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1. Introduction. Let a be an algebraic integer of degree n =2 with
conjugates « =a,, a,, ..., a,. The diameter of @, denoted by diam(x), is
defined by

diam (2) = max |o; —a].
ij
Lower bounds for diam(x) were first found by Favard [31, [4), [5]), and
more recently by several other authors. For the recent history of this and

related problems, see [1], [6]. Among other results, it was shown by Lloyd-
Smith [7], using a very simple argument, that

diam (a) > 3/2.

Using a more complicated argument, McAuley showed in his thesis [9] that
diam («) > 1.659.

On the basis of partial results and numerical results, it is conjectured that
diam (a) > /3.

In this paper we show this to be true under certain restrictions.

THEOREM L. If « is an algebraic integer of the form a = B+k where B is
reciprocal and k an integer, then

(1) diam (@) > /3.

Moreover, when o is reciprocal, we have equality in (1) if and only if & = +{
where { is a primitive cube root of unity.

Remarks. (a) An algebraic number f is said to be reciprocal if B lisa
conjugate of B.
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(b) This result is due to Lloyd-Smith and may be found in his thesis [6].
We reproduce his proof in this paper.

We are also able to give the following partial result.

THEOREM 2. There exists ¢ > 0 and a positive integer ny (depending on &)
such that

2 diam (@) > /3 +¢
whenever the degree of a is at least ny. In particular, we have
(3) diam () > 1.7321

whenever the degree of o exceeds 200000.

Remarks. (a) The constants in the statement of Theorem 2 are of no
particular significance. By further refinements of our arguments, we could
improve the specific values of ¢ and n, that are given.

(b) It will be clear from the proof of Theorem 2 that our result could be
sharpened if good estimates were available for the discriminant of a finite set
of complex numbers lying in a region whose boundary is a suitably modified
version of a Reuleaux triangle. It is hoped to pursue these ideas elsewhere.

Before proceeding to the proofs of these results it is convenient to define
the circumdiameter of a to be the diameter of the smallest closed disc
containing the conjugates of a. It will be denoted by D(x). We have the
following consequence of a classical inequality due to Jung (see [10], pp. 17,
18):

4 diam(a) < D(2) < idiam (@).

NG

In general this inequality is best possible, but it can be strengthened under
certain restrictions, and this is implicit in our proof of Theorem 2.

2. Preliminaries. We prove several lemmas which are necessary for the
proofs of Theorems 1 and 2.

Lemma 1. If r, 0 > 0, then

Ire’® — ge'®| = 2r* |sin}(6— )|,

where r* = min {r, o}.

Proof. The easy proof is omitted.

Lemma 2. Let z be a complex number satisfying the conditions

Imz| < \5/2, lz2| =1, |Jz—-z7Y< \/3, Rez > 0.
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Then
(5 z=DE"'=1<1,
with equality if and only if z = (1+./=3)/2.
Proof. Firstly, observe that
lel=lel ™! < =27 < /3,
implying that
(6) lzl < (/3+ /72 < 22.

) It readily follows from the inequalities [Imz| < \/5/2 and 1 <|z] <22
that

(7) -2 < /3.
However, (7) is equivalent to
Slz=1 < lz+1].
Thus if z satisfies the hypotheses of Lemma 2, it follows that

Ke=D)E =) = Jzf |z =12 = Jof~* 22— 1] [P
z+1
i 1
S ——=lz )22 -1 =—|z-z"Y < 1.

V3 3

If we had [(z—1)(z"*—1)| = 1, then it would follow that |z—2| = /3, and
the conditions Imz| < \/3/2 and |2/ > 1 would imply that z = (1+./=3)/2
or- Rez > 7/2. The latter case is excluded by (6). It is easily checked that
z ={lj:\/:§}f2 satisfies the hypotheses of the lemma and also satisfies
z—1)(z"'—1)| = 1. This completes the proof of Lemma 2.

LemMa 3. Let d, be the least absolute value for discriminants of algebraic

number fields of degree n over the rationals. If o is an algebraic integer of
degree n, then

®) D@)>2 ('d—:')””"_ y

‘ Prgof. This inequality is implicit in the work of McAuley [9]. If the
circumcircle of the set of conjugates of « has centre u and radius g, then u is
real and ¢ =4 D(a). Putting z; = ¢~ (a;—p) for 1 <j<n, we get

Ida < [T leg—al =[] elzi—z,l.

ey i#j
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The result follows after using Hadamard’s inequality to estimate the Vander-
monde determinant, since |z;| < 1 (1 <j < n).

Lemma 4. Suppose z,, z,, ..., z, are complex numbers satisfying lzj < 1
(1 <j < n), and suppose that there is an integer s satisfying 1 < s < n such that
lzjl <r for 1 <j<s where r is a given real number in the range 0 <r < 1.
Then

]_l lzi—zjl \{.. nnrdn— mz:—n)’
i#j

Proof. Using Hadamard’s inequality on the corresponding Vandermon-
de determinant we get

[i—z) =]
i2j izj

< rn(n- Hns :m.—Z{n-' l):n-s < nnrtn- lj[Zs—nl‘

n n—1 2k

<ren ]y

i=1k=0

Zi %
r

r

r

Remark. This lemma is sufficient for the purpose of proving Theorem 2,
but a stronger result would enable a sharpening of the theorem.

3. Proof of Theorem 1. To prove Theorem | we may clearly suppose
that « is reciprocal and that

lImay| < /32 (1<j<n).
As o is reciprocal and since we may assume diam(x) < \/3, we have
o—-a <3 (<<
Also, by replacing « with —a if necessary, we may suppose that there exists
an integer m (1 < m < n) such that
leql =1, Rea,, >0.

We now conclude that all conjugates of a have positive real part, for
otherwise we may suppose that for some r (1 <r <n)

¢,/ 21 and Ree, <O.
We would then have
diam (2) 2 max ||a,—a,l, |om—&,|} = \@ by Lemma 1.
This is a contradiction, since equality would correspond to the condition
Ay =(li\/—_3]/2, a, = —1 (or vice versa),

which is impossible.
We now invoke Lemma 2 to see that |(x,—1)(x,'—1) <1 for all
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J (1 <j<n). It follows that the norm of a—1 satisfies
IN@=1)| < 1.

Since a—1 # 0, we deduce from Lemma 2 that a=(1+./-3)/2. This
completes the proof of Theorem 1.

4. Proof of Theorem 2. Using the notations introduced in the proof of
Lemma 3, we write

T =max|z—zj| = ¢~ ' diam(a).
iJj

Since |d,| > 1, the result of Lemma 3 implies that, in order to prove the
theorem, it will suffice to prove the existence of an & > 0 such that

T \/E—H:

for sufficiently large n.
In particular, to prove (3), it suffices to show that

9 7> 1.7322.

This follows since for n = 200000 we have

22 1/(n—1)
(10) Q= (—n-) = 0.999954

(using bounds for d, derived from the tables of Diaz y Diaz [2], formula (1),
p- 2.
By Jung’s inequality (4), we see that (3) also follows from the inequality

(11) ¢ > 1.0000285.

We first establish that there are z ; on certain arcs of the unit circle. Let § be
the subset of |z, z,, ..., z,} containing those z; with unit modulus. Both sets
are closed under complex conjugation. Without loss of generality, we may
suppose that +i are not in S, otherwise T = 2 and (9) is satisfied. We show
that the real parts of members of § cannot all be of the same sign.
Indeed, suppose that Rez > 0 for all zeS. Now those z; not in § lie
strictly inside the unit circle. It easily follows that there exists a circle centred
on some o > 0 of radius less than 1 which contains {z,, z,, ..., z,}. But then
the unit circle would not be the circumcircle of {z,, z,, ..., z,}. This is a
contradiction. The case where Rez <0 for all zeS is handled similarly. It
follows that there exist z and z; belonging to S such that Rez > 0 and
Rez; < 0. Further we can assume that max |Imz| occurs for z = z; where j is

zeS

such that Rez; <0.
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If x is a small positive number, |z] = 1 and
n/3+x < |argz;| < 2n/3—x
then it follows from Lemma 1 that
2isin G+x).
Thus if we take x = 1/1500, we deduce
T2 |z;—2z)| =2 1.7327,

and the result follows since (9) is satisfied.
However, suppose the subscript j is such that |z;| = I,

|ZJ—EJ'| =

Imz; = max|Imz|, Rez; <0
zeS

and for this value of x,
2n/3+2x < argz; < 4n/3—2x.

From previous arguments, there exists z; with |z] =1, Rez; >0 and
Imz]| <|Imz]. Without loss of generality, we may assume that
Imz; >0>1Imz and a simple argument shows that

T3> |z;—2] > |z;— 1] > 2cos (n/3+x) > 1.7322

and the result again follows.
We have thus shown that if diam(«) < 1.7321 we have some z; on each
of the arcs of the unit circle

A, =1z: |z| = 1, 2n/3—x <argz < 2n/3+ 2x}
and
A, =1z: |z] =1, 4n/3—2x <argz <4n/3+x}.

Using an analogous argument and the assumption that diam (a) < 1.7321, we
deduce from Lemma 1 that we also have some z; on the arc

Ay =1{z: |z =1, —3x <argz < 3x}.

Thus we may assume that there are z; on each of these three specified arcs of
the unit circle. Note that each arc contains a cube root of unity; this is not
surprising since Jung's inequality is precise for vertices of an equilateral
triangle.

We can further reduce the problem as follows. Set

(12) r = 0.999702
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and consider the three regions

B, ={z: r<|z| < 1,3x < argz < 2n/3—x]},

B, ={z: r<|z| <1, 2n/3+2x < argz < 4n/3 - 2x},

By={z: r<|z| <1,4n/3+x < argz < 2n—3x}.

Using Lemma 1, the existence of z; in each of the arcs 4,, 4, and A;, and
the fact that the set \z,, z,, ..., z,} is closed under complex conjugation, we
deduce that whenever there is a z; within one of the regions B,, B, or Bj;,
then

<
<

T 2 2rsin(n/3+x) > 1.7322.
Thus we conclude that if diam(x) < 1.7321, then
z;eR=M,UM,UM;uUS (1<j<n),

where

M, ={z: r<|z| <1, 2n/3—x < argz < 2n/3+ 2x},

My={z: r <|z| <1, —3x < argz < 3x},

M,=M,, S=!z:|z/<r}.
The remainder of the proof rests on an estimation of 4 =[]|z—zj] for
z;€R (1 <j < n). As remarked earlier other shaped regions would be more
appropriate, but the estimation of 4 for such regions is more difficult.

Let m, be the number of the z; in M, (1 <k<3) and let s be the
number of the z; in S. Let m = m, +m,+m; and note that m+s = n. The
remainder of the proof is divided into two cases depending upon the
proportion of z; in §.
Suppose first that
s 2 gn.
As in the proof of Lemma 3,
jd-' < oﬂn-lid
and so by Lemma 4,
|dul < Qu(u—lj nnrlrd-u('n-l}.

Thus
d, Lm0
e=r-ls Cﬂ_:) > 1.0000285

by (12) and the estimates involved in establishing (10). This settles the first
case, by (11).
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Now consider the complementary case where
(13) m>n.

This is handled by a somewhat more tedious estimation of 4. It can be

checked by a straightforward computation that M, and M, can each be
covered by a disc of radius

(14) 6 = 1/980

and further, M; can be covered by a disc of radius 25. To estimate 4 we give
upper bounds for the discriminants of the z; in each of the four subregions

M, M,, M5 and S, and a trivial upper bound for the cross-products.
Writing y = 1.7322, we get

(15) A< (m‘:‘l. 6!!!1{":1 - ll)(m';'z 5m1{m2—l])(m;:;(zé)ms[ma—“)
x(s*rss “)ylﬂsyz""l"‘z’fm"'s*'"z"'al
as we may clearly assume that any |z;—zj| <y else (9) is satisfied. Now

6mf+m§+m§ 2m§ = 6mf+m§ +(1 -—ﬂ]m%

where f = log 2/logé~"'. For f satisfying 0 < B < 1, a straightforward appli-
cation of Lagrange multipliers shows that, given the constraint m, +m,+m;
= m, we have

1-—
mi-+md+ (1= pnd > =L

When B is specified as above, we have

1-p _ m?

3-287 3112
Taking f =0, we readily obtain

my my+m; my+m,m; < +m?

Also we have the trivial bound
: + + +
STImilsn’ ™M =
7= :
j=1

Thus, by (13), (14) and (15)

A <n" amzﬂ.}lz 5vmy2mtn— m}ylmzf.‘i

5”3.112 3/8 mn
{5

< n" {8328 5= 1n 3213028 < pn((9992)n?,
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As before

|d,| < """ 4
and using (10) we deduce

e > 1.0007.

Hence the result follows in this case too, by (11).
The proof of Theorem 2 is now complete.

Note added in proof by the editor. The Favard problem has been recently solved
by M. Langevin, E. Reyssat, G. Rhin in the paper Diamétres transfinis et probléme de Favard,
Ann. Int. Fourier 38, fasc. 1, 1-16; see also M. Langevin, Solution des problémes de Favard, ibid.
fasc. 2, 1-10.
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