MATHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 21
PWN -- POLISH SCIENTIFIC PUBLISHERS
WARSAW (988

CONSTRUCTION OF PARALLEL PROGRAMS
WITH NETWORKS OF COOPERATING PROCESSES

JEAN-PIERRE BANATRE

IRISA-INSA and INRIA-Rennes Campus de Beaulieu, Rennes Ceédex, France

A cooperation scheme allowing the construction of systems of concurrent
processes is introduced. In a first part, an informal presentation of the
cooperation scheme is given, then its formal properties in terms of
Generalized Hoare Logic are described. In a second part, the use of the
cooperation scheme is illustrated by several examples. The conclusion
suggests several fields needing further investigation, for example the
distributed implementation of the cooperation scheme.

1. Introduction

The subject of constructing programs suitable for parallel execution gains
more and more interest. Two types of parallelism may be considered:

(1) implicit parallelism, which consists of interpreting in .a parallel
fashion some high level formalism, e.g. logic or functional specification. The
programmer is not concerned with the actual design of a parallel algorithm,
his/her only task is providing specifications,

(i) explicit parallelism, where the programmer uses appropriate control
and data structures to express parallel solutions to problems.

In this paper, we are concerned with parallelism of type (ii). Actually, a
parallel program may be seen as the description of a set of processes and of
their interactions. Interactions are usually modelled by so-called cooperation "
schemes. Among well-known cooperation schemes, let us mention the
procedure call used when a process ask for a service from another process,
the rendez-vous used when synchronous behaviour of processes is needed,

Key Words. Parallel programming, processes, cooperation scheme, correctness, termination.

84 J-P. BANATRE

the parallel composition which allows for concurrent execution of set of
processes. It is our belief that the very nature of a problem makes more
natural the use of one or another cooperation scheme in order to design a
solution.

The present paper describes a cooperation scheme operating as follows:
imagine that the solution V to a problem is a vector of n values V
= (vy, ..., ;). In order to compute V a process P; is in charge of finding v;,
Vie[1, n] and by successive approximations V,, V;, ..., W, ... the solution
V is found. In order, to compute V; from V;_, interactions between processes
are necessary. The cooperation scheme presented in this paper is a possible
model for such interactions. In rough approximation, one can think that this
cooperation scheme may be well adapted to perform numerical calculations
based on relaxation methods, where a trial solution is first proposed and
calculation adjusts the trial in order to find a solution. Of course, a major
problem has to be tackled: the convergence of the relaxation method. In the
same way, our cooperation scheme may lead to undesired infinite
computations, if special care is not taken when choosing the initialization of
the trial solution (V). Section 2 gives an informal presentation of the
proposed cooperation scheme. Its logical properties are described and
termination aspects are dealt with in Section 3. Several examples are
developed in Section 4 and finally Section 5 contains a brief review and
discussion.

2. A scheme for process cooperation

2.1. The cooperation law. Consider a set S of processes p,, ..., p,. Each
p; is provided with a “weight” w;. The cooperation law obeyed by S may be
defined as follows:

Two processes p; and p; (i #j) of § may communicate if and only if a
given predefined binary relationship R(w;, w;) holds.

When communication is possible (R(w;, w;) holds), p; and p; exchange
atomically their weights, i.e, p; receives w; and p; receives w;. After this
exchange, p; executes a function f;(w;, w;) which may eventually change w;
and p; executes a function f;{w;, w;) which may eventually change w;. Upon
termination of f; (resp. f}), p; and p; are ready for new interactions with other
processes belonging to S.

So processes p;'s are cyclic, the executions of a cycle being governed by
the possibility for p; of being “coupled” with another process p, (i.e., R(w;, wy)
holds).

STeADY STATE. The system S is said to be in a steady state if the
following condition holds: Vi, j, i # j,] R(w;, w)). In this state, there is no
possibility of further interaction.

CONSTRUCTION OF PARALLEL PROGRAMS 85

2.2. Programming notation. Weights are tuples whose type may be
defined as a tuple of types: (rype 1, ..., type n). A weight is defined as a tuple
of typed identifiers, for example (integer: s, real: r, string: u). A component ol
a weight value is referred to by its identifer. The structure of a process is as
follows:

pi-:*[< (defnition of w;)
O
(definition of f;(w;, w;))
]

w;, (w;) refers to the weight of the process coupled with p;, (p;) for the
execution of the current computation step for which R(w;, w;) holds.

2.3. Example. Consider the problem of sorting 5 (different) names into
-alphabetical order. For example, the names may be:

GEORGE, ANDREW, JOHN, PETER, MIKE.

A process is attached to each name. The weight of the process is a

couple (name, position), position being initially set up to 5 (number of names
to be sorted).

The text of a process is:
*[(name, position)
¢
if name < name
then position: = position-1
fi
]

Overbarred identifiers are used in the text of a process p (with weight w)
to refer to elements of the weight w of the process currently coupled with p
(1.e., such as R(w, w) is true).

The relationship R(w, W) governing interactions between processes is
position = position. Thus two processes possessing the same position may
exchange their weights and make a computation step.

The evolution of the system of processes may be figured as:

(GEORGE, 5) (ANDREW, 5) (JOHN, 5) (PETER, 5) (MIKE, 5)

(GEORGE, 2) (ANDREW, 1) (JOHN, 3) (PETER, 5) (MIKE, 4)

86 J.-P. BANATRE

On the above figure, a process is represented by its weight, and two
communicating processes are linked by a horizontal line. Of course, this
is one among the possible paths leading to a solution. This algorithm is
non-deterministic as there is no indication on the way cooperating couples
are selected.

One can see that when the system of processes reaches its steady state,
the second position of the weight represents the alphabetical position of
the name.

However, caution has to be taken so that the initialization of the
weights may actually lead to a steady state representing a solution.

3. The logic of this cooperation scheme

3.1. Generalized Hoare Logic. In order to describe the formal properties
of the above cooperation scheme, we use the Generalized Hoare Logic
(GHL) as developed in [4]. GHL is a generalization of Hoare Logic for
sequential programs to concurrent programs. It allows the derivation of
invariance properties of programs from properties of their components.

Three predicates may be associated with a program fragment =.

at (n) = “control resides at entry point of =n”,

in (7) = “control resides somewhere in n”,

after (n) = “control resides at a point immediately following n”.

These predicates are used to describe control states. In [4], GHL is
described for a simple programming language. An inference rule is given for
each construction of the language, making it possible to derive properties of
statements from properties of components. Among the most important rules,
let us mention the following:

7 is a program fragment made of n components «,, ..., 7,.

DecomrposiTioN RULE. If T is an invariance relation verified by every =,
then

IR 70 R Bt A Y|
I{n}I '
CONJUNCTION RULE.

]l '{71' Ilr -"’In{n}ln

Liny N I

i=1l,n i=1,n

Finally, the logic of a program is represented by an invariance property
P, and the method for proving P is as follows:

(i) prove that pre = P, where pre is the precondition of the program,
(1) prove that any state reached during execution satisfies P,

CONSTRUCTION OF PARALLEL PROGRAMS 87

(1) prove that P = post, post being the postcondition reached at the
exit point.

Let us now apply GHL in order to define the properties of our
cooperation scheme.

3.2. Formal properties of the cooperation scheme. A process m; is
represented by:

i Mt *[w,
¢
s S (wi, w))

mit]

where: my;, ke[O,'2] represent control points. The notation {) indicates
that the execution of f(w;, w)) is atomic [4]. '

Assuming that the cooperation scheme is governed by a relation
R(w;, w), it 1s possible to state the following logical properties:

LoGicAL PROPERTIES OF THE PROPOSED SCHEME. (1) Symmetry of the
communication condition

R(w;, wj) = R(w, w)).
(2) Invariance property of function f
R(w;, w) nat(my) A,
S (wi, WJ))},
at(ny;) Al
(3) Communication rule
R(w;, w)) A at(ng;) A at(me) A,
| ¢exchange of weights)},
R(w;, w)) A after(ng) A after(mgy) A L.
(4) Process m; is cyclic
after(n,;) = at(ny,).
(5) f is atomic
after(n,;) = at(my,).

(6) Steady state.

All processes are at their initial control point and no more couple
may be formed:

/\ at(nol-) A —I \/ R(Wk, Wl).

i=1,n ki=1,n

88 J.-P. BANATRE

(7) Initially all processes m; start simultaneously. If we denote by =, the
set of processes =m;, ic[1, n] then the initialization condition is:

at(m) = /\ at(my,).

These properties characterize the proposed cooperation scheme. In
particular, they might be used in conjunction with the usual Hoare logic for

sequential programs to prove properties of concurrent programs built
according to our scheme.

3.3. About termination. Many problems which can be easily solved using
our cooperation scheme, are such that the occurrence of a steady state
(Property 6) implies the discovery of a solution — as an illustration see
Example 2.3. It is then of prime importance to show that according to some
given initial conditions the system of processes will converge.

A usual tool for proving termination of programs is the well-founded
set: a set of elements and an ordering “>" defined on these elements,
such that they can be no infinite descending sequence of elements. The
idea for proving the termination of a sequential program (process) is to
find a termination function that maps process variables into a well-founded
set, the value of the termination function being successively decreased
throughout the computation. Natural numbers under the > = ordering are
often used for proving termination of iterations [3]. In [2], multiset ordering
is shown to be well-founded and used for proving termination of production
systems. Multisets are like sets, but may contain multiple occurrences of the
same element. Consider two multisets of natural numbers M, and M,, the
relationship M; » M, holds if M, can be obtained from M, by replacing
one or more elements of M, by any fimte sequence of natural numbers, each
of which being smaller than the replaced one (more details in [2]).

Our idea consists of applying this multiset ordering for proving
termination of parallel programs built according to our cooperation scheme.
To each process p; is associated a termination function r; which maps the
weight w; into the set of natural numbers under usual ordering. So w; will be
mapped successively onto the following values {z;;, ..., Zy, ...} such that, Vu,
veN, u>v=1, >t,. Asevery p, i€[l, n] is provided with a function ¢;,
then the initial state of the system of processes p;, ie[1, n] will be mapped
through functions t;, ie[l, n] into the multiset w; = {t;y, ..., t;p;. Any
subsequent state w; = {t,, ..., t;,} will be such that w; < w, and any state w;
derived from w; will be such that w; < w;. Thus, we have a simple mean for
proving that parallel programs built according to our cooperation scheme
terminate (or reach a steady state).

Coming back to example of Section 2.3, let us associate to every process
p; the function 1, defined as follows:

CONSTRUCTION OF PARALLEL PROGRAMS 89

t;; inames! x N =+ N,

t; (w;) = position,.

The initial configuration of the system is represented by the multiset |5,
5 5, 5. 5]. Given the form of the function f;(w;, w;), any application of this
function results in decreasing either position; or position;. So any
configuration w, derived from w, will be lower than w; and so on and so
forth. The set of configurations possesses a lower bound w = {1, 2, 3, 4, 5
and this remak concludes the termination proof.

4. Applications of the proposed cooperation scheme

4.1. Name sorting. Let us give the invariance properties of Example 2.3.
A possible invariant [is the following:

I = Vi, (position; # n
=3 name; (position; = position; + 1 = name; > name;))
A (Vke[1, n], 1 < position, < n).

One can check easily, that the initialization is correct, actually it is clear
that: I, = (Vke[1, n], position, = n) = I. It is also clear that the execution of
a computation step keeps [true. Finally, when a steady state is reached (as
suggested in Section 3.3), the following conditions hold.

steady state =(Vi, je[l, n], i #j, position; # position;).

I A steady state = names are correctly sorted.

4.2. A parallel pretty printer. This problem is concerned with the
construction of a parallel pretty printer for programs made out of
conditional clauses which may be nested at any level

The following grammar describes the kind of conditional clauses we
consider:

{conditional clause)::=

if (clause)
then {clause)

else (clause>
fi

{clause):: = {conditional clause) {expression without conditional clause).

The purpose of the program to be constructed is to perform indentation
of symbols according to given rules. We do not consider any constraint
concerning line length.

90

J-P. BANATRE

4.2.1. Conditions to be met by a pretty printed text. In order to deal with
the possibility of nested conditional clauses, let us define the nesting level.
The nesting level is a number representing the static nesting depth. Let us
give a simple example:

if
then
if
then
else
fi
else
if
then
else
fi

fi

The enclosing conditional clause
possesses nesting level 1,

and enclosed conditional clauses possess
nesting level 2 and 3.

Actually, the nesting level is associated with each symbol of conditional

clauses, so:

(if, 1)
(then, 1)
(if, 2)
(then, 2)
(else, 2)
(fi, 2)
(else, 1)
(if, 3)
(then, 3)
(else, 3)

(fi, 3)
(f, 1)

A program as represented on a screen or on a sheet of paper may be
seen as an array of nxm symbols. The position of a symbol may be
identified by its coordinates (i, j). We define the indentation between two
symbols by the difference in their second coordinate (the column).

The following table defines the indentation rules associated with
conditional clauses:

T (if, k+nr(i+1) (then, k)(i+r) (else, k)(i+r) (i, k)(i+7)
r=1) r=1) r=1) r=3)
af, k)@) 1 2 / 0
(then, k)(i) 1 / 0 /
(else, k)(i) 1 / / /
(fi, k)@@ / / / /

CONSTRUCTION OF PARALLEL PROGRAMS 91

As an example, line 1 of table 1 can be read as [ollows: Given a symbol
if of level k with coordinates (i, j),

(i) the coordinates of the if symbol beginning a conditional clause
immediately nested within the considered conditional clause are (i+1,]
+ T[(f. k), (if. k+ D], ie. (i+1,j+1),

(ii) the coordinates of the then symbol belonging to the same
conditional clause are (i+r, j+ T([if, k), (then, k)], ie, (i+r, j+2), with r >
= 1),

(i) a fi symbol is situated on the same column as the opening if
symbol, so if the coordinates of the if symbol are (i, j) that of the
corresponding fi symbol are (i+r, jj, with r > 3.

4.2.2. Parallel solution to the problem. The complete solution uses the
following processing elements:

(1) a process, scan, which inputs the source text and produces and
encoded version of it, where the nesting level is attached to each symbol.

(i) A system S of processes p;’s. A process p; being associated with every
symbol to be pretty-printed.

We can consider, that as far as scan progresses, new processes p;’s are
added to S. Actually, scanning a new symbol implies the creation of a new p,
attached to this symbol. Assuming that these processes are generated by a
process g, the overall organization of our solution is given by the following
figure:

pretty
printed

input text text

The system S is built according to our cooperation scheme: the weight
attached to every process of the system is a triple (s, /, ¢), s stands for the
couple (symbol, nesting number), ! for line and ¢ for column.

Processes p; and p; possessing weights w; and w; cooperate if (c;
—c;) # T[s;, s;], and after the exchange of weights, the two computation
steps performed by p, and p; ensure that the relation (¢;—c) = T[s;, s;]
becomes true. If the initialization is correct and if termination is ensured,
then a steady state is reached, the set of weights will represent the solution.

In order to construct the solution, we' have only to find the
communication condition R (w, w) and the text of processes, i.e., the function

f(w, w).

92 J.-P. BANATRE

CommunicaTiON conDiTiON. The condition R(w, w) is directly derived
from table T
R(w, w) =

case(s, 5) of
(Gf, k), G, k+ 1)) c#e—1 Al=T=1,
(if, k), (then, k)): ¢ # -2,
((then, k), (if, k+1)): c#c—1 Al=T-1,
((else, k), (if, k+1)): c£c—1 Al=1-1,
(Gf, k), (fi, k)): ¢ #¢,
((then, k), (else, k)): c # ¢

endcase

The notation case of ... endcase has an obvious meaning: it allows us to
discriminate on the symbols in order to describe precisely condition R.

TexT oF ProCESSES. The text of processes belonging to system S is also
directly derived from table T. Actually, if two processes are such that R(w, w)
is false, then after exchange of their weigths and execution of a computation
step, R(w, w) becomes true.

Let us express f (w, w) in the same generic way as we expressed R(w, w)

S(w, w) =
case(s, 5) of
(Gf, k), GF, k+ 1)):

if 1>1
thenc:=c+1
fi
(Gf, k), (then, k)):
if 1>1
then c:=c+2
fi, »
((then, k), (if, k+1)):
if 1>1
then c:=c+1
fi,
((else, k), (if, k+ 1)):
if 1>1
then c:=c+1
ﬁ)
(Gf, k), (i, k)):
if 1>1
then c:=¢

fi,

CONSTRUCTION OF PARALLEL PROGRAMS 93

((then, k), (else, k)):

if 1>1
then c:=¢
fi
end case

4.23. An example of functioning of the algorithm. Consider the
configuration to of the source text.
Yo: if
then
if
then
else
fi
else
fi

vo is transformed by the scanner into y, which has the following form:

.. (if, 1), (then, 1), (if, 2), (then, 2), (else, 2), (fi, 2), (else, 1)(fi, 1)}.

One process per symbol is generated by g. The text of these processes
are derived from f(w,w). Then, this network of processes cooperate
according to the communication condition R(w, w). Configurations 4,,
ie[0, 4] give one among the possible set of configurations leading to a
steady state, Two communicating processes are linked by a vertical line and
a process is represented by its weight.

do: (Gif, 1), 0, 0) 4,: (L, 1), 0, 0) 4,: (Gf, 1), 0, 0)
((then, 1), 1, 0) ((then, 1), 1, 2) ((then, 1), 1, 2)
(f, 2), 2, 0) '((if, 2), 2, 0) ((f, 2), 2, 3)
((then, 2), 3, 0) ((then, 2), 3, 2) I((then, 2), 3, 2)
((else, 2), 4, 0) ((else, 2), 4, 0) ((else, 2), 4, 2)

((f, 2), S, 0) (fi, 2), S, 0) (fi, 2), 5, 0)
((else, 1), 6, 0) ((else, 1), 6, 0) ((else, 1), 6, 0)
(i, 1), 7, 0) (i, 1), 7, 0) (f, 1), 7, 0)
A5: ((if, 1), 0, 0) A, (G, 1), 0, 0

((then, 1), 1, 2) ((then, 1), 1, 2)

(f, 2, 2, 3) (iif, 2), 2, 3)

((then, 2), 3, 5) ((then, 2), 3, 5)

((else, 2), 4, 2) ((else, 2), 4, 5)

((f, 2), 5, 0) ((fi, 2), S, 3)

((else, 1), 6, 2) ((else, 1), 6, 2)

(i, 1), 7, 0) (i, 1), 7, 0)

4, represents a steady state and the text can be correctly pretty-printed.

94 J-P. BANATRE

4.2.4. Invariance properties and termination. A possible invariant for our
solution is the following:

I E((HC“: C, > K)=>(3w,, Wj’ ’J = l,-+r A CJ' = Ci+ T[Sl" Sj]))
A K < ¢, ¢; < max,

r depends on the couple of symbols which are considered (see table T).

As far as initialization is concerned, we have chosen: I, = Vw,, ¢ =K.

K being a constant indicating the column number of the first if symbol,
in the example, we have chosen k& =0. max is an upper bound of the
maximum number of columns necessary to represent the pretty printed text,
for example, max can be chosen as 2* number of symbols.

Clearly, 1,=1, so the initialization is correct. It is also clear that the
execution of a computation step keeps I true (see f(w, w)). Finally, when a
steady state is reached the following conditions hold:

steady state = Vi, je[1, n], i #j, | R(w;, w))
I A steady state = the conditions for pretty printing are realized.

As far as termination is concerned, we can choose the following
termination functions (one per process p;):

I;:

aw,—= N, 1(w)=c.

It is clear that following every exchange, one and only one out of the
two computation steps will increase a column number. So given a multiset w,
= |¢y, ..., C,] representing the column numbers reached after some
computation steps, it is obvious that following a new exchange (and a new
computation step), w,,, will be greater than w,. Now, as the maximum
distance (in terms of columns) between two symbols is 2, we can state that
the maximum breadth of the pretty printed text will be less than K + 2xn, if n
is the number of symbols and if the first if is placed in column K.

This concludes the termination proof, as the set of processes S generates
an increasing sequence of multisets and as an upper bound for this sequence
has been exhibited.

4.3. Other applications. This section introduces solution to problems
where termination considerations is not of prime importance. Its purpose is
only to suggest other fields of application for the proposed cooperation
scheme.

'4.3.1. Identifier binding in compilation. The problem consists of
associating an identifier use with its declaration, as it appears in block-
structured languages. For example, consider the following PASCAL-like
program skeleton:

CONSTRUCTION OF PARALLEL PROGRAMS 95

begin
(1) a: integer;
(2) b: real;
(3) a:=a+7;
4y b:=6.1
end

Declarations of identifiers a and b appear in lines (1) and (2). They are
used in lines (3) and (4). A parallel compiler could operate as follows:
While processing the source text, a process generator creates an instance
of process decl when finding a declaration and an instance of process use
when finding an identifier use.
The shape of these processes is as follows:
decl::*[(id, type, block) ¢ skip]
use::*[(id, block) &
produces code from the properties of the declaration #;
(id, block): = (skip, skip)
]

The condition R(w, w) which will allow the process use to be supphed
with the properties of the declaration can be expressed as:

R (wdech wusc) = i“ldacl = idusc‘

In this example, two types of processes constitute the system, so it is
necessary to be able to discriminate their weights — id,,, refers to the id part
of wy, and id,, to the id part of w,,. The last instruction of the process use
can be viewed as a destruction mstruct]on as it is not possible to match skip
with any identifier (ie, Vw,y, |R(W.q, (skip, skip)). So any instance of
process use “commits suicide” after code production.

This very elegant solution can be compared with that proposed in 1].
In this latter paper, a data structure (varisized set of events) is still necessary
in order to represent identifier tables. This data structure is completely
hidden by the cooperation. This scheme with the present solution.

4.3.2. An infinite clock. Consider the system of two processes n; and =,
built as follows:

7, *[(value) O n,::*[(value) O
if value =0 if value =0
then value:=1 then value:=1
else value:=0 else value:=0
fi fi

96 J-P. BANATRE

With the condition R(w, w) = |value—value| =1, this system of
processes will go into an infinite computation, provided that the initialization
is correct (i.e., one out of the two processes has its weight to 1 and the other
its weight to 0). So, processes n, and =, will produce the infinite sequence
(01«, 10°), if =n, 1s initialized to 0 and =, to 1.

5. Discussion and conclusions

This paper proposes a cooperation scheme and its application to the
construction of parallel programs. Logical properties of this cooperation
scheme are given in terms of Generalized Hoare Logic and particular
emphasis is put on termination aspects. Finally, some examples are
developed which should suggest a method for parallel program construction.

As far as further research is concerned, several aspects need
investigations, such as:

(1) identifying the class of problems which may naturally be solved by
using the proposed cooperation scheme. We think of numerical calculations
using relaxation methods, but one can also think of computations using
cellular automata. Section 4 develops examples taken from non-numerical
computing (pretty-printer, compilation);

(2) pursuing efforts on concurrent programming methodology. Actually,
the ideas presented in this paper constitute a good starting point, but further
studies are still needed in particular when dealing with non convergent
systems of processes;

(3) building and experimenting prototype implementations. Some work
has been done in this area, but we still need further research in order to
produce efficient distributed implementations. In particular, we have to deal
with the problem of “distributing” the evaluation of condition R which
appears as a “global” condition in our solutions.

References

[1] F. André, J. P. Banitre, J. P. Routeau, A Multiprocessing Approach to Compile time
Symbol Resolution, ACM, TOPLAS 3, | (Jan. 1981), 11-23.

[2] N. Dershowitz, Z. Manna, Proving termination with multiset ordering, CACM 22, 8
(Aug. 1979), 465-476.

[3] E. W. Dijkstra, A discipline of programming, Prentice Hall (1976).

[4] L. Lamport, F. Schneider, The “Hoare logic” of CSP, and All That, ACM, TOPLAS 6,
2 (April 1984) 281-296.

Presented to the semester
Mathematical Problems in Computation Theory
September 16— December 14, 1985

MATEHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS. VOLUME 21
PWN — POLISH SCIENTIFIC PUBLISHERS
WARSAW 1988

THE COMPLEXITY OF CLASSIFICATION PROBLEMS

L. BUDACH

Laboratoire Informatique Théorique et Programmation, Université Paris, Institut de
Programmation, Paris
on leave of absence from
Humboldt-U niversitiit, Sektion Mathematik, Berlin, GDR

1. Information systems and classification problems

1.1. An information system (see [8]) is a quadrupel S =(X, 4, V,r),"
where X, A, V are finite sets and r is a mapping of X x A into V. The set X
is interpreted as the set of all objects under consideration, A is the set of all
attributes, and V is the set of descriptors. The mapping r is the so-called
information function.

Let ae A be an attribute; a defines a function

X-V, x-r(x,a),

of X into V. We assume that different attributes define different functions.
This enables us to identify the attribute a with the corresponding function
and to write a(x) instead of r(a, x). Let Ima = {a(x)|x € X} be the image of
the function a, then a can be considered as a function of X onto Ima. By
abuse of language we consider A to be a set of functions a: X — Ima and
write S = (X, A) instead of S =(X, A, V, r). Let f: X — Y be a mapping. We
call f to be dependent on S if the following condition is satisfied:

If a(x,) = a(x,) for all aeA, then f(x;) = f(x;), X1, x;€X.

The mapping f is dependent on S iff there is a function [[Ima —7Y,

aeA
such that the following diagram is commutative:

| X_f)’)l
(u(x))“‘ Mima

oed

7 — Banach Center 21

98 L. BUDACH

A tripel C = (X, A, f) such that (X, A) is an information svstem, and
J: X — Y is a function dependent on (X, A) is called a classification problem.
The function f is called the classifying function or the classification.

By some technical reasons we will assume throughout the following
paper, that all information systems satisfy the following condition:

S is fully faithfull, i.e, the function X — J]Ima is bijective. This implies
acA

that all functions f: X — Y are dependent on S.

1.2. Examples

1.2.1. Every boolean function f: |0, 1}”"— |0, 1} defines a classification
problem. The underlying information system consists of X = {0, 1]" as set of
objects, A = 11,2, ..., n} is the set of attributes, V =10, ! is the set of
descriptors, r=XxA—-V is the selection function defined by
r((x,, ..., x,), i) = x;, and f is the classifying function.

1.2.2. Let X be a finite aphabet and L be a language over 2. L is a
subset of X* and defines a subset L":= L n 2" for any natural number . Let
fur 2" — 10, 1} be the characteristic function of L" i.e,

fiw)=if wel” then 1 else 0.

Therefore L defines for every n a classification problem with information
function f, and the underlying information system (X", }1,2,...,n}, X, r)
With r((dl, PN Gn), l) = 0"'.

1.23. Let V be a finite set, called the set of vertices and let v,, v, be two
distinguished vertices of V. Take V' = V—{v,}. A V-Maze is a function d: V'
x {0, 1} =V (see [1], [2], [11]). A V-maze can be considered as a directed
graph I'(d), V being the set of vertices and E = {(v, d(v,))| veV',ie|0, 1}}
the set of edges. This graph has two distinguished nodes v, and v,. The
outdegree of all nodes different from v, is two and v, is a sink of this graph,
its outdegree being zero. The V-maze 4 is called to be threadable, if there is a
path in I'(d) connecting v, with v,.

Let X = Map(V' x {0, 1}, V) be the set of V-mazes. These are the
objects of the following information system:

A=V x{0,1} is the set of attributes,

V is the set of descriptors and

r: X xA—V is the function defined by r(d, (v, i)):=d(v, i).

MAZES(V):=(X, A, V,r) is an information system which is the
underlying information system of the classification problem GAP(V, v,, v,)
the classifying function ¢ of which is defined by

t(d):=if d is threadable then 1 else 0.
Since all GAP(V, vy, v,) with # (V) =n are isomorphic we write GAP(n)

COMPLEXITY OF CLASSIFICATION PROBLEMS 99

instead of GAP(V, v, v,). Without restriction of genecrality we can assume V
=11,2,...,n) and vo =1, v, =n.

2. Questionnaires or classifying graphs

2.1. A procedure to classify via a given classifying function are the
questionnaires introduced by C. Picard [9] (see also [2] and [4]). A
questionnaire or a classifying graph over a given information system S
= (X, A) is a quintuple F =(Q, Y, a, 8, q,), where

QO is a finite set, the set of nodes;

Y is a finite set with YN A= and a: Q —» YU A4 is a mapping; the
nodes of act F:=a~'(4) are called questions and the nodes of term F
:=a~1(Y) are the results;

0 =19, geactF}, d,;: Ima(q) > Q describes the strategy of posing
questions;

go is the initial node, i.e., that node, in which all enquiries get started.

X operates partially on Q by the following function:

act FxX =Q, (g, x) —qx:=d,((x(q))(x).

This action can be interpreted as follows: let g be a question; then «(g) is an
attribute, i.e., a mapping a(q): X — V. To pose question g to the object xe X
means to apply a(q) on x. The answer of x to the question q is a(q)(x). This
answer implies a new question or a result, namely 6q(a(q)(x)) which we
called gx. The partial action of X on Q can be extended to X*, the free
monoid generated by X. For xe X take gx"*':=(gx") x if gx"e act F. Let &:
X — Y be the following function

Ee(x):=if qox"eterm F then a(q,x™ else not defined.

The sequence qq, go X, go X2, ..., 4o X"eterm F describes the strategy of F in
asking questions: after having asked for the attribute a(go x™), m < n, F gets
the answer (x(go x™)(x) which makes F move to the node gox™*! if m+1
< n or the result of the enquiry &g(x) = a(qq x").

If F is free of cycles (more precisely if the directed graph

r(F)=(Q, {g. 6,()| geactQ, iclma(qg)})

is [ree of cycles), then gx" # ¢ for all geact F, xe X. In this case &g is fully
defined on X. So il we assume that F is free of cycles, then &y is a fully
defined function, which can be proved to be always (i.e., also in case when we
do not assume that S is fully faithful) dependent on S. We say that F is a
solution of a classification problem C =(X, A,f) if (= f

2.2. Easy to verify that every classification problem admits a solution F
which is, moreover, a tree (for the easy proof of this fact we refer the reader

100 L. BUDACH

to [2]). In [2] and [4] we introduced different measures for the complexity
of classifying graphs. One of these measure was the size of F:

size(F) = #(Q).
Let C = (X, A, f) be any classification problem. We introduce two numbers:
size(C) = min {size(F)| (&= f}, and
Size(C) = min {size(F)| & = fand I'(F) is a tree!.

One of the most interesting and outstanding problems in theoretical
computer science is the determination of the “small size” size(C) of certain
classification problems C. Though also the determination of Size(C) is not
easy, it can be done in certain cases. The following section presents some

results concerning these questions. The detailed proofs of these results can be
read in [2].

3. Classifying graphs for GAP(n) and related problems

3.1. Assume Y = {0, 1] and let F,, F, be classilying graphs with
Fiz(Ql" Y; o;, 5i$ ql'O)’ 1=152

We define Fy A F, and F; v F, in the following straightforward manner:

Obviously

size(Fy, A F,) =size(F, v F,) = size(F,)+size(F,;)—2
and
€F1\/F2=€F1V5F2, CF]AF2=5F1 AéFz'

3.2. Consider the following classification problems:

In 1.2.3 we introduced already the information system MAZES (V) and
the classification problem GAP(V, vy, v,). The latter classification problem
can be considered as a special case of the following classification problem.

COMPLEXITY OF CLASSIFICATION PROBLEMS 101

Call a V-maze d k-threadable for a given natural number k, if it is threadable
and if the path connecting v, with v, has a length smaller or equal to k. Let

t, = 4 (V, vo, v,) be the characteristic function of the set of all k-threadable
mazes, l.e.,

t,(d) = if d is k-threadable then 1 else 0.

Let GAP,(V, vy, v,) be the corresponding classification problem. Obviously
GAP(V, vy, v,) = GAP,(V, vo, v,) with k = # (V)—1. It is easy to verify that
one has the following equality: '

I+t = V{tﬁ(I/’ Vo, ve) /\I(V, v, ve)l ve‘/a V:/:VOsV:r‘&Ve} vrl(V’VO’ ve)'
From this equation one gets the following recursion formula for
s(k, n): = size (GAP,(V, v, v,)) with n:= #(V):

n-1
stk+1,)< Y (stk, m+s(l,)—2)—2(n—3)+4-2

i=2
=(n—=2)(s(k, n)+s(l, n—4)+4.
From this formula results:

s(2k, n) < 2(n=2)(s(k, n)—2)+4 < 2(n—1)s(k, n)

and this gives the following upper bound for s(n) = size(GAP(n)). »

s(n) < 4n(n—1)°e"

3.3. Let us give an example: An optimal solution for the classification
problem GAP(3), ie., a classifying graph for GAP(3) with the minimal
number s(3) = 7 of nodes is the following classifying graph:

3.4. The above example is the easiest case of the following solution F for
GAP(n) which is in general not optimal but better than 3.2, for n small:

act F = {(U, n)e2" xN| teU, neU, #(U)-1<n <2#(U)},

102 L. BUDACH

termF ={0,1} =Y,
a(U, n): = n-th element of U x2 in lexicographical order,

Uouiyl,n+l) if n+l1<2#Uuliy)) and y #yv,,

Swm =941 if y=v,,
0 if n+1=2#Uuly),
go = ({vo], 0).

It is easy to sec, that

n—2 _1
size F =2+ ¥, (” |)(H—Z).
i=o \ !
For n=3 we get size F =7, and for n =4, size F = 14. The first value is
optimal and we believe that also s, = 14. But already the proof of this fact
seems to be hard. The importance of the numbers s, is demonstrated by the
following theorem:

35. THEOREM. Let L be the class of all languages, which can be
recognized by u Turing machine with logarithmic tape and let NL be the class
of all languages which can be recognized by a nondeterministic Turing machine
in logarithmic tape. Obviously L= NL. In order that L = NL it is necessary
that s, is polynomial in n.

The proof of this theorem can be found in [2].

4. Classifying trees

4.1. Let S = (X, A) be an (fully faithful) information system. Lel trees(S)
be the set of all classifying trees over the given information system S. To
every attribute ac A with Ima = {y,, ..., y,} there is an n-ary function a:
trees(S)" — trees(S) which is defined in the following way: let F,, ..., F, be
elements of tree(S) with

F; = (@i Y.is 0, gio);
then F:=a(F,,..., F,) =(Q, Y, a, 8, qo) is defined as foll8ws:

¢=faju(U Qi) Y=UY, «@=a @ ik=x.

Then we get act(F) = {a}u(.L_)lact(F;-)x{i}). The function & is defined

by 8. (¥):=1(8,(¥), i) and 8, := (g;0, i). The initial node g, of F is defined

by go:= a, which completes the definition of F. Suppose we are given a fixed

set Y. To every element ye Y we define the following trivial classifying tree:
[y:]:: ({Y}, {y}1 l:y}’ ®’ {y})’

COMPLEXITY OF CLASSIFICATION PROBLEMS 103

consisting only of onc node. For the next theorem we consider by set

theoretic reasons only classifying trees F =(Q, Y, a, J, ¢o) with a fixed set Y
of possible results of the classification.

4.2. THEOREM. (trees(S), A) is a free algebra and the set of all [y] forms a
set of free generaiors.

The proof of this theorem is given in [2].

4.3. Consider the following binary relation £ on the set of all classifying
trees.

(1) for ac A, yeY holds a([y], ..., [y =[y],
(i) if a, beAd then a(b(Fyy, ..., Fi,)s ..., b(Fpy,s ..., Fp)) = bla(Fy,,
'-le . a(Flrn""an));

(i) Let F=u(F,,...,F,) and assume F; contains a subtreeF’

= u(Fy, ..., F,). Let F" be the tree obtained from F by replacing F' by F.
Then F = F",

44. DermitioN. The congruence relation = generated by = will be
called the syntactic congruence ol classifying trees.

Let us consider an example:

PARN VARN
3 1
/ \ ?/\3 2 /N AN

Lidi)

AN u/\d NN /NN /\

:|1>

ry
s
o
w

2 . 2
SN /O
1 1 1 1
A /N /\\ A /\ /. A
Lii) 3 3 b 3 mn a b 3 (ii)
/\ //\d /\d /\d /\
11 ~ ,1
SN VAN

=1

; /f\, /\%j\b ANEION
A A AN AN

104 L. BUDACH

45. Two classifying trees F, and F, will be called semantical equivalent,
F, ~ F,, of their classifying functions are identical: {z = {,. It is obvious
that classifying trees which are syntactical equivalent are semantical
equivalent too. More interesting is the other direction which will be the main
result of the following theorem, the proof of which will be found also in [2].

4.6. THEOREM. Syntactical and semantical equivalence are equal, i.e., for
all classifying trees holds: F, ~ F, if and only if F{ = F,.

WAaRNING. For this theorem the assumption that S is fully faithful is of
significant importance. See example 4.13 of [2].

5. Optimal trees for GAP(n)

5.1. In 2.2 we introduced the notion of the “big size” of a classification
problem C = (X, A, f):

Size (C): = min {size(F)| (= f and I'(F) is a tree).

A classifying tree F is called an optimal tree solution of C or for short an
optimal tree for C if F is a solution of C and if, moreover, size(F) = Size(C).
Since every classification problem has a solution which is a tree, every
classification has an optimal tree solution. The example at the end of 44
gives evidence that it might not be easy to find an optimal tree for C and,
moreover, it may be rather difficult to decide whether a given classifying tree
is an optimal solution. We will find in 7.7 a criterion which allows to answer
the second question in certain cases.

Let us first consider the problem GAP(n).

Let o(n):= Size(GAP(n)). We intend now to give a recursion which
allows to compute these numbers and to give lower bounds for o (n).

5.2. Let V be a finite set with two distinguished elements v, and v,. In
1.23 we introduced FV-mazes as functions d: V' x{0,1) =V with V'
= V\{v.}. A partial V-maze is a partial function d: V' x !0, 11 2>V, As for
V-mazes we can consider the directed graph I'(d) with V being the set of
vertices of I'(d) and E, the set of edges being defined by

E:= {(v,d(v,) (v, fedomd].

Let d be a partial V-maze. Let reach d be the set of all ve V which are
connected with v, by a path from v, to v. We call d a rrunk if
domd < (reachd) x {0, 1}, and d is called a complete trunk if in this inclusion
equality holds. We call d to be connected if v,ereach d. We call d
disconnected il it is not connected, and stabily disconnected if all extensions
d =2d of d are disconnected.

COMPLEXITY OF CLASSIFICATION PROBLEMS 105

Let d be any partial maze. Define d by
d:=d|((reachd) x {0, 1}) ndomd.

Obviously d is a trunk and it is easy to see that d is stabily disconnected if
and only if d is a complete disconnected trunk.

Let F be a tree solution of GAP(V, v,, v.) and let g be any node of F.
Let

qdo J[()"‘Il_’xl 42‘_’:2 e 4y =4

be the path in F connecting the initial node g, of F with g. Since a(g,)e 4
=V'x{0,1}, we have a(g)=(v,i). Consider the set {((v, i), x)
=0, 1,...,n—1} which we call d,.

53. Tueorem. If F is an optimal tree for GAP(V, vy, v,), then d_ is the
graph of a partial function d;: V' x {0, 1} 2=V, ie, d, is a partial maze.
Moreover:

(1) d, is a trunk for all nodes q of F;
(1) for all geactF, d, is not complete nor connected,
(iii) for all geterm F with a(q) = 1, d, is connected;

(iv) for all geterm F with a(q) = 0, d, is complete and disconnected, i.e.,
stabily disconnected.

54. Every bartial maze d defines a point in the grid N? by
n(d): = (# (reachd)+ 1, # (domd)— # (reachd)+1).
Every node g of as optimal tree for GAP(V, v, v,) defines a point r(g):

= n(d,) of N*.
Consider the following graph 4" = (V" E"):
Vr=l(x,y)eN} 0<y<x,2<x<nuil,2,...,2(n-1,

E" = {((x, y), i,(x+1,y))| 1e'1,2 n—‘c}}u

w {((x,), i,(x,y+1)) iell,2,..,x=1), y<xlu
uilx,), 1, x+y—1) y <x).

Take A* as an example where we have omitted in the pictorial representation
the edges of the third kind between (x, y) and x+y—1:

(4.9

Ts

(33) 43

‘[2 Ta

(22 (32 1@2
T1 Tz Ta
2 230 1@
T1 ‘[2 13

(20 3 (3,0 & 4,0

106 L. RUDACH

5.5. TueoreM. If F is an optimal solution for GAP(n), then F is a

covering tree of the graph 1", This implies that o(n) = Size(F) is equal to the
number of simple pathes in 1"

5.6. CoROLLARY. o (n) = Q(n"(n—2)!).
For details we refer the reader to [2].

6. Coloured posets

6.1. A finite poset is said to be pure il all maximal chains have the same
length. A pure poset satisfies the Jordan-Dedekind condition: if x and y are
two elements and if x <y, then I, = |z|] z< x|, V, = {z] x <z} and [x, y]
= |z] x £z <y} are pure.

The symbol “<" denotes the covering relation: x <y il x <y and if x
<z < yimplies z = y. If P is a finite pure poset, then a rank function r: P
— N can be defined as follows:

(i) If P has a least element O, then we define r(0) = 0, otherwise we
define r(x) = 1 for all minimal elements x.

() If x <y, then r(y)=r(x)+1.

6.2. A finite simplicial complex K is by definition a nonempty family of
nonempty subsets called simplexes of a set |v) of vertices such that

(i) any set consisting of exactly one vertex is a simplex:
(i) any nonempty subset of a simplex is a simplex.

(For details we refer to [12].) The dimension of a simplex s, dims, is #s—1.
The dimension of K, dimK, is max {dims| se K}. The maximal simplexes,
1.e., those simplexes which arc maximal under inclusion, are called facets. K
is said to be homogeneously n-dimensional if every simplex belongs to an n-
simplex of K. So all facets are n-dimensional.

Every finite simpiicial complex K defines a finite poset (K, <) the
elements of which are the simplexes of K and these are ordered by inclusion.
If K is homogeneously n-dimensional, then the corresponding poset is pure.
Its rank function ¢ satisfies obviously the following condition: ¢(s) = dims
+ L.

Let P be an arbitrary ordered set. It defines a simplicial complex 4 (P) in
the following way: The vertices of 4(P) are the elements of P and the
simplexes of 4(P) are nonempty subsets |xq, X,, ..., X} of P such that x,
<x; <...<x,. If Kis a simplicial coinplex, then K'= A(K) (K to be
considered as poset) is the barycentric subdivision of K.

6.3. ExampLE. Let S =(X, A, V, o) be an information system with N
:= # A—1. We assume as usual that § is fully faithful. An S-condition is

COMPLEXITY OF CLASSIFICATION PROBLEMS 107

defined to be a partial function ¢: 4 >—V satisfying c(a)eIma for all
asdome. As usual ¢ can be considered as a subset of the product A xV,

¢ = \(a, v)] aedomc. v =c(a)].

Consider the following simplictal complex:

(i) The set of vertices is A x V.

() The set Cond(S) of simplexes is the set of all S-conditions
(considered as subsets of A4 x V).

The facets of Cond(S) are the fully defined functions ¢: 4 — V. They all

are of dimension N. Hence Cond(S) is a homogeneously N-dimensional
simplicial complex.

6.4. Let P be a finite pure poset. A partial function g: P =—Y is called
a precolouring of P and (P, g, Y) is called a precoloured poser if

(1) all maximal elements of P belong to the domain of g,

(1) if x <y and x, yedomyg, then ¢g(x} = g(y).
If x is an element of domg, then we say that x is coloured and g(x) is the
colour of x.

Let (P, g, Y) (i=1,2) be two precoloured posets. A morphism of
(P, 9., Y1) into (P, g5, Y>) is a pair (n, #) consisting of an order preserving
map n: P, — P, and a function 5: ¥, — Y, such that the diagram

P, Ao Y,
3! In

P, 51,

is cormnmutative. This means more precisely: Whenever x €P; is coloured,
n(x) is coloured and g, m(x) = ng, (x).

6.5. Let (P, g, Y) be a precoloured poset. g is a colouring of P and
(P, g, Y) is called a coloured poser if in addition to properties (1) and (ii) in
(6.4) the following property holds:

(ii)) If xe P and if all z, covering x, are coloured and have the same
colour g(z) = ype Y, then x i1s coloured and ¢(x) = y,.

Let max P be the set of all maximal elements of P. Condition (it1) 1s
equivalent to either one of the following conditions:

(i) If xe P and il all z with x <z are coloured and have the same
colour g(z) = y,e ¥, then x is coloured and g(x) = y,.

(i”) I xeP and if all zeV,nmax P = {yemax P| x <y} have the
same colour g(z) = yp€ Y, then x is coloured and g(x) = y,.

Obviously every precolouring g can be extended in a unique way to a
colouring g by the following procedure: xedomyg iff # g(V, "maxP)=1.In
this case there is a y,€Y with g(V, nmax P) = {y,}. Define g(x):= y,.

108 L. BUDACH

6.6. Every coloured poset (P, g, Y) can be divided into disjoint parts,

P={)g '(yyvCdomg,
yeY
where Cdomg:= P \ domg is the complement of domg in P. Obviously all
g '(y) are ascending (open) subsets of P and Cdomg is a descending
(closed) subset of P.
We define

Pure(g, y):=g" " (),
Mix(g):= Cdomg,
Pure(g) : = |J Pure(g, y) = domg.
yeY

6.7. ExampLE. Let K =(S, Y, f) be a classification problem and let S
=(X, A, V, g) be the underlying information system. As we have already
seen in 6.3, S defines a poset Cond(S). The maximal elements of Cond(S) are

the facets of Cond(S) which in turn are the elements of le a. Therefore we
aeAd
can define the function

g: maxCond(8) = XIma < x L.y,
aed

i.e, a precolouring of Cond(S) which defines in turn by 6.5 a colouring ¢
which we denote by f.

For every yeY we define Pure(X, y):= Pure(f, y):= Pure(f, v) and
Pure(K) : = Pure(f): = Pure(f) which are partially ordered sets and define
therefore via 4 complexes which are subcomplexes of Cond’(S), the
barycentric subdivision of Cond(S).

68. Let S, =(X;, 4, V,0) (=1,2) be two information systems. A
triple »: X, - X,, a: A, = A, v: Vi =V, is called a homomorphism o
=(x,a,v): S — 8, if for all xeX,, ae A, the following equality holds:

02 (x(x), a) = vg, (x, «(a))
or if we consider attributes as functions:
ax (x) = va(a)(x).

Mix(K), which is defined by Mix(K):= Mix(f):= Mix(f) is a simplicial
complex, subcomplex of Cond(S).

The notions of Pure and Mix are motivated by the following: Let ¢ be a
condition and x an object of X. We say x satisfies ¢ if for all aedom ¢ holds
a{x) = c(x). Let Sat(c) be the set of all objects which satisfy ¢. Then
ce Pure(f) iff #f(Sat(c)) =1, i.e, all x satisfying ¢ are of “the same colour”.
Otherwise: ce Mix(f) iff there are objects x and y satisfying ¢ with

fx)# 1y

COMPLEXITY OF CLASSIFICATION PROBLEMS 109

Note that neither Pure nor Mix are in general functorial, in many
important cases, however, they are:

6.9. ProprosiTiON. Let A =(x,a,v,n): K, =K, be a homomorphism of
classification problems K, =(S;, Y.,f). S.=(X;, Ai, V., o) the underlyiny
information systems. Suppose one of‘the Jfollowing conditions to be satisfied:

(i) « is injective and v(Ima(a)) = Ima for all acA,.

(1) » is surjective.

(i) K, = K, xK, and A is the diagonal map.

The mapping A, which maps the S,-condition ¢ onto v < a is a simplicial map
of Mix(K,) into Mix(K,;). Moreover, 2, is an order preserving map of
Pure(K,) into Pure(K,) which in turn defines a simplicial map of the
corresponding simplicial complexes A(Pure(K))).

7. Topology of Cond(S), Pure(K), and Mix(K)

7.1. Let K be a simplicial complex. The geometric realization |K| of K is
by definition the set of all functions p defined over the set of vertices of K
with values in the interval (0, 1] < R satisfying the following conditions:

(a) suppp = (1| p(v) # 0} eK;

(b) 3 p(v)=1.

7.2. ProPoSITION. Assume S to be completely fully faithful. Then for the
i-th homology group of Cond(S) with coefficients in Z holds

, Z ifi=0,
H;(Cond(S); Z)=4Z ifi=N,

{0} otherwise,

where t =(m—D¥*"! with m= #V, N+1 = # A.

If m = 2 (case of boolean functions), then |Cond(S)| is homeomorphic to
the N-dimensional sphere. (B. Graw [6] proved, moreover, that in general
Cond(S) is shellable and |Cond (S)| 1s a bouquet of + N-dimensional spheres.)

7.3. ProposiTioN. Let K be a classification problem with completely fully
faithful underlying information system S. Then Mix(K) is a pure (N—1)-
dimensional subcomplex of Cond(S) and |4(Pure(K))| is homotopic to the
complement of |Mix(K)| in |Cond(S)|.

7.4. ProposiTioN (Lefschetz Duality). If S is completely fully faithful and
m= #V =2 then Mix(K) and Pure(K) are connected by the following
isomorphism of the homology groups:

H;(Pure(K); Z) = Hy_,;(Cond(S), Mix(K); Z).

110 L. BUDACH

This theorem allows to compute the homology groups H;(Pure(K); Z)
knowing H,(Mix(K): Z), and vice versa. To do this use the exact homology
sequence

. — H,,,(Cond(S), Mix(K); Z) — H,(Mix(K}; Z)
— H;(Cond(S); Z} — H;(Cond(S). Mix(K); Z) — ...

and take into account Proposition 3.2.
Let

hi (Pure(K)): = rank H;(Pure(K): Z), h(Mix(K)): = rank H;(Mix(K): Z)

be the Betti numbers of Pure(K), Mix(K) respectively. Then Proposition 7.4
yields the following:

7.5. CoroLLARY. Assume N = 2. Under the assumptions of 7.4 the
following equalities hold:

ho(Pure(K)) = hy_((Mix(K))+1,

h.(Pure(K)) = hy_, -;(Mix(K)} if N-1>i>0,
hy_ (Pure(K)) = hy (Mix(K))—1,

h;(Pure(K))=0 if i>N-1.

7.6. Let size(C) be the size of a smallest classifying tree for the
classification problem C. The following result gives evidence that
classification problems which are difficult from the topological point of view
are intractable from the computational standpoint.

7.7. THEOREM.

ho (Pure(C))—1

size(C) =
m—|

7.8. COrROLLARY. If m =2, then
size (C) = ho(Pure(C))—1 = hy_ (Mix(Q)),
i.e., classification problems with many “(N — 1)-dimensional holes” are of high
complexity.

The following theorem is of great importance for the study of
connections between different classification problems.

79. THEOREM. Ler i: C, — C, be a homomorphism of classificarion
problems satisfying one of conditions (i), (1) or (i1) of 2.8. Let D be any sheaf
(cf. [5]) of R-modules (R an arbitrary ring) over Cond(C,). There are two
spectral sequences:

15? = HP(Pure(C,), R*A, D)= I" = H"(Pure(C,), D)

COMPLEXITY OF CLASSIFICATION PROBLEMS 111

and
118 = H?(Mix(C,), R*;, D)= 11" = H"(Mix(C,). D).
If ¢ is a condition of C,, then the fiber of RY/, D in ¢ is given by
(R4}, D), = Hi(2Jc. Dy = Hi(i; ' (V). D),
where V. = \d| d a condition of Pure(C,). Mix(C,), respectively, and ¢ a

subcondition of d).

This theorem will be used in the next section to compute the Euler-
Poincaré characteristic.

8. The Euler-Poincaré characteristic

8.1. Let K be a finite simplicial complex. The alternating sum

1K)y = Y (=) # seK|dims =i} =) (—1)*"¥
i=0 s K
ie., the number of simplexes of even dimension minus the number of
simplexes of odd dimension is a topological invariant because y(K) =

Y (—1)yrank H,{(K; Z). This invariant is called the Euler—Poincaré
i=0

characteristic. For a poset P one defines x(P) = x(4(P)). The Lefschetz
duality (cf. 7.4) has the following straightforward consequence.

8.2. Prorosimion. Let C be a clussification problem and S =(X, A, V, 9)
the underlying information system which is assumed 10 be completely fully
Jaithful, and let #V =2, # A—1=N. Then

2 (Mix(C))—1 = (= H)¥* ! ((Pure(C))—1).

8.3. ProrosiTioN. The Euler-Poincaré characteristic of GAP(N) satisfies
the following properties:

(i) x(Pure(GAP(N), 0)) = ho(Pure(GAP(N), 0)) = h,(Pure(GAP(N)))— 1
=Q(N=-2!(n=1");

(i) Mix(GAP(N)) is shellable (cf. [6]) and therefore x(Mix(GAP(N)))
= 1 +rank Hyy 5 (Mix(GAP(N)); Z).

(For N =3 one gets z(Pure(GAP(3))) = 13)

The next theorem studies the relationship of the Euler—Poincaré
characteristic along "nice’ homomorphisms.

84. THEOREM. Let +: C, —C, be a homomorphism of classification
problems satisfying one of conditions (1), (i1} or (i) of 6.9. Let ¢ be an §,-
condition und define A /e, Z,\c in the following way:

112 L. BUDACH

AJci=1deMix(Cy)| A, (d) 2c} (defined if ce Mix(C,)),
A N\c:=dePure(Cy) A, (dy=c} (defined if ce Pure(C,)).
A Jc and A \c are called the fibers of ¢ along A. Then

rMix(C) = 3 (=1 x4, /o),
ceMix(C2)

x(Pure(C))) = ¥ (=1 x(A,\o)(m—1)y~",
cePure(C3)
This theorem allows to compute the Euler-Poincaré characteristic of
Mix and Pure if one finds ‘nice’ homomorphisms onto easier classification
problems, the fiber of which is also computable.

8.5. The next theorem studies the behaviour of classification problems if
one puts one additional question: Let C = (S, Y,f) be a classification
problem, yeY, and let a be an attribute of the underlying information
system. If one extends f by adding question a in case of y one gets the
following classification Cw;a = (S, Y_lLIma,fi;a), where range (f-;—a)
=Y _ll Ima, and for an object x one defines

ffe i f9#y,
UT“"")"{a(x) it f(x) =y
Let U be an ascending subset of Cond(S). Then we define

U\a:= {ceU| a¢domc}. U\a is obviously a descending subset of U (not of
Cond(S) in general). One gets the following theorem:

8.6. Tueorem. If x(C):= y(Pure(C)), then
1(C4a) = x(O)+x(Pure(C, y)\a).

8.7. It is possible to define a classification f relative to a classification g
in such a way that

x(N=x@+xflg

if f classifies finer than g. Moreover, one gets for C, xC, the formula
2(Cy xCy) = x(Cy) 2(Cy).

These formulas resemble the well-known formulas of the classical Shannon
entropy so that cum grano salis the Euler—Poincaré characteristic can be
considered as kind of structural information.

References

[1] L. Budach, Two pebbles don't suffice, In: Mathematical Foundations of Computer Science
1981; Proceedings, 10th Symposium Strebské Pleso, Czechoslovakia, 1981 (Eds.: J. Gruska,
M. Chytil); Lecture Notes in Computer Science, 118; Berlin—Heidelberg-New York 1981;
578-589.

(2]

(3]

(4]
(5]
[6]
(7]
(8}

(9]
[10]
[1i]

[12]
[13]

COMPLEXITY OF CLASSIFICATION PROBLEMS 113

—, Klassihzierungsprobleme und das Verhiltnis von deterministischer zu nichtdeter-
ministischer Raoumkomplexitdt, Seminarbericht Nr. 68, Sektion Mathematik der
Humboldi-Universitit, 1985, 1-64.

—, Information und Rechnen, In: Zur Bedeutung der Information fiir Individuum und
Gesellschaft; Berichtsband der Wissenschaftlichen Konferenz zum Leibniz-Tag der
Akademie der Wissenschaften der DDR, Berlin, 29-30.6.1983; 191-208.

~. A Lower Bound for the Number of Nodes in a Decision Tree, EIK (to appear).

R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris 1958.

B. Graw, Personal communication, 1983.

J. Kahn, M. Saks, A topological approach to evasivenes, Manuscript (1983), 1-37.

W. Marek, Z. Pawlak, Information storage and retrieval systems, Mathematical
Foundations. Theoret. Compt. Sci. 1 (1976), 331-354.

C. F. Picard, Theorie der Fragebogen, Akademic-Verlag, Berlin 1973.

P. Pudlak, S. Zak, Space complexity of computations, Manuscript (1983), 1-30.

W. Savitch, Relations between nondeterministic and deterministic tape complexities, Journal
of Computer and Systemn Science 4 (1970), 177-192.

E. H. Spanier, Algebraic Topoiogy, McGraw-Hill, 1966.

R. P. Stanley, Combinatorics and Commutative Algebra, Birkhiuser, Boston Basel,
Stuttgart 1983.

Presented to the semester
Mathematical Problems in Computation Theory
September 16-December 14, 1985

