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1. Introduction. In [1] K. Alladi and P. Erdds showed that if
ﬁl ("} = Z P
pin

then

n?x

12log x’

2

Z Bi(n) ~

nEx

Numerous papers have been written concerning the summatory function of
B (n), see for example [2], [3]. The best result is due to J.-M. De Koninck
and A. Ivi¢ [2]; they have given the asymptotic formula

Ly XA

n<x

— x?[(dy/log X) + (d3/log? X) + ... +(d./log" x)+ O (1/log™* ' x)]

with arbitrary fixed m > 1 and d; = n%/12.
Applying _their elementary technique to the function
(1.2) Ba(n) = E;P‘
with « >0 ﬁxtlad. one can prove the analogous asymptotic formula
(1.3) Y B.(n) = x*[(d; (x)/log x)+(d; (a:)/logi RYE o

n<x
... +(dn (@)/10g™ x)+ O (1/log™** x)]

with d, (@) = { (1 +a)/(1+a).
The formula (1.3) can be obtained by using the complex integration
technique and the following

’ o
Lemma. Let a Dirichlet series Y. a/n* converge for Res > 1, where |l

n=1
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= O((logn)*) with k > 0. If 2 a,/n’ = G(s)logl(s), where G(s) is a regular
n=1
funct:‘m_t for Res > 1/2 and bounded Jor Res > 1/2+¢ with ¢ > 0, then

(14) Y a, =B§;[ab+a}(l/logx)+ ..+ @, (1/10g" %) + O(1/log™* * x)].

n<x

This lemma can be proved in a standard way with the use of the
estimation of the zero-free region for {(s).

By applying the main theorem from Ramachandra’s paper [10] it is
possible to prove that

hx* h? x*~! hx*
(1.5) Y ﬁ,(n)=;(1+a)logx+o( )+O(——)

x<nEx+h logx logzx
+0 (hx*exp (—log"/? x))+ O (x(1 D +e+a)

with x712% < h < o(x), and

2x

19 | T Bm-t+a

X lx<n€x+h 10

- O(hz Xzaexp(_logl,-‘s X))+0(X1{(1fﬁ]+:+u))

2

hx dx
g X

with XW/9** < h < o(X) (the exponents 7/12 and 1/6 are related to the
estimation of N, (a, T), the number of zeros of L(s, x) with real part at least
a and imaginary part not exceeding T in absolute value).

The formulae (1.5), (1.6) can be obtained by De Koninck and Ivié's
method. It follows from Ivié’s result on the number of primes in short
intervals (see [5]) that the formula (1.5) holds even for h» x"/*2]og22 x,

Let us note that the formulae (1.3), (1.5) remain valid if B.(n) is replaced
by the functions

B,(m = Y ke, T.(n)=(P(n),
Hlin
where P(n) is the largest prime factor of n> 2.

In the present paper we study the distribution of values of an additive
function %, (a) on the Gaussian integers given by

(1.7 Ba(@) = T* N*(p)

pla
with fixed a > 0; the asterisk means that the summation is over the non-
associated prime divisors p of a Gaussian integer o, and N (p) = N(x+iy)
= x?+y? is the norm of p. This function is a generalization of the function
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B.(n). In case o = 0 we get the function w(a) which has been studied in [.6].
) In this note we obtain asymptotic formulae for the summatory function

Y * #,(0) (« > 0), where D is a certain set of Gaussian integers which depends on
aeD
a parameter Xx.

We shall prove the following theorems:

THeoREM 1. For x = o0 -~

1+a i
{(1+a) L(1 +a, 1) X ll+o( ! )]
1+a log x logx /.

(1.8) Y B.(0)=
Nm=sx
THEOREM 2. Let ¢, ¢, be real numbers such that 0 < @0, <@, <n2. If
©,— @y > exp(—c, log®¥7¢x), e >0, and x = xo(), then

2(@2— 1) L(1+a) L(1+a, xg) x'*°

(1.9) NZ: Ba(0) =— 1+a log x
q;ls{a':}gn-“:.wz !

% \ 140 (‘_I.__)J_F O(x‘ Trexp(—c, lOgﬂJ’S)—z x}).
log x

TueoreM 3. Let x, X be sufficiently large and let 1 < h < x. Let ¢y, ¢,
be real numbers such that .

0< 0, <@, <2, @3-, >exp(—c(log'?x)(loglog x)™").
Then

- hx*
110 T @=L )y
x<N(aSx+h n
@ SargasSe,y
h? x=~1 hx* ) .
+O( +0(x**)
+O( log x ) log? x -
+0 (hx*exp(—c(log'” x)(log log x) ™)),
2
{ = , 2(p2—o1) , |
Ly = ¥ :ﬂa(a)——g—;t—li,(l+a)L(i+a, X iogx, 9%

X X 'x<N(a)=x+h
@y SargoSey

= 0(h? X**exp(—c(log'* X) (log log X)™'))+ 0 (X*#*%),

where the constants B, B’ are defined in Lemma 5.. ‘ N
(x4 in Theorems 1, 2 and 3 denotes the non-principal Dirichlet character

modulo 4.
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2. Auxiliary results,

LEMMA 1. There exists an absolute constant ¢ > 0 such that {(s) and
L(s, x4) have no zeros whenever

Res>1—(c/d), |lms|<T, & =/(log?*T)(loglog T)'?.
The analogous result holds for the Hecke L-function

Z(s, m) =Y *exp(4miarg a)/ N*(a),

M

where meZ is lixed and the summartion is over all non-zero non-associated
Gaussian integers; in this case

8 = (log*3(T?+m?)log log (T?+m?).
For the proof for {(s) and L(s, y4), see [8], and for Z(s, m), see [4].

LEMMA 2. There exists an absolute constant a > 0 such rhat if 1/2< Res
=0<1,.2<|Ims| < T, then

(2.1) L(s), L(s, yxq) = O(T*1 =2 10g T),
(22) Z(s, m) = O((T?+m)*1 =¥ 10g% (T2 4 m?)).
For the proof of (2.1), see [11], and for (2.2), see [4].
- ]
LemMa 3. Let F(s) = ) a,/n* converge absolutely for Res > 1. Let F(s)
n=1

be regular and non-zero in a rectangle 1—-6 < Res <2, [Ims| < T, except
possibly at s =1, where F(s) has a pole of k-th order and F(s)(s—1)* = a,
+O(s—1|) with an absolute constant in the O-term. Moreover, let for
l1-6<Res<2, 3<|Ims|<T

F(s) = 0((1/8)'1og T)
and

F(1+iT), F7'(14iT), F/(1+iT) = O((1/8)°+log® T)

with some constants | >0, b > 0.
Then

log F (s) = O(log(1/8)+loglog T)
provided that 1—(5/5) <Res <2, |Ims| < T, |s—1] > log™'T.
Proof. We start with |Ims| < 3. For
1-(0/2) <Res <2, |Ims <3
we have

Relog(F (s)(s—1)*) = log|F (s)(s— 1| = logla,|+ O (ls—1]) = O(1).
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Therefore, by the Borel-Carathéodory theorem (see [12])
llog F(s)| = O((log(s—1))) = O (log log T).

Now, let |Ims| =3 and s = g+it, where 1—(6/5)<0<2, 3<t|<T
Let us take s, = 1+it. Then for every s such that 1-d <Res<2,
3<|Ims| < T, we get
|F (s)/F (so)] = O((1/8)'** log" ** T),

|F" (so)/ F (so)] = O((1/8)* +10g? T).

Therefore, by Landau's theorem (see [9], supplement), if 1—(6/5) < Res< 2,
3 <|Ims| < T, then

|F'(s)/F ()] < (C/3) [log (1/6)' ** +log (log T)" **].

Since
F'(n+it)

LI (g +if)
Py |l kel
F(n+it) "l )

F(n+it)

n
log|F (o +it)| —log |F (1 +it)l| = 'j

< 6—(5:- [(1+b)log(1/0)+(1+b)loglog T]

= 0(log(1/6)+loglog T),
we have
llog F (s)] = O(log(1/6)+log log T).
Finally, by the Borel-Carathéodory theorem we get
leg F (s) = O (log(1/6)+log log T).

< —1=log™'T
CoroLLary 1. If Rcs?l—W, Ims| < T, |s—1| > log

(T=2), then
log {(s) = O(log log T),
log L(s, xs) = O(loglog T).
Proof. In fact, {(s) and L(s, xs) have no zeros in the considered region,

so by (2.1)
£(s), L(s, xs) = O(T** " log* T) = O (log* T).
Moreover, it is known that
C(+iT), LA+IT, xq), (' (1+iT), LEY(1+iT, xq) = O(log!° 7).

Hence, we can use Lemma 3 with é = c/log?®** T.
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log’ 2!3}+:; T? +m?)
log Z (s, m) = OTlog log (T?+m?) = O(log log (T |m)).
This corollary follows from Lemma 3 with
8 = log#¥* (T2 4+ m?),

Lemma 4. Let r be a positive integer and let 0 < A < n/4. Let ¢,, ¢, be
real numbers such that 0 < @, — @, < 1/2+24. There exists a periodic func-
tion f(¢) with period n/2 such that

L. f(@) =1 for pe[o,+4, 9,—4],
0<f(p)<1 for e[, —4, ¢, +4],
S (@) =0 for other points from [0, n/2],
2. f(@) has the following Fourier-series expansion

CoroLLary 2. If Res>1— , [Ims| < T, then for m# 0

+ @

f@= Y a.exp(@mig),

m=-=o

where for m # 0

2
;((02_(0:“*4).
laml <4 2(n|m)~1,
2 (e |mi)~! (rg(nlml A)").
This is a modified version of the famous lemma of I.M. Vinogradov
([13], Lemma 2, p. 23, see also [7], Lemma 5).

LEmMA 5 (analogue of the Ramachandra theorem). Let for Res > 1 each
of the series

- a(a)

Fo®)=Y"—

=2 N
be representable in the form

Fu(s) = (Z (s, m)ff o (s, 2)Iog Z (s, m),
where z €Q(i), |z2| <2, z does not depend on m, and oA, (s, z) is representable
by a Dirichlet series absolutely convergent for Res > 1/2. Let N, (¢, T) be the
number of zeros of Z (s, m) in the rectangle 6 < Res <1, [Ims| < T, and let
By, B, Do, D be constants independent of m such that
Nn(o, T) <(TM)** "9 (log TM)Z, m#0, M =|m|+2,

No(o, T) < T*o' =9 (log T)®o.

——exp(4miarga), m=0, +1, +2,...,
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Bo=1-B5'+e, Po=1-2%B;"+e,
B=1-B"'+e, P =1-24""+e,

where & > 0 is arbitrary.

If
S(x, b 01, 0232)= 3 ala),
x<N(a)€x+h
vlﬁargnﬁwz
1 p g=~1
I(x, h;2) == [( [ Fo(s)(x+v)’~'ds)dv
21 5 'cotn
with

r = c(log™%* x)(log log x) ™1,
then for 0 < @, < @, < /2, @3 —@; > exp(—c(log' x)(loglog x) ™),

2(0:— 1)
@3) SCehi g1, 02:2) = 22 1(x, s 2

0 (hexp(—c(log'” x) (log log x)~*)) + O (x"),
2X

2 iz 2
@) L1500k 01, 02 9= 2227 (i )| dx
X % n

= O(h? exp(—c(log'” X)(loglog X)~ N)+0(x*),

where C,(r) is a positively oriented circle of radius r centred at s =1, with s
= 1—r removed.

For the proof see [4], and for the Ramachandra theorem, see [10].

3. Proof-of Theorem 1. Notice that
B (@) =Y N*(p) = X" b(D) c(9/D),

wa L[]
where
Ne(v) if b is prime, _
c(b) = 1.
b(d) = { otherwise, (o)
Hence

S* B, (a)/N* () = (2 b(a}/N'(a))(z c(a)/N*(a)
= YN (P) (T /N (@)

6 — Acta Arithmetica 521
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It follows from the Euler identity for Z (s, m),

=3 exp(4miarga) _ I ( _exp(4miarg p))‘ :

Z (5, N* ((l) N* (P}

a P

that

exp(4miar
log Z (s, m) = Z*p—Nsa)g—p)-i'G(S, m),

where G (s, m) is a regular function for Res > 1/2.
Hence, by Z(s, 0) = {(s) L(s, xs) we have

>* B (/N*(a) = C(s) L(s, xa) [log{(s—a)+log L(s—a, 1) +G(s—a)],
X" Ao (Q/N***(0) = {(s+0) L(s+2, 4) [log (s)+log L(s, z2)+G (5)].

If we put
Gy (s) = {(s+a) L(s+a, xq)log{(s),
Ga(s) = {(s+a) L(s+a, xs)log L(s, xa),
G3(s) ={(s+a) L(s+a, %) G(s),

it follows that

(3.1) );*ﬂ:%ﬂ =G, (5)+G,(s)+Gs(s) = F(s).
We shall use
b+IT {I+0(y”/ﬂogy} if y>1,
5= | (F/s)ds =<3+0(1/T) if y=1,
o 0(*/Tllogy) if0<y<I,

where b>1, T> 1.
By the uniform convergence of the series (3.1) in the half-plane Res > b
we get

b+iT a
1T o BN (@)

2“‘-5—"”; N*(a)

* ol + (#4:(9)/N*(a))(x/N(a)f’
o N Y N )]
=Y AN+ ¥* + ¥* + Y*

N(a) S x Na)<x/2 Ny >2x  x/2<N(a)S2x
Nia) 2x
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X’ % B, (0)/ N*(0)
* a Ll e\ AT
=N§£xw¢(u)/N (a)+O(Tzn: N () )
. B, (G)/N"(a})
0 i e il 8
" (T x;zs%u:slelﬂg (x/N(u))I
Let
« B, (/N*(0) &
LN A
where
e(n) = Z I/n® Z N%(p) = (1/n%) Z >N (p).
Ntnl n N(u] n wa
To estimate e(n) notice that if
n=20p .. pgr ... g =1 2% . g™,

where p; is a prime number of the form 4/+1 and g; is a prime number of
the form 4/+ 3, then

l k m .
em=— Y (X i+ Y af*+29).
= i= j=1
Nia)=n
Since the number of n for which N(a)_n does not exceed t(n,)
=(a;+1)...(a,+1) we get

k m
e(n) < E(alﬂ) @AY P+ Y af)
i=1 =1

k m
<(2py - peai - qv,?.)“‘)(_g,l i+ aj)

<2 z Py -+ Pims Pivs - PO < 2Kk = DT = c(@).

Thus
s-ﬁ?(ﬂJ/N (ﬁ)
L N

* Qa(u)/N‘{a) — z
x/2 < N(a) € 2x !108 (x/N (0))| x/2€n<2x
Nia) #x n¥EX

Scl@ Y 1/log(x/n)

x/2€ns2x
n#x

<c(@) f 1/nt = 0,(1/(b—1)),
n=1

e(n)/|log (x/n)|
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=c@[ X 1/log(x/m+ 3 1/llog(x/n)]

x/2€n<x x<n<2x

"= 0,(xlog 2x)+ 0, (x/||x]]) = O, (x log 2x).

(IIx]l is the distance from x to the nearest integer, we can assume without loss
of generality that x is an integer plus one-half)
Therefore

>* B,(0)/N*(a)
Na=x
b+iT
o= ; F{s}—ds+0 (x*/T(b—1))+0,(xlog 2x/T).
b-

To estimate the integral

1 b+iT

] G;(s)ids

2Rb iT

we use Lemma 3. If we move ‘the segment of integration to Res = 1—§ we
get

b+iT

= [ Gy9)— ds—O(x‘ ®(log (1/6)+loglog T)log T)
Ep=iT

(3.2)

+0 (x" (b_ ;+5)(log(l/6]+ log log T)).

By moving the ségment of integration in

l b+iT x
I G;(S)—'ds
b iT
to Res =1—(x/2) we obtain
1 b+iT x5
(3.3 0, ]'ﬂG;(s)—ds = 0,(x'~“?]og )+ 0,(*/T).

To deal with the integral

l b+iT

— | G,(s)—ds

2mi p 7
we move the integral to the contour L consisting of:
L,: the line segment [1—6, 1—6+iT],

L,: the line segment [1—06+iT, b+iT],
Ly: the line segment [b—iT, 1-6—iT],
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L,: the line segment [1—-06—iT, 1-4],
Ls, Lg: the lower and upper edges of the cul in the complex plane along
the lme segment [1-46, 1—g],
: the positively oriented circle of radius ¢ centred at s =1, with s
= 1—9 removed.
The contour L is shown in Fig. 1.

[

L
T C .
|
L |
I 1
l
|
1-2 -',l 7 C‘, Ib
4 7 = l
2 I'S |
I
|
L I
I
7 Ly t
Fig. 1

We first note that
_(G,(s)fds -0 if g —0.
C, S
Further, on the contour Lsu Lg

b oo
61 (9 = s+ Lis+, ) log L6~
={(s+a)L(s+a, xa)§[log6(8)(s—1}—log(s—l)3

= {(s+a) L(s+a, n)f-los(s—l)

+0({(s+a) L(s+a, xs) X*(s—1)/s),
where
log|s—1|+in if seLs,
IOE(S_I)_{logb—l[—irt if seLs.
Let b=1+(l/logx), T =exp(c(log¥*x)), 6 =clog"®>~*T. We use the

bounds of {(s), L(s, xs) (Lemma 2), log{(s) (Corollary 1). By Cauchy’s
residue theorem we get

b+iT 1
(34) _:? [ G, (s)—ds-C(l+a)L(l+a X [ +o(___)]

2, ir log x
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. x*
(note that computing [ G,(s)—ds can be reduced to computing
) Lgulg s

1
| x*(1—s)*ds; but we have

1-4

| x‘(l—s}"de——-—[bo+b (1/log x)+ ... +b,,(1/log™ x)
i=3
+0(1/log™*! x)]

with arbitrary fixed m > 1 and with computable by, b;, b}, by # 0).
It follows from (3.2), (3.3), (3.4) that

Y @(H)IN"(G) C(I+a) L(1+a, xa)

x 1
5 1+0 (——)]
N <x log xl: log x

where the constant in the O-term dépends only on «.
By the Abel lemma on partial summation we obtain

) 1+a) L(1+a, yq) x'*
ST
mzcu:ax ( 1+a log x

[l +0(1/log x)].

This completes the proof of Theorem 1.

4. Proof of Theorem 2. Notice that

S= Y B(0= Y BV, 0p(arga),
N(a)=x No)<x
@) SargaSey

where ¥, o, is the characteristic function of [¢,, @,] in [0, n/2]. Let f, (),

J2(¢) be functions from Lemma 4 constructed for [¢,, ¢,] and [¢, —4,, ¢,
+4,] respectively (4, = 24). If we put

= Y* #.()farga) (i=1,2)

Nio€x
we get

5. <5< S5
It is sufficient to prove that S,, S, have the same asymptotic representation.
We shall estimate S, (the case of S, is similar). It follows from Lemma 4 that

+ w

=Y .(dfiaga= T* B,(0) ¥ an,exp@miarga)

N €x No) € x m=-m
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f A Y.* Ay(d)exp(4miarg a)

m= - Nimsx
=ay ¥ B0+ Y a, Y A (d)exp(@miarg q).
N <x m=20 N <x

Let us estimate the sum
Y* #.(a)exp(@miarga) (m # 0).
N(a) €x

Similarly to the case m =0 it is easy to verify that for m # 0

x By (a)exp(4miarg a)/ N*(q)
Z N’(ﬂ}

={(s+a)L(s+a, x4) [log Z (s, m)+G'(s, m],

where G’(s, m) is a regular function for Res > 1/2.

If we put
1(s) ={(s+o) L(s+a, xs) log Z(s, m),
Gy (s) = {(s+a) L(s+a, x4) G'(s, m),
we get

¥ #,(a)exp(4miarg a/N*(a)
Nio) € x

1 b+iT b+iT

=— | G',(s} ds+5— [ G (s)—ds+0(x"/T(b—1))
2 Lp=iT b iT
+0(xlog 2x/T).

Let us take T = exp(c(log*? x)).

We move the contour of integration to Res = 1—(4/2). By the bound for
log Z (s, m) (Cbrollary 2) and {(s+a), L(s+a, x4) = O(1) on the line Res
= 1—(6/2) we have

1 b+iT

4.1) — [ G} (s)-ds = 0(x'~“?(log log T|m)log T).
2“"5 iT
b+iT
Moving the contour of integration in — [ G3(s)—ds to Res =1—(2/2),
21y 2ir s

we get

l b+iT
(4.2) 5 | G (s) ds =0(x'"“2]og T)+O0(x*/T)

b=iT
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(since & = log ™'~ T, for given a > 0 we can find x, () such that & > & if x
= Xo ().
It follows from (4.1), (4.2) with b = 1+(1/log x) that

>* B,(a)exp(d4miarg a)/N*(a) = O(xexp(—(c/3)(log®'¥~*x))).

N(o)<x
Hence, by the Abel lemma
(4.3) Y* #,(a)exp(dmiarg a) = O(x' **exp(—c, log®/3 ¢ x)).
N €x

Then by Lemma 4 and Theorem 1 we have

_2p2— @1 +4) {(1+a) L(1 +2, 1) x'*‘lHo( 1 )]

S
: n 1+« log x

log x

+ Y a, Y* B.(aexp(dmiargaq)
1S|m<1/4 N <x

+ ¥ a, Y* B,(a)exp(4miargq)

Im|>1/4 N =x

_2pa—e1+4) (1 +a) L(1 +a, xq) x'*°
B T 1+a log x

[1+0(1/log x)]

1
+0( Y —x'*exp(—c,log? *x))
1<|m| < ualmI

1 1Y
+0( X T (Z) exp(—cy log®®/*~¢ x)(log T) (log log T |m}))

Iml>1/4 |m

_ 2(p2—¢y) {(1+a) L(1 +a, x,) x'**
- n 1+a log x [1+0(1/log )]

+0(x'** 4/log x)+ O (x' **(exp(—c, log®9~* x)) log (1/4))

+0(x"*2(1/4)"" (1/4) exp(—c, log¥'*~* x) (log log (T/4)) (log T))

_2(p2—y) {(1+a)L(1+a, x4) x'*e
- n l+a log x [1+0(1/log x)]

+0(x' **exp(—c, log®*~*x)).
The obtained formula is non-trivial if
@2— @1 > 4 =exp(—c, log?* *x).
This completes the proof of Theorem 2.
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5. voof of Theorem 3. Let
Fo(s) = ((s+2) L(s+a, xa)log{(s)
+{(s+a) L(s+a, xi)log L(s, xs) +C(s+a) L(s+a, x3) G(s)

(see the proof of Theorem 1).
The function {(s+a)L(s+a, xs) G(s) has the same values at points of
the lower and upper “edges” of [1—p, 1], so by Lemma 5 we get

1 * . -
I(x, h;z) === [( | C(s+a) L(s+a, xa)(logl(s)(x+v)*~ " ds)dv
21 § " cior
L =
+=—[( | C(s+a) Lis+a, xa)(log L(s, xs))(x+0)*~ " ds)dv
2ni 5 ciar
1 b x+hp—x*
=— | C(s+a]L(s+a,;(4)(IogC(s))(—7) ds
2mi, 2, s
1 1 X+ h)*—x*
+=— | C(s+a) L(s+a, xs)(log L(s, x4l)(+—ds
2ni 2, :
h
={(14+a)L(1+a, x4)logx[l+0(ljlogx)].
Therefore
> B.(a/N(0)
x<N(a)<x+h
Pl EargnSey
2(p2—y) h
=—~——K—C(I+a)L(l+a:, x4)logx[l+0(l/logx}]
+0(hexp(—c(log"? x)(log log x) ')+ 0 (x*).
Hence
* 2(p2—y) hx*
] =——((1+a) L(1 +a,
x4N§£x+h (9 n sllamiire X4]1°gx

@y SargaSeg

+ 0 (h* x*~'/log x)+ O (hx*/log? x)
+0 (hx*exp(—c(log'” x) (log log x)~ 1))+ O (x**?).
Similarly, by (2.4) we obtain

s " 2(p2— 1) hx* |?
— B ()= ———— (1 +a) L(1 4+, x4)
XI\[ x‘N§€x+h ( n ¢ log

P SargaSey
= 0(h* X**exp(—c(log'” X)(loglog X)™'))+ 0 (X ¥ *%),
This completes the proof of Theorem 3.
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6. Remarks. Let us note that the factor | +O0(1/log x) in Theorems 1 and 2
can be improved, namely it can be replaced by

1+b,(1/log )+ ... +b,(1/log™ x)+ O (1/log™* ' x)

It would be interesting to prove Theorem 1 by the elementarr methods
from [2]. However, it seems that the elementary approach cannot be used for
Theorems 2 and 3, because for problems of distribution of values of
arithmetical functions in sectorial regions the elementary techniques do not
give satisfactory accuracy.
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ACTA ARITHMETICA
LII (1989)

Sub-bases of pleasant h-bases

by

ErnsT S. SELMER (Bergen)

Given an integral basis
A= \ay, a4z, .. a4, l=a <a<..<a

for a positive integer h, we form all the combinations

k

Y xa, x 20,

i=1 i=1
and ask for the smallest integer N,(4,) which is not represented by such a
combination. The number n,(4,) = N,(4;)—1 is called the h-range of A;. In
this connection, 4, is often denoted as h-basi's‘ ' ‘

A popular interpretation arises if we consider the integers a; as stamp
denominations, and h as the “size of the envelope™. More information on t‘he
postage stamp problem can be found for instance in [4]. A comprehensive
treatment of this problem is contained in th‘e author’s research mon.ogr.aph
[5] (freely available on request). We only give here some more definitions

which will be needed below.
k

A representation n = ) x;a; is called regular if we first use a, as often
i=1

as possible, then a,_, as often as possible, etc. This means to impose the
additional condition

j

th-a"(-aj+l. j=1‘2....,k—l.

i=1
If only such representations are allowed, still restricted to at most h addends,
we speak of the regular h-range gn(Ay). Clearly ivl’,(Ak} P g,,(A,‘? for. all A.,‘ arlld
h. In contrast to n,(A,), the general determination of g, (4,) 18 fairly simple,
see for instance [3]. _ ' N

A given integer may have several representations by a basis 4;. A muuma;‘

representation (not necessarily unique) is one with thf: smallest number o_
addends from the basis. Djawadi [1] called a basis pleasant (German:
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