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1. Introduction

Let L and K be two varieties which are equivalent as categories by functors
G: K— L and H: L— K. Then many properties of K transfer to L. For
instance, subdirect products and homomorphic images are preserved under
category equivalence. Hence there is a one-to-one correspondence between
the isomorphism classes of irreducibles in the two varieties. The lattices of
subvarieties of L and K are isomorphic. If L is generated by an algebra B,
then K is the variety generated by ‘BH. There is a mapping  from the n-ary
terms of L to the n-ary terms of K such that

(@ xt=x,

(b) if « and B are self-mappings of i1, ..., n! and L satisfies x,,... X p
= X1p5... X9 0, then K satisfies x;,...x,,(pt) = x35... X5 (¥).

Consider the variety V() generated by a finite algebra U and assume
that each algebra of V(?0) is isomorphic to a subdirect power of 9L Let
B(X) e V() be the free algebra freely generated by X = |x,, ..., x,) and let
p, q be two terms of ‘B(X). Then p and q are identical if for all homomorph-
isms h: B(X) — N we have ph = gh. Let K be category equivalent to V().
If we have (x,,..., x,p)h=(x,...x,Qh for all homomorphisms h: ‘B(X)
= 91 then we obtain

Xig---Xng(P1) = X15... Xpg(at) in K.

Denote by 2 the two-element Boolean algebra. V(2) is the variety of
Boolean algebras and every Boolean algebra is isomorphic to a subdirect
power of 2: V(2) = IP,2. If a variety K is category equivalent to V(2), then
K is generated by a primal algebra ([4]). The fact described above is
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meaningful in the complexity theory of Boolean functions. By category
equivalence consequences for the complexity theory of primal algebras can
be derived.

In order to generalize the well-known equivalence between V' (2) and any
variety generated by a primal algebra varicties were determined which are
equivalent to varieties generated by two-element preprimal algebras in [2].
These varieties are generated by preprimal algebras. A finite algebra W
= (A; F) is said to be preprimal if the clone generated by F is covered by the
clone &(A) of all functions defined on the set A.

In this paper we consider a category equivalence between varieties
generated by algebras with carriers 4 and A" (r > 1). If 4 is finite the
preprimality of the generating algebras is preserved under this equivalence,
ie, A 1s preprimal if and only if 2 is preprimal.

2. The equivalence S

We use the following definition of the equivalence of categories ([1]):

DeriNmTioN 2.1. Two categories L and K are equivalent if and only if
there are functors S: K— L and R: L— K and for each WAecob K and
Beob L there are isomorphisms a,: W — (US)R and Bz: B—(BR)S such
that for each h: A—- W in K and each g: B—+B in L the following
diagrams commute:

?[ #P Ql' \B g !!%r
®u l l ay Ay i 1 By

The functor S is called equivalence.
Let A be a non-empty set. We denote by F,(A4) the set of all n-ary
functions defined on 4 (n =0, 1, ...) and by #(A) the set of all on A4 defined

functions, 1.e., &(A4) = C)o Ba(A).

Consider algebras W, =(A4; F) and B, =(A4"; G), where A=A x ... x4
is the rth cartesian power of A4 (r > 1). All term functions of an algebra can
be derived by superposition from the fundamental operations of the algebra.
Superposition of functions can be described by the following operations on
& (A):

Xy xn(fé) = x2x3"'xnx1f,

Xy X (f1)=x3x,%3...%,f, for n=2

Xy oo Xpy (fA) =Xy X X300 %0y S,
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fé=ft=fAa=f for n=1,
Xl ...xmxm_}_l ...xm+,,_l(f*g) = xl ...xmgxm+, ...xm+n_1f
for an n-ary function f and an m-ary function g, x, x, e = x; (e projection).

The set of all functions from F(A) arising from the fundamental
operations of the algebra U using * & 1, 4, e is called clone of term
functions T(%0) of the algebra 2. T () can be regarded as an algebra of type
(2,1, 1,1,00: T(W:=(TW; %, ¢, 1, 4, e).

Any variable ranging over A" may be considered as X, =(x;,, ..., X;,),
where x;,. ..., x;, are variables ranging over A. Since the values of an n-ary
function f e §,(A") are elements of A", f may be regarded as an r-tuple of (nr)-
ary functions from ¥(A4). Thus we have

X, .. X, f=(xi1..x0) o (Xpg oo x0) [
= (X0 Xy Xy e X S1s ey Xy Xy Xy e X [
We say that 2l, and B, are related by S’ if the following is satisfied:
S T)=1fl feT(By), i=1,2,...,r1 and T(B,)
=1, N feT(W), i=1,2,...,r]

([7]). (Clearly, if f1s an n-ary term function of B,, then the f; are (nr)-ary
term functions of ¥l;.)

There holds the following Equivalence Theorem:

THeOREM 2.2. Let Wy, =(A; F) and By = (A"; G) be two algebras which
are related by §S’. Then the varieties V() and V(B,y) are equivalent by
functors S: V(W) = V(By), R: V(By) = V(Wy), and ontoness is preserved.

Proof. At first we construct B = US for any algebra We V(W) as
follows: Let A" be the carrier of ‘B. Each r-tuple consisting of (nr)-ary term
functions of W is an n-ary term function of B: 2 =(f{, ..., f,*), where
fit, ..., /A are interpretations of term functions f;, ..., f, of ;. Thus we can
write:

T(B) = {(.flAa a./;'A)l ﬁAET(Q’U, l = 13 ey r}-

Let ¢ =y be an identity in B,. Since ¢ and ¥ are term functions of B,

we have (P':((Ph“" (pr)? 'llz(‘/Jls"'a l//r) with @15 -5 @p,y
Wi, ..., W,e T(W,). Clearly, (¢q,.... 0,) =, ..., %) iff ¢, =, for all i
=1,...,r. It follows ¢ =y# (i=1, ..., r) for the interpretations of ¢; and
W, in 2 Therefore, (¢4, ..., oY) =4, .... ¢?) and ¢® = ¥P¥ is an identity in
B. From Id B, = I1d B for the sets of identities of B, and B it follows
Be V(By,).

Now we extend S to homomorphisms so that it is a functor. Let h: A
— ' be a morphism in the category V(2l;). The image hS: S() — S(A) is
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defined by
(ay, ..., a)hS):=(ayh,...,a,h) for all (a{,...,a)ecB=A"
Let f be an n-ary term function of B. Then we have:
((ayys ..o ar) .. Aapy, .., @) F)(AS) =(ay, ...a, fi', ..., ayy ... ay ) (HS)

=((ayy...an f[Mh, ..., (a5, ...0, )
=((ay h)...(a, ) [P, ....(ay, h)...(a, b) fA)
=((ay B)...(ay, h)...((a, B)...(a, D)) f
=(ay1, ..., ay,)(hS)...(any, ..., a,)(HS) f.

From the definition of hS it follows that S maps surjective homomorphisms
to surjective homomorphisms. Further we have:

(ah LR ] ar)((hl OhZ)S) = (al (hl th)’ trey ar(hl th))

= ((al hl)h29 teey (arhl)hz) = ((ala K] ar)(hl S))(hz S)

=(ay, ..., a)(h S0k S)
for all (a,,...,a,)eB = A", and

(ay, ..., a)(1,8)=(a,, ..., a)=(ay, ..., a)lgy.

Therefore S 1s a functor S: V() — V(B,).

We construct U = BR for any algebra Be V(By) as follows: m, with
(byy....b)mg =(hy,...,by) 1s a unary term function of B, since
by, ....b)mg =((by, ..., b P}, ..., (by, ..., b)p}). The projection p| is a
term function of 2. Let n8 be the interpretation of n, in B. Take A as the
range of n§. To define the term functions of A we consider such term
functions f of B, which can be represented in the form

(bll’ et blr)"'(bnl’ R ] bnr)f
=(bll"'b1r"'bnl"'bnrfoi ey bll"'blr"'bn]'“bnrfo))

where f° is an (nr)-ary term function of 2. Let f? be the interpretation of f
in B. The term functions of U are the restrictions f2/4 to A. Clearly, /2
preserves A because f? satisfies the identity mg * f={fin B,. Let ¢ = Y be
an identity in Uy, i€, @, ye T(Wy). Then ¢ =(@, ..., @)=, ..., ¥) =y is
an identity in B, and ¢® = §® is an identity in Be V(B,). It follows that
#®/A = ¥®/A is an identity in 2 i.e., Id 2, =1d A and therefore We V' (A).
We define gR: BR— B'R for any homomorphism g: B— 8 by
(a,...,a)(gR):=(a, ..., a)g for all (a, ..., a)e A". Clearly, gR is a homo-
morphism, R is a lunctor and R maps surjective homomorphisms to surjec-
tive homomorphisms.

What is to be shown next is that there are isomorphisms a,: U
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— (US)R and fBg: B — (BR)S such that the diagrams in Definition 2.1 are
commutative. The carrier of (US)R is {a, ..., a) ac A}, ie, ay is the
mapping defined by aa, =(a, ..., @) for all ae A. Each term function of 2
can be regarded as an intepretation of a term function of y. If fe T(Wy),
then each function obtained from f by identifying variables belongs to T (L),
ie, if fe T(Y,) then f%e T(,) with b,...b,f =b,...b,...b, f°. Then we
have in . b,...b,f4*=b,...by...b,...b, %4, therefore

(by...bg fNay=(by...by...by... by f Moy =(by...by. . b,.. b, fO% ...
by by by by [ =(by .. by by b)) fB = (b ay.. by £,

1€, oy 1S an isomorphism a,: N — (US)R.
Consider the mapping fy: B —(BR)S defined by

(bl’ vy br)ﬂﬂ%:((bl, ...,b,.)n?, "'5(b1’ ey b’)n,ﬂ).

We show that B is an isomorphtsm. Let f/ be an n-ary term function of B;
thus f = (f{, ..., fA), where f{, ..., f4 are (nr)-ary term functions of 9L Then
there holds:

((bllv e blr)"-(bnlv ey bnr)f)ﬁ&l = (bll "'bnr.flA~ rery bll bur./rA)ﬁ‘l‘
=((byy .- b S s byg b SR, by b S by B [ D).

Let f* be the image of f by the isomorphism f,. Then f* has the form
(f¥, ..., %), where f}*, ..., f,* are certain (nr)-ary term functions of ‘BR. Each
term function of BR has the form f?/BR, where f8/BR arises by interpreta-
tion in B and restriction to BR from

(bll’ ey blr)"'(bnlv ey b"r)_f=(bll...bm.f1, ey bll"'bnrfl)v

SeT(Bo), fre T(Wy).
Therefore we have

(bll’ ey blr)"'(bnl’ Caey b"'.)j‘* =((b11---bnrfl*’ ‘g b“...bmj;.*)n?, cee

cenbyy b S, by by SR D).
There holds:

((Brss -y b1 Baee-Bats ooy b B S* = ((by1s -..r By 7R, ..
v brrs ey BT ((Bags - )T, oy (Bars ., Bo) TE) f*
= (@11, ... b i, s bR by )R
v Bty ooy D) TV S, ((Brys -ees By )RR by -, b)Y E) £¥) AR,
U (TP P E - JUN (PRI AT ¥ S
s ((Brrs ooy bR (B -, ba) 7E) %) 7P).
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fi* (i=1,...,r) is the interpretation of a function fl-*"o G=1,...,rnmm A

If fe T(,) then £ T(A,) with

bllblz-"blr"'bnl"'bnrfi =bll"‘bllbIZ"'bIZ"'bﬂl"'blll"'bnr“'bmﬁo
i=1,...,rn.

It follows:
bl "bﬂrﬁz((bll’""blr)nl"'(blls"" bl,.)n,...(b,,l,...,b,,,.)ﬂ:l...
Buts e b)) =1, 1),

Then we have:

((by1--bu fis s by b f1)y ooy (bry e ibp fos oo byy by f})
=((b11...b11...bn,...bnrflo, veey bll'”bll"'bnr"'bnrflo),
e (biyeaibyy b b f0, by by by b £9)),

ie, by interpretation in A we get:

((Bry . b Sis ooy bra e b SRS oy By by i oy by by S
=(((by1y - D) Y by ooy DTS,
o ((byys s D) TY - (bpys -y D) RF) ) [°4) =t ..
I (NP T L. ORI T - ey
...,((b“,...,bl,)nl...(b,,l,...,b,,)ftf)f,o‘)n,',’

It follows:
((Bry .- b fs s by e b SIRE, by b S byy b [ D)
=(((byy1s -, by Y (bays -, D) TE) 1,
o A(byys ooy bR by e, b)) f¥) W, L
cos (((Byry o evy By (Buys -, b WD) [,
o ((br1s ooy b)) E (Bpys .., b 7D) f¥) 0D

Thus we have

«blla ceey blr)“'(bnl’ LR bur)f)ﬂﬂ =((b11’ e blr)ﬂﬂ'--(bnl’ AR bm)BB)f*'

The last thing needed in order to show categorical equivalence is that
the diagrams in Definition 2.1 are commutative. For all aeA one has

(ahyoy = (ah, ..., ah) and (axy))(hS)R =((a, ..., a)(hS))R = (ah, ..., ah).
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For all (b,, ..., b,) there holds:

((bys s b)) By = (((by, ... bYG)RY, ..., (by, ..., b g)nE)
=(((brs - BITD)g, oy (Bys - BYTY)g) = ((by, ..., BYRY, .
cees (byy ooy B)ATVGS) = ((by, .., b)Y, ..oy (by, ..o, b)) (GR)S

=((by, ..., b) Bu}(gR)S.
This finishes the prool of Theorem 2.2.

3. Application of the equivalence S

Recall that the lattices ol subvaricties of categorically equivalent varieties are
isomorphic. To describe subvarieties of the variety V() one often makes use
of the clone of 2L The clone T () of an algebra A =(A4; F) can be regarded
as an algebra of type (2,1, 1,1, 0): T(W:=(T(W; , &, 7, 4, ). There are
‘three congruences on each clone T(): x,, x,, %,, defined by

(f,gleng: <= f,gl ST A f =gy,
(f, 9Jex,: <= \f,g) < T(MW Aaf =ag, where of is the arity of f,
(f, pex: <\ f,g) < T(N.

Each congruence on T() with » =, is called arity congruence. Let
Con, T() be the lattice of all arity congruences of T(). Let F(X)ec V(W)
be the free algebra freely generated by the countable set X. We are interested
in the fully invariant congruences of F(X). (By definition a congruence is
fully invariant if it is compatible with every endomorphism of the algebra.)
Let Con,, &(X) be the lattice of all fully invariant congruences of ¥(X).
Con,,, (X) is antiisomorphic to the lattice of all subvarieties of V() and it
is isomorphic to the lattice of all arity congruences of T() ([3]). Using these
results we obtain for algebras 20, and B, related by S’ from Theorem 2.2:

CoRrOLLARY 3.1. Let N, and ‘B, be two algebras related by S'. Then there
holds Con T (Uy) = Con I (By).

We remark that the isomorphism Con T () = Con I (B,) i1s given by
(f,gex=(fi,g) ... Alf, g)ex with f,ge T(By), f1, -3 frs 915 ---5 e €
eT(W), f =1, .., ) =191, -, g), #x€ConT(By), x eCon T(Wy).

We consider further properties of the equivalence S. To this end, we
introduce the concept of a primal and of a preprimal algebra.

A =(A; F) is primal: < A4 is finite and T(A) = F(A), i.e, each function
defined on A4 is a term function of A.

W =(A; F) is preprimal: <> A is finite and T() is covered by &K(A).
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It is known ([4]) that for any category equivalence between two varieties
V(W and V('B) generated by finite algebras 2 and B it follows: A is primal
iff B is primal. Indeed, T. K. Hu has shown that any variety generated by a
primal algebra is category equivalent to the variety of Boolean algebras and
that a variety which is equivalent to the variety of Boolean algebras is
generated by a primal algebra. The Equivalence S given in Theorem 2.2
preserves the preprimality of the generating algebras, i.e., it holds

THEOREM 3.2 ([7]). Let U, and B, be two algebras which are related by
S'. Then W, is preprimal iff ‘B, is preprimal.

We state one further consequence of Theorem 2.2. Let ¢ be an h-ary
relation on A, ie., ¢ = A*. We understand by Pol,p the class of all on A4
defined functions which preserve ¢ [(6]). For an. n-ary function f this means
that from

(all’ cees alh)GQa

(anla LR ] anh)EQ

it follows (f (@, ---s @)y -» [ @1y ---5 Gup))E Q-
".Assume that T(,) has the form Pol, ¢ for ¢ = A" and that B, and 9,
are related by S’. We define an h-ary relation ¢* on A’ (9" =(A4")") as follows:

Q'= {((a“, ...,al,.), ...,(ahl, ,ah,))l (a“, ey a;u)EQ fOT an l= 1, ...,r}.

Let

((ali, ..., al), ..., (@}, ..., ab)) ed’,
(@31, ..., a%,), ..., (@hy, ..., ab))eQ
and let fe T(B,). Then we have
(@ly, -, al)...(@ly, -, @) fy ooy (ahyy ooy @hy) . (R, oo, @) f)
=((a{,...a’f,f1,...,a},...a’{,f,),...,(a,{l...a;',,fl,....,a;,...a;,',f,))eg',
because (aj,, ..., ap)€0, ..., (a},. ..., ap)eo and f; (i=1,...,r) are term

functions of T(,) = Pol, . That means: fe Pol ,¢" and T(B,) < Pol ,¢".

Clearly, from fePol , ¢" it follows fe T(B), thus T(Bo) = Pol ,¢".

Let U, be any algebra with T(,) = Polg. Then 2, and o, are related
by §'.

From Theorem 2.2 we obtain: _

CoroLLArY 3.3. The varieties V() and V(W a,) are categorically equiva-
lent.

CoroLLary 34. ([7]). U, is preprimal if and only if ‘l[’q, is preprimal.
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4. Examples

Let us elucidate the above results by a few examples. A primitive h-
elementary relation i, is the h-ary relation on 4 =1!0...., h—1}, h =3,
defined as follows:

(ay, ..., @))€, < at least two of the g; are equal ([8], [5]).

An algebra of the form U is preprimal ([8]). Then /" (r > 1) is the
relation defined on B = 4" as [ollows:

= {ayys -y 1)y ooy @y o5 @) for all j<r
at least two of the elements ay;, a,;, ..., @,; are equal].

By Corollary 3.3 V() and V() are categorically equivalent and by
Corollary 34 2 is preprimal.

By ([8]) each preprimal algebra has the form 2, where ¢ is a certain
relation defined on A.

In the second example we consider an algebra 2, which is not prepri-
mal. Consider the two-element algebra Fi =(!0,1}, x A Ny, m) with
m(x,y,z)=(x Ay) v(x Az)v(yAz). The term functions of Fs are all 1-
separating Boolean functions of degree 2. ®2 is generated by the binary
relation D = }(00), (01), (10)}, i.e. ¥ has the form 2. Then D" (r > 1) 1s the
following relation on {0, 1!":

D= {(@y, e @)y (Bys oo BN (@ B # (1, 1), i =1, .., ),
By Corollary 3.2 the varieties V' (2,) and V(2t,) are categorically equivalent.
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