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and since there are at most ng ideals P™ (P prime) of a given norm in K, we
have

Ye(x) = 0c(x)+ Y, log Ngjg P = 0c(x)+O(nxlog x)

Punramifiedin L
NK;QPmﬁx.m? 2

HE |=c
P
and this shows that the estimates of Lemma 6 hold when y(x) is replaced
by 6c(x).

Theorem B now follows from Lemma 6 by a modified form of partial
summation (see [4], Lemma 7.3).
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On the linear independence of roots of unity over finite
extensions of Q

by

Umperto ZANNIER (Pisa)

The problem we shall treat in the present paper seems to have been first
considered by H. B. Mann.
In [4], among other things, the following theorem is proved:

Let
(1) 0!0+:tlc”+ o +G.*_|g"k_l=0

be an equation, where { is a primitive N-th root of unity, the a; are rational
numbers, such that no proper subsum of its left-hand side vanishes (Mann calls
such an equation “irreducible”).

Then N/(N, ny, ..., n,_,) divides the product of prime numbers up to k.

This result was improved in one direction by Conway and Jones who
showed in [2] that, if p,, ..., p, are the primes dividing N/(N, n,, ..., n, _,)
then

Y(p—2) <k-2.

In another direction Schinzel considered recently the analogous problem
to obtain an estimate for the above quotient assuming the coefficients a; to
be elements of some algebraic extension Lof the rationals. (A particular case
of this had been treated by Loxton [3]: he assumes o, €L, while ;€ Q for
1<j<k-1)

Schinzel proves in [5] that there is some bound for the quotient which
depends only on k and on the degree d =[L:Q].

However his proof uses van der Waerden's Theorem on arithmetic
progressions and so leads to extremely large values for such a bound.

The question arises whether Mann's method (for instance), which is
different from Schinzel's one, can be adapted to obtain a more satisfactory
estimate.

In this paper we show that the answer is to some extent affirmative.

We remark that the problem is simplified if one looks for bounds
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depending on k and the field L (not only on k and d): in this case the
adaptation of Mann’s arguments is almost straightforward.
Our results are the following:

THeoreM 1. Let (1) be a relation with no proper subsum equal to zgro.
where o; €L, L being an algebraic extension of Q of degree d, and where { is a
primitive N-th root of unity. _ ,

Let H be the maximal cyclotomic subfield of L and set d' =[H: Q], 4
= disc(H). Then

N

(N, Ryyonny "k—-'l)

InTT ' T1p [1 p=N(H).

4 pl4
rlid PR pewp-Dik-1+1
pla

(Here n =2 if d =4 =0(mod2) and n =1 otherwise.)
A straighforward use of the Brun-Titchmarsh Theorem (see for instance
[1]) gives the following
CoroLLARY. Notation being as in Theorem 1 we have the estimate
N oo(d)d
[N9 Ny, onny nl'(—l) ‘p(d)

where ¢ is an absolute constant and oo(m) =) 1.
dim
Throughout the paper the letter p will denote a prime number and (m
will stand for a primitive mth root of unity.

k
< exp (c log (dk)@)

Proofs. We shall need several preliminary lemmata.

Lemma 1. Let F be a field, a,, ., a4 be distinct elements of F. Let e, h be
positive integers such that

k<e, eh<charF (if charF > 0).
Then the polynomials
1, (x+a)* u=1,...,k,v=1,...,h
are linearly independent over F.

Prodf. By induction on h. Let h=1 and take a relation
k

Y rux+a) =r,.
u=1

Takihg derivatives and using e¢ # 0 (in F) we get
k

Y rux+a) ' =0.
1
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Now the Wronskian of the polynomials (x+a)*™!, u=1,... k, is
proportional to

D = det ((e_l)(x+a,,)"""), u=0,1,.., k-1.

u,p u

But

D= (egl)(e:l)...C::)(x+a1)""...(x+ak)""‘dct((x+a‘)-'].

Since k—1 < e—1 < char F the first factors are nonzero, and since the a;
are distinct the last Vandermonde determinant does not vanish.

So the polynomials (x+a,)°~! are linearly independent over F, whence

fi=ry=...=r,=0. But then ro =0 and this completes the first step of
our induction.

Assume now h > 1 and the lemma true up to h—1.
If there is a relation

rn+zr&l.v(x+all)ve=0| u=l,...,k, U=I,..., h;

v

let us differentiate e times. We shall obtain

T (" )rualx+a)e-ve =0,

The inductive assumption and the inequality he < char F give
ryo=0 forv>2

thus reducing to the case h = 1, which has just been treated.

Let now p be a prime number, y a character of order h on Fy. As usual
we extend y to a function on F, setting x(0) = 0().

Lemwma 2. With the above notation let ay, ..., a, be distinct elements of F,
Gpi=1,..,k j=1,...,h co be complex numbers such that

C0+E dexj((x‘i'ﬂ.')) =0 for all xEF’,.
ij

Then, if p > hk+1 we have necessarily ¢,j=¢co =0 for all i, j.

Proof. Let ¢ be a primitive hth root of unity, and observe that y takes
values in Q(g).

Let wy, ..., w, be a basis for the vector space spanned by Co» Ci,j OVer

(o).

(') Even if h=1.
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Then we may write
m
Cop = Z éswsv Ci.j= Z Gijs Ws
=1
where ¢, &;€0Q(g), and

Z: W, ]é,-&-qu,x"((x-ka,-)): =0 for every x€F,.
5= i

The linear independence of w,, ..., w,, over Q(p) then gives
&+) Csx'(x+a)) =0  for every xeF, and for all s.
i

Thus in proving our lemma we may assume that ¢, and the ¢;'s all
belong to Q(p).

Now it is well known from elementary algebraic number theory that
there exists a prime ideal p of Z [¢] such that p|p and

2(x) =x?""" (modp) for xeF,.

If our lemma is not true, that is if p > hk+ 1 and the ¢’s are not all zero,
it is clear that we may further assume them to be p-integers not all divisible
by p. (One can achieve this last condition dividing eventually such coeffi-
cients by some power of an elemeént ne€Z [¢] having order 1 at p)

When such a normalisation has been carried out we may reduce our
linear relation mod p obtaining

(2 Co+) Gj(x+a)y* """ =0 (modp) for xeF,.
i

Here the bar denotes of course reduction mod p; observe also that all
reductions belong to F,, since p lies above p and since p splits completely in
Z[o].

Since the polynomial on the left-hand side of (2) has degree < p—1, and
since it vanishes on all F), it must vanish identically.

But then we may apply Lemma 1, setting e = (p—1)/h, F = F,: observe
that with our assumptions e > k, while the condition eh < char F is automa-
tically satisfied.

From Lemma 1 we obtain ¢, =¢; =0, ie. all the coefficients are
divisible by p, a contradiction which proves the assertion.

LEMMA 3. For i=1, ..., k, let F;: F,—*C be functions such that

(i) F;(0) = 0;

(ii) The restriction F ,-|f; is constant on cosets modulo the subgroup of F}
of index h|p—1;
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(i) For some distinct a,, ..., a, €F, assume that

Y Fi(x+a)=coeC for all xeF,.
i

Then, if p > hk+1 each F; is identically zero.

Proof. In view of (i) and (ii) we have, for each i, an expansion
h

Fi(x)= Y ¢; X' (%)
i=1
where y is a character of order h on F}.
The use of (iii) together with Lemma 2 give at once the result.

LemMA 4. Let H be a cyclotomic field with d = [H: Q] and A = disc(H).
Define

_ {2 if d=4=0(mod?2),
= 1  otherwise.

Then
H< Q)

where

m=q[]p**!
the product being extended to primes such that p|A4 and p°||d.

The proof of this lemma appears in the paper of Loxton [3] mentioned
in the introduction.

Proof of main Theorem. We shall treat first the case when L = H is
a cyclotomic field. '

Let { = (y be a primitive Nth root of unity, H < Q((,), where m is as in
Lemma 4. ' ;

We may clearly assume that (N, n,,..., n,_,) =1, and agree that n,
=0.

Let p’|| N. We shall distinguish several possibilities.

Assume first that p|4, whence p|m, and that p#'2, s> a+2

There exists a primitive (N/p)-th root of unity {, and a primitive p*-th
root of unity g such that

C i ‘:t e-
Each {" may be clearly written in the form (% " where 0 < v < p and

n; = v(mod p).
Substituting into the fundamental relation (1) we get

p=1
Y 'S =0
v=0
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where

S(U] = Z o C:; EQ(CM! C*) < Q(C[m.m‘p])-

n; =v

But Q(g, {,, {,) has degree p over Q({,, {,) (since s> a+2), whence
S(v) =0 for all v and

¢S@) = ¥ ul"=0.
!Il' =
Since no proper subsum of (1) can vanish, this implies that n; = 0(mod p)
for all i, whence p|(N, ny, ..., n,_;), a contradiction.
We have proved that

o) {p’llN, pld, p°lld,p=1(mod2) = s<a+l,
and a completely analogous argument proves s < a+2 for p = 2.

Assume now p f4.

Arguing as above we have a contradiction if s > 1.

If s =1 we obtain that all the S(v) must be equal (now ¢ has degree
p—1 over Q((,, {,) with minimal polynomial 1+x+ ... +x*~1).

But at most k of the S(v) are nonzero whence, if p > k, all the S(v) must
vanish and we have a contradiction as before.

We have shown that

“) PIN, ptd =s=1 and p<k.

(These arguments follow strictly Mann’s ones.)
‘I'o make estimates depend only on d and k (not merely on d, k and 4),
we must treat further the case

P’IIN, pld4, p4id.

Assertion (3) gives s<2if p=2 and s =1 if p # 2, as we shall assume
from now on.

Write as above { = {, ¢ and find a primitive mth root of unity {,, ={'p
where (' is a primitive (m/p)-th root of unity.

Observe that p tm/p.

Each o; has the expression ‘

p-1
(5 @ = Z ¢“Siw), S;()eQ(().
Let o €Gal(Q({,)| HQ(g)). Then

©) w=73 oS, oS wWeQ().
u=1
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But the expression (5) is clearly unique, since ¢ has degree p—1 over
Q(l’), and comparison with (6) leads to the result that o fixes each §;(u),
whence

M Si(wyeH' = HQ(0)nQ({).
To compute d' = [H': Q] observe that
o(m) =[Q(.):Q] =[Q() Q():Q]1 = [Q()HQ(0): Q]
= @(m/p[HQ(): Q1[H": Q]! = [H:QI[HNQ(e): Q1 ' [H: Q] " @ (m)

whence

AR ¢ /1 d
@ =01 =0 (:0] ~ (HAQ@: 01
Let o€Gal(Q({)JHH') = G correspond to g €(Z/(m))".
Applying ¢ to (5) we have

p=1 p-1
) =3 0™Siu)= 3 o™Si(gu).

u=1 u=1
(Here we think of S; as a function S;: F, = Q({’) such that §;(0) = 0) Whence
(10) Si(gu) = S;(u) for all i, u and g€G.

Let n: (Z/(m))* —F%* be the reduction map. The image n(G) has cardi-
nality |G|/|Gkern|.

On the other hand kern corresponds to the subgroup of (Z/(m))* fixing
Q (o), whence -

Grkern = Gal(Q({)JHQ(g)) (since H' = HQ(p)
and the above remark leads to the formulas
[HQ(0):Q] _ [HnH:Q]
a0l " P QIHAQ(0: Q)
[HnH':Q]
[H:Q]
Combining this with (10) we see that we have proved that Siip; depends only

[H:Q]
[HNH':Q]

Iz (G)l =

=o(p (by (8)).

on cosets modulo a subgroup I' = F* (independent of i) of index

which divides (d, p—1).
Substitute now relations (5) into the fundamental equation (1), obtaining

k=1p—-1

Y ¥ ZdVUs=0

i=0u=1
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and

p=1
Z e’ z C:'St(“)=0-
v=0 n; +u =v(p)
Since the inner sums are contained in Q(,, {) and since g has degree
p—1 over that field, we infer that all these sums have the same value whence

the function

k-1
(12 x(eF)— Y LJS{x—n) is constant (= co).
i=0
Set B = {n;mod p}. (12) gives
(13) X LSdx—n)] =co.
BeB m =f(p)

We may now apply Lemma 3, setting | —a;) = B, h = (d, p—1), and, for f B
Fa0= Y {ISix).
n; =pip)
If p> h|B|+1 that lemma implies (in view also of (11)) that each Fy is
identically zero, i.e.
Y L= =Y {IS(x-n)=0
n =p

n =p

for all xeF, and for all f&B. -
Multiplying this relation by ¢* and summing over x€F, we are led to

Z oy cw =0.
n; =p(p)

Since no subsum of (1) vanishes and since not all the n; can be
congruent mod p (otherwise, since n, =0, p would divide (N, ny, ..., n,_,)),
we have a contradiction, showing that

p <h|B|+1
and, since h =(d, p—1)| p—1, this implies
(14) p<(d,p-1)(Bl-1)+1<(d, p—1)(k—1)+1.

This result completes the proof of Theorem 1 when Lis a cyclotomic
field.

Let us now consider the case of a general field L.
Let H be the maximal cyclotomic subfield of L, and write

I=[L:H], d =[H:Q]

and let ¢ be a generator for L over H.

On the linear independence of roots of unity 179

With the «; as in (1) set

-1
=3 .8 o,€H.
u=0

(1) then reads
-1 k=1
Y &Y aq.t=0.
=0 i=0

Since the intersection LNHQ({) is just H (by definition), and since
HQ()) is normal over H, it follows that ¢ has degree 1 still over HQ((),
whence

k-1
(15) Y 4,"=0 foru=0,1,..I-1.
i=0 :

The proof can now be completed in more than one way, appealing to
the particular case treated before. . )
The simplest method seems to me the following, which depends on

LeMMA 5. Let wy, ..., w, be complex numbers, H be some subfield of C
and assume we have | linear relations

k
Zﬁi.uwi___on u=0, l,...,f—l

i=1

with ﬂ;_' €H.
Then either there is a proper non empty subset I' = {1, ..., k} such that

YB.w=0, u=0,1,..,1-1

iel’

or there is a relation
k o
Zﬂiwi=0s ﬁJEH'
i=1
such that no proper subsuni can vanish.
The proof of this lemma is very simple. For I' c {1, ..., k], set

-1
Vr= {(xO, veey x_l—l)EHl,Z w‘ Z xnﬁ“" [ — 0}_

iel’ wu=0

It is clear that the V, are vector spaces over H. Observe that, if the first
possibility does not hold, then

Vi#H for @Q# T €il,...,k}.

Since H is infinite and since V, runs over a finite number of proper
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subspaces of H, we have that

V= U Vr#H.

D= e\l

Choose (xq, ..., X;_,) €EH'\V and set

-1

ﬁl’ = Z Xy ﬁi.u'
u=0
Then clearly
k
Z ﬂ,‘ Wl' = 0.
i=1

Moreover, if there was a vanishing proper subsum, corresponding to
iel, we would have (x,, ..., x;-1) €V}, a contradiction.

To complete the proof of Theorem 1, take relations (15) and apply
Lemma 5 with " = w;.

If the first possibility occurs then

Zai.ucw=09 u=0!1|---,1_1;

iel’
whence
Yo l"=0
iel
a contradiction.
In the second case there is a relation

k-1 )
Z ﬁicnl = 0! ﬁi EH
i=0

with no proper subsum vanishing, and we may apply the particular case
proving completely Theorem 1.

Proof of corollary. Let us estimate separately the three factors which
appear in the definition of N(H) in the statement of Theorem 1.

The first factor is clearly bounded by 242

The logarithm of the second factor is, by Tchebycheff's inequality, < k.

Forgetting the condition p|d4, the logarithm of the third factor is
bounded by

2 logp< ) Y logp.
ps(d,p—1)k=1)+1 eld’ p=1(e)
p<ek

Now, by the Brun-Titchmarsh Theorem, the inner sum can be estimated
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by

ek
log (ek) 1 < clog(dk)———
P Ezl:te) (0(8) IOg k
p<ek
where ¢ is an absolute constant (one may even take ¢ = 2).
Summing over e|d and observing that, trivially,

e d
200 <°95G

one gets the stated result.

Remarks. 1. I have found no satisfactory lower bound for
N/(N, ny, ..., m,_,). However inequality (14) is clearly the best we can obtain
looking at a single prime p dividing the crucial quotient, for let d|p—1, set k
=(p—1)/d+1, and let H be the unique subfield of Q({,) having degree d
over Q.

Then {, satisfies an equation ag+a, {,+ ... +o,_, {57! =0, o; €H, with
no proper subsum vanishing; moreover p =(d, p—1)(k—1)+1.

2. The inequality for p required for the validity of Lemma 2 cannot be
strengthened, as is easily seen by observing that the space of complex
functions defined on F, has dimension p (over C).

3. Observe that the proof of Theorem 1 gives the following slightly
stronger result:

“If p]| N/N, ny, ..., ne—,) and p? fm, then the number of incongruent (p)
ones among the ns is at least (p—1)/(d, p—1)+1".

4. Fairly complicated arguments (following anyway similar lines as those
exposed here) prove the following

“Let p, q be distinct primes such that pq|N/(N, ny, ..., m_,) and p?
q* ¥m. Then

p—1 qg—1
<
P-1d) G-1.4)

Since the strengthening is asymptotically not very satisfactory, I have
decided not to include the proof of this result, in order to make the paper
neater.

Anyway this would perhaps suggest that an analogue of the theorem of
Conway and Jones could have the following form:

If pyy..., | NAN, ny, ..., n,_y) but pf fm, then

0. - ) % k=2,
Z ((d- Pj— 1)
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Some number-theoretical properties of generalized
sum-of-digit functions

by
GEerRHARD LArcHER (Salzburg) and Rosert F. Ticuy (Wien)

1. Introduction. There has been a great deal of work in investigating the
number-theoretical properties of the sum of digits of positive integers in a
given number system. In the special case of a g-ary number system (g = 2)
write n in the digit representation

o

(1.1) n=7Y &g

i=0
with g =¢;(q, n) €10, ..., g—1} and ¢ =0 for i > [log n/log q]; [x] denotes,
as usual, the greatest integer < x. Then by a famous result of Delange [3]

—11 1
q ogn+nF(ogn)’
2 loggq logq,

1" 1
(1.2) -y s(g. k)=
Hg=0¢
where s(q, k) = Y ¢;(q, k) denotes the sum of g-ary digits and F is a suitable
: =0
continuous and nowhere differentiable function with period 1. Exact bounds
of the error term F(log n/log q) have been given by Drazin and Griffiths [4].
A further precise information on the average value of the sum of g-ary digits
is given in a recent paper of Foster [6]. In the case g =2 he proved

2 2 logn'l
2 e 2, k)— 1,
(1.3) T ngost ) [logq_ <

where both bounds are best possible. A paper of Stolarsky [12] contains a
brief survey of the history of such problems and cites many references.

Other authors, expecially French mathematicians investigated certain
exponential sums, e.g.

n—1
(1.4) Y e h@hx  (h integral, x irrational)
k=0

in connection with the uniform distribution of the sequence (s(g, n) x)Z,.



