

PtsapgtSaPpgrSan = P'saq

by the definition of a. For the second statement, according to Lemma 1.3, we
have to verify for r: = t>bp, s : = t®%q, and every i > 2:

(@) HjP”S.—.- =0 for j2s@+1;

B HjP;|Su-; =0 for j = r(i)+1.

Statement (@) is obvious for r(i) < s(i). Hence, we may assume that s(j)
< r(i), which implies q(i) < p(i) and also p =r on [2, ..., i], since, otherwise,
p(i) <(t—"b)(i) yields s(i) = r(i). There is a commutative diagram for s(i)
<j<p@=r@) and x€8S,_;

HR, = HWR, = HLF)
l l?

= wle i o

0o = He,——=wLA)

where y is bijective for j=>i—1—-b <s()+1, by Lemma 2.2
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For the statement B) we may assume that
r(i) = max(p(i), i—b—2) <j < s(i).
For xeS§,_; the epimorphism
0=H/P, —»HP,, Gz H P,
yields the result. O

One might use Lemma 2.5 in order to define a(p, g) and b(p, q) for
arbitrary perversitiecs p and g. This will be of interest in the vanishing
theorems for Stein spaces.

An essential step in the comparison of the “obstruction trapezoids” in
Theorem 2.9 is provided by the following result: '

2.6. MonNoToNYy LEMMA. If p, g, r are perversities such that pc q <,
then

a(p, r) = min(a(p, g), a(q,r)) and  b(p,r) = min(b(p, 9), b(q, r));
furthermore, if pcqcr cs, then
a(p,s)<alg,r) and b(p,s)<b(q,r).

We prove the statement in three steps:
() a(p.r)<a(q,r) and b(p,r) < b(q,r);
(i) a(p,r)<alp, q) and b(p,r) <b(p, 9); _
(ii) a(p, r)=min(a(p, q), a(q, r)) and b(p, r) = min(b(p, g), b(q, r)
Proof of (i). We show by induction on i that for Q" : = Q.
HQ|y =0 forj<a(pn),
HiQl|s =0 forj=i-b(p,n-1,if I <i.

For the step “i = i+1” and a point xeS§,_;, we may use Corollary 24 in
the case j < q(i). For j > q(i)+1 there exists a commutative diagram

HE .
J J
(*) “Nl lgr
o0 . .
Y . Sy

‘Now i, is surjective for j < a(p, r) and for j 2 i—b(p, r)—1; hence, H' P, ,
vanishes.
Proof of (i1). Set Q" : = Q,,; we prove by induction on i that

HIQy, =0 for j<a(p, 1),
HQls =0 forj=i-bp,n-1,if I <i.
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For the step “i = i+1” we fix a point xe§,_;. In the case that j < p(i) we
may apply Corollary 2.4. For j > p(i)+ 1 we consider an extended version of
a diagram analogous to (x):

0 = HE,
| i
g T
. ; y‘i, RN )
HiQ, = H’R"_‘ L L. HiR

T

H(UR) ——>H(UR)

‘ ~

~
=

v ;o
WiL.R) —L—=WiLR)
Hence, we have to show that H’ P, . = 0 for the j’s under consideration. For
j<a(p,r)and for j = i—b(p, r)—1 the homomorphism u, is surjective and
thus H' P, , = 0. Consequently, it suffices to show that 4, is injective. This is
evident for j < a(p, r), since a(p, r) < a(q,r) by (i). For j =2 i—b(p, r)—1, it is
sufficient to verify that 7’ is injective. But that is a consequence of Lemma 2.2
and the induction hypothesis, since b(q, r) = b(p, r), by ().

Proof of (iii). As a consequence of (i) and (ii) we obtain
a(p, r) < min(a(p, q), a(q, r)).

The octahedral axiom [Ha, p. 21] provides an exact sequence

...—»H"Q;,,—»HJQ;,,—»HjQ;,-r e
Hence
a(p, r) > min(a(p, q), a(q, ).
The same argument works for b{—, —). O

For the introduction of the obstruction trapezoids we need a final
invariant, which generalizes the codimension of the p-singular set in [KpFi]:

2.7. DerinmioN. For p < g and an open subset W < X the number
ky (1) denotes the minimal codimension k such that H'Qp.lw.s,_, # 0. ¢
is a family of supports on X, then set

kpo 1 = k(1) : = max {kfs (u,g); E($) © W < X).

For Q,, =0 it is convenient to read this definition as k, = occ. By
Lemma 2.5, the number k,, depends only on p and g, but not on the choice
of pp,.
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In the notation of [KpFi, 3.3] we have k,, = k,. A geometric measure to
what extent a complex Q,, is different from the zero-complex, is provided by
the obstruction trapezoid OT ,, (X):

28. DeriNITION. For p g set

OT,, (X) = OT%E(X)

=, JEN?; ko <i<u, a(p, +1<j<i-2-b(p, 9)}.

A

1+alp gl

29. THeoreM. If pc g crcs is a chain of perversities, then
OT,,(X) = OT (X).

Proof. By the Monotony Lemma, we know that a(q, r) =2 a(p, s) and

b(g, r) = b(p, s). Hence, the theorem follows from this supplement to the
Monotony Lemma:

210. LemMma. If pcq cr is a chain of perversities, then
ky = min(k,,, k,);
furthermore, if pcqcrcs, then k,, <k

qr-
Proof. By the octahedral axiom, there exists an exact sequence

..~ HQ, ~HQ, ~HIQ, —..
and thus we obtain

LR}

ke = min(k,, k) = :m.

Assume that k, > m. Then we may assume that X = U,,,, ie, k,, = x,

while k,, or k,, is finite. Consequently, a(p, r) is infinite, but a(p, ¢) or a(y. r)
is finite, a contradiction to Monotony Lemma. O
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3. Application to the Main Lemma

We now come to a generalization of [KpFi, 3.5]. Since we use the invariants
a(p,q) and b(p, q), we obtain a more symmetric version. Instead of
overloading the Main Lemma with the different properties of a(p, q) and
b(p, q), we prefer to interpret these results separately.

3.1. MaiN LEMMA. Let p < g be two perversities. Then the associated
homomorphism

W Hi(X, P,L)— H,(X, P, L)
is bijective for j < a;(p, q) and j = n—b;(p, q), injective for j = aj(p, @) +1,
and surjective for j = n—bg(p, q)—1.

Proof. The distinguished triangle T (p, q) induces a long exact sequence
in hypercohomology

H (X, Qp) — HY(X, P, L)~ Hj(X, P,L)— H)(X, Q}).
Hence, Lemma 2.2 yields the result. O
It is convenient to use these abbreviations [KpFi, § 3]

a(p):= afo,p), b(p:=20blo,p), k,:=k,.

The complex Q,, is nothing but the complex t>! P,. For that reason, the
invariants a(p), b(p), and k, can be calculated directly from the complex P,.

3.2. ProrositioN. If'pcgq, then

a(p, q) > max(a(q), up(ky)) and  b(p, g) > max(b(g), (Ig)* (k,p))-

Proof. The inequalities a(p, q) > a(o,q) and b(p, q) = b(o, q) are
particular cases of the Monotony Lemma. Since a(p, q), b(p, q), and k,, do

not change when p is replaced with up and g with Ig, we may assume that p
= up and q = lg. For the inequality

a(p, q) = p(ky)
we prove by induction on i for @' =Q,, and k : = k,,
HQly =0 for j<p(k.

This is obvious for i <k, since then Q'|y, = 0. For the step “i = i+1" we
may assume that i > k. For a point xeS,_; there exists an inclusion

H Q. s H/(U', Q)

for j < p(i) by 0.3; the induction hypothesis and Lemma 2.2 then imply that
H/(U’, Q) vanishes for j < p(k).
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Finally, we have to venfy that
b(p, q) 2 q* (k).
To that end we induct on i in order to show that
HiQ|s =0 for j2l-g¢*(-1ifI<i-L

That is obviously true for i < k. For the step “i = i+1” with i >k fix a
point x€S,_;. For j < p(i) we may apply Corollary 24; for j = p())+ 1 and
jzi—q*k)—1=qk)+(iF—-k)+1=q()+1, we may use (0.3.1). O

33. ProrosiTioN. If p<gq, then
a(p, +b(p, 9+3 < ky, < b(p, 9)+2+max(lp, Ig)(k,,).

In particular
a(p, 9+1 < max(lp, lg)(k,,).

Proof. Set k : = k,, and max(i) : = max(lp, lg){i). If p# g, there exists
a pair (k, j) in OT_ (X) and thus

a(p, )+1<j<k-b(p, 9-2.
On the other side
HQuls,_,=0 for j>max(@)+1=i-1—(i—2~max(i),
thus we obtain

b(p, g) = min {i—2—max(i); i > k} = k—2—max(k). O

34. Remark. For small perversities p < q there is a stronger estimate.
Set s : = k,,/2—max(lp, ig)(k,;). Then 2(a(p, g} + 1 +5) < k,,. Equality holds
iff a(p, 9 +1 = max(lp, lg)(k,,); in this case b(p, q) = k,,—2—max(lp, Ig)(k,,).
We come back to this equality in Lemma 3.11.

The application of the universal coefficient formula [KpFi, 5.1 provides

additional information if the first nonvanishing sheaf H’/S" is even torsionfree.
For that reason we introduce the following invariant

a(s), if H**!S is torsionfree for a : = a(s),
a(S)—1 otherwise.

as(§) : = {

When we consider “quotient” complexes Q,, = Q,, L we have to distinguish
between torsion arising from the torsion subsheaf 7 < L and torsion
generated by the “free part” L/T of L; hence, we set

ag(p, q) : = min {a(Q,, T), ao(Qp (L/ 7))}
Note that a,(Q,(L/T)) =ao(Q,R) if L/T does not vanish on any
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connected component of X. Obviously
ag(p,q)=a"(p,q) and a*(p, 9—1<ag(p, q) <a®(p, 9).

If p < q are dualizing i)erversitics then

a§ (p, q) < a“(p, 9).

Proof. Since we have to show this inequality only locally, we may
assume that L is of the form L= R™"@®T with some m > 0 and a torsion
module T. Then we obviously have Q,, L =Q, R"®Q,, T, moreover Q, T

L
= 0,,R®T, by the Five Lemma, since the analogous formula holds for P,

and P,, by Remark 1.5 (vi). Thus, the sheaf version of the covariant universal
coefficient formula [KpFi, (5.13.1)] yields the result. O

We now extend two further results of [KpFi, § 6]. For that purpose we
have to recall the notion of a pseudomanifold of (exceptional) type E: We
say that X is of type E with respect to L if k : = k, is even and

0, ifj>1,)#k/2,

H P,;(L/Tors L =
(L/Tors s, _, {nonzero torsion, if j = k/2.
For such a space ay, , , (n) = co. In the following set ¢ : = n(k)+1 il X is of

type E and ¢ : = n(k) otherwise.

35. ProrosiTioN. If q is a perversity such that o+c < q, then
a(@g =al)<c—1, aelq)=ao(t), k,=k,.

Proof. Set p:= o+c. By Monotony Lemma 2.6, Remark 3.6, and
Lemma 2.10 we know that

a(p) =2 a(q) = a(t), ao(p) = ag(q) = a,(t),

and k, > k, = k,. Hence, we may assume q =p. Then [KpFi, 6.1} implies
that k, = k, for L= R;if L= T is a constant torsion sheaf and k, < k,, then
also k, < k,., since p*(k,) < p(k,). We obtain on U,,,: p* =0 = p, and thus
p = o* =1, since L is torsion, ie. t =0 on U,,;, a contradiction. But L is
locally of the type R"@T; hence, the equality k, = k, holds in general. Since
by Proposition 3.2 a(p, t) = p(k,) = p(k), the Main Lemma implies

H'P,=HP, for j<p(k,).
Since, moreover, a(p)+1 < p(k,) = p(k,), it 1s easy to see that ag(p) = ao (1)
and a(p) = a(1). O

36. Remark. If pcgqcr, then aq(p, q9) = ag(p, r). In particular,
ao(p) = ao(q). If even p < g, then ao(p, r) < ao(q, 7).
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Proof. It is easy to see that we only have to prove for L = R and
j=al(p, r)+1: if H Q,, is torsionfree, then so is H’(Q,,. To that end, we
use the exact sequence '

H™'Q, - H Q,, ~H'Q,,
as in the proof of 2.6. By the Monotony Lemma, the module H/~'Q,,
vanishes.

Now assume that p<gq. Then we prove by induction on i that
H**' Q. |y, is torsionfree for a : = ag(p, r). If a+1 < q(i), then, for xeS,_;,

H*' Q. o H™Y U, Q,) = HO(U', H** 1 Q,,)
is torsionfree by induction hypothesis. If a+1 > ¢(i), then
Ha+ 1 Q:;r,.r = Ha+1 P -~ Ha+1Q;,"x

p.x =

is torsionfree. 0

Note that the following result implies that aq(p, r) = min {a,(p, q),
ag(q, r)} if p < g cr are dualizing perversities such that r* c ¢g* < p*.

3.7. THeoreM. Let p, g be perversities such that p < q and q* < p*. If
L is torsion or if p and q are dualizing, then

ao(p, q) = b(q*, p*).
Proof. Since the problem is local, we may assume that L is a constant
sheal.

(a) Assume that L = , T is torsion. Dualizing the distinguished triangle
T(p, g we obtain a new distinguished triangle

P & DB[1-n]e——————DR[1-n] = AL
e

E N L
-
£Qyq[1-n] = Qgpl-1]

see [KpFi, 5.10]; the last quasi-isomorphism results from turning the
canonical triangle T(g*, p*). Thus, by Lemma 3.8, we obtain

ao(p, @) = ao(Qy}+1 =b(DQ, [V —n]}+1 = b(DQ,, [2—n])
= b(Q:i‘p‘) = b(q*’ p*)
(bp) The argument for L= ,R and dualizing perversities is rather

similar; the distinguished triangle is of the form

A = DR{-n)e—— ——0DFL-A] = AL

}\/

DQpl-n] = Qupel-1]
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and we find

ao(p, @ = ao(Qp)) = b(DQpg[1—n]) = b(Q,sp) = b(q*, p*).
(¢) For L=R"®T with m > 0 note that

ag(p, g) = min {a§ (p, q), a5 (p, @)}
as well as

b"(p, g) = min {b%(p, ), b”(p, )} O
38. LemMma. If a complex of sheaves S’ is X-cc, then,
b(DS' [1—n]) = b(DS' [—n])+1 = ao(S).

Proof. We only have to show that, for every integer a, the following
statements are equivalent:

(i) H'S =0 for every j < a, and H**' S’ is torsionfree;

(i) H/DS'[—n]|s,_, =0 for every i and every j>i—a.

The implication (i) = (ii) has been shown in [KpFi, Lemma 4.1 with
v=1

(i) = (i). Let U be a distinguished neighbourhood of a point xe X. By
assumption on S’, the R-modules H’S, = H/(U, §) are finitely generated.
Since 8" = D(DS'[—n])[—n], we may use the universal coefficient formula
[KpFi, 5.1] in the following form

0— Ext(H"~i*'(U, DS’ [—n)), R)— H/(U, S
—Hom(H? (U, DS'[—n]), R) —0.

By Lemma 2.2, condition (ii) implies H/(U, DS [—-n]) =0 for j> n—a.
Consequently, H/S, vanishes for j < a and is torsionfree for j =a+1. [

Theorem 3.7 need not hold if one of the perversities is not dualizing:

39. ExampLe. If X is a complex space such that o=m#1¢,
then a(o, m) = co though b(m,t) is finite. In particular, the projective
algebraic variety , X3 of Section | is of this type for R = Z.

If only the perversity p in Theorem 3.7 is dualizing, then there are still
estimates which in particular show that b(q, t) = a,(¢* + 1) for an arbitrary
perversity g. That result shows that part (f) of the Main Lemma in [KpFi] is
in fact a consequence of the new version 3.1 of the Main Lemma.

3.10. ProrosiTioN. If p and q are perversities such that p is dualizing
and p < q, then ay(q*, p*) = b(p, q+1) and b(q*, p*) = ay(p, g+ 1).

Proof. Since this is a local problem and the estimates hold for a torsion
sheafl L=T by Theorem 3.7, we may assume that L =R. For xe§,_;
consider the commutative diagram
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tg P

P >

[
(,.) % (g, a4

DB [_n]_’ﬂiuﬁ’]_. DR [-n),

Since, by Monotony Lemma 2.6, b : = b(p, g+1) = min {b(p, q), b(q, g+ 1)},
we conclude that Dy, [—n} is bijective for j>i—b and surjective for
j=i—-b—1, cf. Lemma 3.11. Thus, for the “quotient” complex in the
distinguished triangle

sz'.[ -n}

e [-n]

[1]
DQy: ,.[1-n)

we obtain

ao(q*, p*) = b(DQ,.,.[1—n]) = b.

In the same manner we see that

a(DQ,.,.[1—n]) = min {ao(p, 9), ap(q, g+ 1)} = aplp, g+1) = : a,

by Remark 3.6. It remains to prove that H**'DQ,, . [1—n] is torsionfree
and thus

b(q‘a p‘) = aO(DQ;apm[l _'n]) 2 a.

To that end we consider the induced morphism of the distinguished
triangle associated to u,, and Dy, [—n]. Then Lemma 3.11 and the Five
Lemma implies that the corresponding homomorphism of quotient
complexes

o: HiQ,, - H DQ,,,.[1—n]

is bijective even for j=a+1 :ﬁsao(‘b q+1)+1. O

311. LemMma. If T is the complex determined by the distinguished
triangle

RR _ % . DR RI-n}

1]

s

then a(T)) = ao(q, q+1)+1 and b(T)) = b(q, g+1).
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Proof. Set a:= aglq,q+1)+1 and b:= b(q, q+1); we show by
induction on |

H T]ls,_,=0 for j2I-b-1and ! <i,
<

H T, =0 forj<a.

For the step “i = i+1” fix a point xe 8§, ;. In the notation of 0.2 we obtain
for j < q(i) that
HT,oH (U, T):
as in (0.3.1) this follows from the Five Lemma using the fact that
H'DP, [—n], is isomorphic to H/(U’, DP, [—n]) for j<q(i) (see the
remarks preceding [KpFi, 5.4]). By induction hypothesis, Lemma 2.2 yields
the result.
Now assume j 2= q(i)+ 1, then
H'T,,=H DP,[—n],.

q

By [KpFi, 54], that module vanishes for j > q(i)+ 2, thus we are left with
the case j = g(i)+ 1. In the proof of [KpFi, 5.9] it has been shown that then
H'T,, = Tors(H/(U', DP,,[—n])), which in turn is isomorphic to
Tors(H/(U’, P,)) and for j < a and j > i—b—1 by induction hypothesis: for
J < a this is immediate with Lemma 2.2, while for j > i—b—1 we use as
usual the restriction to the link L of x. In the same way we derive from the
Main Lemma that H’(U’, P,) is a submodule of H/(U’, P,.,).

Finally we obtain
. H ™ Y(L), if g(i) =i=2,

H (U, P, E{ . . . ) i
Woled = w2 W Qs if q) <im2

which are torsionfree modules. 4

We now come back to a geometric interpretation of some of the
invariants.

3.12. ProrosiTioN. For every perversity p & o we have
Proof. By Proposition 3.2, we know that b(p)=(p)*(k,). If
b(p) > Ip*(k,), then we obtain H'P,|s =0 for izk, and j=>i-2

—(Ip)*(k,) = Ip(i). Hence, Lemma 1.3 implies Ilp—1 = Ip, which is only
possible for p =~ o. O

The last result has in particular the following geometric meaning: the
graph of a perversity p either lies completely above the obstruction trapezoid
OT,(X) : = OT,,(X) or it enters OT,(X) in a point that lies on the upper
side of the trapezoid.
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Furthermore, we may visualize part of Lemma 1.3 in the following way:

GoOING-DOWN-PRINCIPLE. Up to quasi-isomorphy a perversity p remains
unchanged when it is lowered step by step as long as the intersection of the
graph of p with OT,(X) does not change.

In an analogous way, going up is allowed for p with OT,(X) instead of
OT,(X). In particular, we obtain

~ p ~ +SKp
TzayP=P=T7 P,

where t5.p : = max(o+c, p) and t5°p : = min(t —c, p).

4. Examples

In this section we discuss three equivalence classes of perversities for the
open real cone Y: = ¢(X), where

d
X:=pXi:=1{z2ePpsy; Z z{ =0
j=0
for g >3, d > 2 even, and m > d+2. The intersection homology of X has
been calculated in [FiKp,]. Moreover, let L = Z, = Z/rZ for some divisor
r+#1 of g.
We consider the perversities p, ¢ and r determined up to quasi-
isomorphism by the assignment

P q r
2d d-2 d-1 d

2m+1 d+2 d+2 d+1

It is easy to compute H' P, for a perversity s: Let v denote the vertex
of Y, then

Hi(#(X)\{v}, P)) = B/ (X x10, \[, P)) = H'(X, P).
Thus we obtain
WP = H(X, P), ifj<s@m+1),
> 0 otherwise.

[FiKp, 2.1] thus determines explicitly the modules H’P;, for s =p, q,r,
since, on X, p is quasi-isomorphic to o, ¢ to m, and r to t. On the stratum
S = X x]0, 1[ of codimension- 2d in" Y there exists a canonical isomorphism
HyP (4 = Hx P, ,.

We depict the situation for d = 6 and m = 12. The obstruction trape-
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zoids OT,(Y) are indicated by broken lines, the “intervals” [ls, us] are
shaded, diamonds indicate obstructions against going up or down in the
equivalence class of the perversity, see Section 2 (those are the points (i, j)
where j # 0 and H/(L, P) # 0 for the link L of a point y€S,s_;).
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From the pictures we read off the following relations:

Ip<ug, Ip<Kur,
lg€lr, g <ur,

uq € ur.
The construction of the upper bound us and that of the lower bound Is of a
perversity s is not monotonous: consider the relation s < s" for s : = lg and

s' : = wr. Finally, it follows that p — r though Ip £ ur.
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