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Some number-theoretical properties of generalized
sum-of-digit functions

by
GEerRHARD LArcHER (Salzburg) and Rosert F. Ticuy (Wien)

1. Introduction. There has been a great deal of work in investigating the
number-theoretical properties of the sum of digits of positive integers in a
given number system. In the special case of a g-ary number system (g = 2)
write n in the digit representation

o

(1.1) n=7Y &g

i=0
with g =¢;(q, n) €10, ..., g—1} and ¢ =0 for i > [log n/log q]; [x] denotes,
as usual, the greatest integer < x. Then by a famous result of Delange [3]

—11 1
q ogn+nF(ogn)’
2 loggq logq,

1" 1
(1.2) -y s(g. k)=
Hg=0¢
where s(q, k) = Y ¢;(q, k) denotes the sum of g-ary digits and F is a suitable
: =0
continuous and nowhere differentiable function with period 1. Exact bounds
of the error term F(log n/log q) have been given by Drazin and Griffiths [4].
A further precise information on the average value of the sum of g-ary digits
is given in a recent paper of Foster [6]. In the case g =2 he proved

2 2 logn'l
2 e 2, k)— 1,
(1.3) T ngost ) [logq_ <

where both bounds are best possible. A paper of Stolarsky [12] contains a
brief survey of the history of such problems and cites many references.

Other authors, expecially French mathematicians investigated certain
exponential sums, e.g.

n—1
(1.4) Y e h@hx  (h integral, x irrational)
k=0

in connection with the uniform distribution of the sequence (s(g, n) x)Z,.
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These investigations were initiated by Mendés-France [10] and continued in
several articles by Coquet, e.g. [2].

In recent time more general digit depending sums and sequences turned
out to be of some importance in various fields of applications: for instance
the Rudin-Shapiro sequence (cf. Allouche and Mendés-France [1]) with
applications in harmonic analysis and in the theory of automata and the
Gray code representation with applications in computer science (cf. Sedge-
wick [11], Flajolet and Ramshaw [5]). The digits y,(n) in Gray code
representation are given by

(1.5) () = &(2, M)+&4,(2, n) mod2,
and G(k) = ) 7;(k) denotes the sum of Gray code digits. Obviously G (k) is
j=0
the number of maximal 0-blocks and 1-blocks in the binary representation of
k. In an appendix we prove an explicit formula for
1= 1

(1.6) -¥YG

”k 0

log n
2| logg

(cf. Foster [6]). From this formula it is poss;ble to derive lower and upper
bounds for the expression (1.6) which can be used to give estimates for the
average case complexity

s+2500((,%)/(7)

of Batcher’s sorting algorithm with n files (cf. Sedgewick [11], Flajolet and
Ramshaw [5]).

Our main results are concerned with estimates for exponential sums of
type (1.4) with respect to Gray code and some extensions. The sequence
(G(nm), is a special case of a more general class of sequences. Let g, €N
(positive integers), ¢ > 2 and for iy, ..., i,€10,...,g—1! let a(i,, ..., i) be a
real number and assume a(0, ..., 0) = 0. For n in g-ary digit representation
(1.1) we define

- ]

(1.7) tM:i= Y e &ia1seens Ban—1)-

i=0

In the case » = | and a(i) =i, t(n) = s(q, n) is the usual sum of g-ary digits.
For g=% =2 and a(0,0)=a(l,1)=0, a(0, 1) =a(l, 0) =1 we have t(n)
=G(n). In the case g=%x=2 and a(0,0)=a(0,1)=a(l,0 =0, a(l, 1)
=1, t(n) is the number of (11)-blocks in the binary representation of n
(Rudin-Shapiro-sequence).

For a pleasant formulation of the main theorems we need the following
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quantity w. Let b, [ be integers with 0 <b, | <4* in g-ary representation
=1

b=Zb|‘q[, !=Z!|ql'
i=0 i=0

Then for real x we define

(18) o=a(x, Lb)=x"lt(h+ Y (albps ... bucys oy ovs lnoi)—

m=1
—a(byy ..oy by, 0, ..., O))L.

Furthermore we set
o(x) = rna:Xllcr(x, Lol (yll = min(y—L[y], 1=y+[y)),

N-1
S(N,x) = } e
k=0

(1.9)

TueoreM 1. For all positive integers N and real x

loglg = ('2«:2{:})

log 4

[S(N, x) <SC, N

with some positive constants C,, C, only depending on q and x.
Our second result is concerned with a special lower bound for S(N, x).

THEOREM 2. There is a constant & >0 such that for all reals x wrrh
w(x) <6 and for all N = ¢ (jeN) we have

loglg — Cqew 2(x))
lo
IS(N, x| > CsN - ™

with some positive constants Cs, C, only depending on q and x.

We can use the above theorems to generalize results concerning the
discrepancy of the sequence (s(q, n)x);%o (cf. [9], [13]) by giving best
possible estimates for the discrepancy of the sequence t = (f(n) x),Z,. Let us
recall that the discrepancy of a sequence & =(x,),~, of real numbers is
defined by
(110 R
Osa<fisl

with A(N;a, B, x,) =card 0<n <N: a<x,—[x,] <p}. The sequence ¢
=(x)%, 1s called uniformly distributed modulo 1 if Dy(¢) tends to O (for
N — ); cf. the monographs [7], [8].

THEOREM 3. The sequence t = (t(n) x)i o is uniformly distributed mod 1 if
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and only if w(hx) # 0 for all positive integers h. If
w(hx) > Cs/h"

Jor all heN and fixed constants Cs, n >0, then we have for all NeN

(1.11) Dy (1) < Cgq/(log N)'/2n
with a constant Cq only depending on q, x, Cs, n. Conversely we have
(1.12) Dy (1) = C,/(log N)'/?"

for infinitely many N eN provided that
w(hx) < Cg/h"  for infinitely many heN.

Coquet [2] was heavily interested in the distribution behaviour of the
sequences (s(q, n+k) x)2, uniformly in k. In this special case a (not best-
possible) estimate for the uniform discrepancy

(1.13) Dy = sup Dy(E®) (&% =(x,40)20)

k=0,1,2,...
is known (cf. [14]).

In the following theorem a best possible estimate for Dy(z) is estab-
lished.

Tueorem 4. For all positive integers N and t = (t(n) x)s= the estimate

Dy(r) < 4-q* max D;(1)
1€jEN

holds.

Remark 1. As an immediate consequence of Theorem 4 we get the
estimates (1.11) and (1.12) even for the uniform discrepancy Dy (z).

Remark 2. In the case x =1 we have

o= max [la()x;
i=1,..4-1

hence the theorem in [9] is a special case of our results.

Remark 3. In the case of Gray code we obtain w(x) = max (||x||, ||2x])).
Hence y = (G (h) x);2 o is uniformly distributed mod 1 for all irrationals x; y is

even well distributed in this case. If x is of approximation type n then we
have

(1.14) , Dute) < o7

with a constant Cy only depending on 5, and this estimate is best possible.
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Remark 4. In the case of the Rudin—-Shapiro sequence we also obtain
w(x) = max(||x||, [2x/). Hence the same conclusions as in Remark 3 are
valid.

2. Proof of Theorem 1. We make use of the following auxiliary results.

LemMA 1. There are constants c,, ¢, > 0 such that for all p >0 and all
Z1s 00y 2s€C (s 2 2) we have

(2.1) i+ ... +2zd = (s—cy p#?) min |z
i=1... 5

provided that max |largz;—argzj]| < u;

(2.2) lzy+ ... +2z s(s—cz,u’)in:ax |z;|
= land

provided that  max ][aréz,—argz,ll >p (argr-e®™:=y for —1/2<y
1= 1yns
< 1/2)
We omit the easy proof.

Lemma 2. Let ay(0), ..., a,(0) and a; be complex numbers with |a;(0)|
=logl =1 and ay; =1 (i,k=1,...,s; s = 2). Furthermore assume that

5
(2.3) a() =Y aya(j—1) for I=1,...,s and jeN
i=1
and set
v= max [argagl.
' ij=1,....8
Then there are constants cs, c4 >0 (only depending on s) such that
(24) @ () € cs(s—cgv?Y foralll=1,...,s and jeN.

Proof. We proceed by induction. For j = 0, 1, 2 the assertion is trivially
true and we assume that it is proved for j <n (n > 2). Then by Lemma 1

lay (n—=1)| < c3(s—csv¥)(s—cev?)"~?
provided that
max (|larg a,(n—2) —arg a,, (n—2)|[) > v/8.
ILm
Hence
(2.5) la,(n)] < e3(s—1)(s—ca V)" +e5(s—cs V¥ (s—cavH)" 2

Cs—Cy i
Scs(s* z Vz)(S-Cﬂ'z)' g

7 — Acta Arithmetica 52.2
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Now we consider the case

max (llarg a;(n—2)—arg a,, (n—2)||) < v/8

and without loss of generality we may assume arga,, = v. Then
||larg (o - @; (n—2)) — arg (o5, @y (n—2))|| = v/4—v/8 = v/8

provided that arga, < 3v/4 for some i.
Therefore we obtain as above

(2.6) la, (n)] < c5 (s—c‘*:“‘ v?)(s-c4 yr1,

In the case argay > 3v/4 (for all i=1,...,5) we have

|larg (a,(n— 1)) —arg (a, (n—1))|| = v—v/4—2v/8 = v/2.
Hence we obtain again
(2.7) la; (n)] < e3(s—c7 v¥)(s—cqv¥)" 1.
Combining suitable constants ¢,, cg yields

lay(n+ 1) S cs(s=1)(s=cav)"+c3(s—cg v¥)(s—cq v¥)"!

Cg —
'-';..63 (3‘—

C,
$ vz)(s—c4 V)" < cy(s—cy vl

Thus the proof of Lemma 2 is complete.
Now we continue with the proof of Theorem 1. Let N be a positive
integer with g*-ary digit representation

(28) N=Y N;g9, N;el0,1,...,q*~1!, N, #0.

Jj=0

We have (using the notation L;=N;.;¢V*V+ ... +N, ¢ for j
=0,...,r—1and L, =0)

r Nj—1 Lj+¢¢+l]q’uv—-1
(29) S(N, x) = Z Z Z o2ritlk)x
J=0 e=0 =y 4ot
r Nj=lge_ g+ npgxU-1-1

-y 2 X Y. expy(2nit(k+ L;+eq*) x)

J=0 e=0 I1=0 j=yexU—1)

(exp(1) = €).

x=1

x=1
Let e= ) ¢;¢,1= ) I;¢’ be given in g-ary digit representation and
j=0

=0
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let k be given such that [-g*0~" <k <(I+1)g*Y" ", then
(210)  t(k+L;+eq) = t(k)+e(L;+eq¥)

x—1
-+ Z (a(f,,,, arey !K—l’ €y -o3 Ep— 1)—.‘2”,,,, reay f,‘..1, 0, saay 0)).
m=1

We use the notation
o(l, &, j, x) = exp((t (k+ L;+eg*) — (k) x),

and derive from (2.9)

U+ ng*ti— -

(2.11) S(N, x) = Z e(l, &, j, x) Z p2ritk)x
dadt k=1gU=1)
Now we consider the sum
(+1)g¥i-1
SiGyx)= Y e®r for 0<I<g*-1
k=1g%J
and obtain
F-1@+1gU—1-1 _ »
(2.12) S, 0= Y Y pritth + 1g¥hyx
5=0 k=pg*U-1
r1
=¥ o(x, L, b)S,(—1,%
b=0

(in the notation (1.8)). By Lemma 2 we have for 0 < /< g*—1
1S,G, x)| < c3(q"—ca wz(x})i,

and therefore

IS(N, ¥ < ¢ ¥ (q*—caw?(0) ™"
j=0

_ (*—cs0*(x)) -1

< *—caw? (%)™
9 T —cam?(x)—1 Cto(q s @ (x))

r log(g — ¢ 200 2(x))
Cs o ogq
< ——w*(x =c N
Ci0 (4‘ g ( )) 1
Thus the proof of Theorem 1 is complete.

3. Proof of Theorem 2. We make use of the following auxiliary results.

LemMa 3. For Zj=rjezli¢1! 0}=CM’-’U=L---,3§ 3;2) with |aj|’
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Bl <m/8 let B=2z+ ... +2z, and B, = ,2,+ ... +0,z,. Then
larg B,—arg B| < 2 max |Bj|.
J=1,..8

Proof. Without loss of generality we assume

Z r;sing;
tan(arg B) = ——. tan(arg B,) =

Y. ricosg
i=1

isin(a; + ;)

Z rsinte
T ricos@-+h)
and

5
Z ririsin(o; —o;+B))
f; 1

arg B, —arg B < tan(arg B)) —tan(arg B) =

Z r; ;COS ; COS (& +ﬁj)
ij=1

Because of

lo;—a)) < /4, |Bj<n/4 and |a;+p| < n/4

we have
sin(o; —a;+ B;) < sin(o; —a) + Bl
and
cosa; cos (¢;+ B;) = 1/2.
Hence
Z ryr;sin(o; —a;) Z rir;|Bil
arg B,—arg B < —~! +255
Z ?';?'JCOSE;COS(aJ‘*'Bj) z f.‘fj
ij=1 ihj=1

and the proof of Lemma 3 is complete.

LeEMMA 4. There are constants 8, ¢y, ¢; > 0 depending only on s such that
wherever |arga; (0)] <8 and |argay| <& for all i, k then for all | and j

(3.1) la,()l = ¢y (s—cyv?Y
(in the notation of Lemma 2).

Proof. If 6 is small enough the assertion is trivially true for j = 0, 1. We
proceed by induction and assume that (3.1) is true for all j<n (n=>1).
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We obtain by Lemma 3 for sufficiently small &

"31'3 (a,(m))—arg(a, (m))” <2

for all land m =1, 2, 3, ... Hence by the induction hypothesis and Lemma 1
we have

la(n+1)] = ¢y (s—cv)(s—c2v¥)" = ¢ (s—c vI)"™!

which proves Lemma 4.
By the recurrence (2.12) and Lemma 4 we obtain for all reals x with

‘(x) <6 and all N = ¢ that

log(g— C4@2(x))
IS(N, x| > C;N  **

which completes the proof of Theorem 2.

4. Proof of Theorems 3 and 4. The first assertion of Theorem 3 follows
immediately from Theorems 1, 2 and Weyl's criterion for uniform distribution
of sequences (cf. [10]). The upper bound (1.11) can be established by means
of the Erdés-Turdn inequality

(@.1) Dy(®) <6 ( Z

(choosing a suitable positive integer H) by verbally the same calculations as
in [9] and [13]. The lower bound (1.12) follows from Koksma’s inequality

1"‘2:&&:,
A

n=0

) (€ =(xd)

(42) L D@35 T

n=0

(cf. [8]) as in the special cases [9], [13].

Finally we establish a proof of Theorem 4. For N, k€N let a, r be non-
negative integers such that ¢~V < N < ¢ and ag”” <k <(a+1)g*. First
we consider the case

@3 ag” <k <(k+N-1) <(a+1)g".
Let

bog "™V +ag” <k <(bo+1)g*"" " +ag”
and

(bo+Bo g V+ag” <k+N—1 <(bo+Bo+1)g*" " +ag™

“with 0 < by < by+ By < ¢*. Then the sequence (t(h+k)x)=g consists of the

following parts
(tn ey

n=0 ]
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(4.4) (r(n+k)x)':;b;:,1""‘”W"’—**‘ for b=bo+1, ..., bg+By—1

r— ll_“qxr_k
and

N-1
(t (n+k) x)u=u,0+ Bo)g*(r = 1) 4 ag¥r — i

Each of these subsequences is of the form & = (a4t (n) x)ot no Where 0 <o < 1
and 0 <ny<n <¢“™ Y. Denoting by D,y (§) the discrepancy of the
sequence ¢ we obtain by well known (and simple) properties of the dis-
crepancy

("l = n0+ 1) Dno.ul (6) "‘g nl Dﬂl (T)+(ﬂo - "])Dno (t)'
Hence by [8, Theorem 2.6, p. 115] we have

NDy(x™) < 2¢*g*"" max D,(r);

0 jggilr—1)
thus
4.5) Dy (r) < 2¢* max D;().
O<jsN

In the case ag” <k <(a+1)g” <k+N-1 we divide the sequence
(r(n+k)x)¥=¢ into two parts

4.6)  (t(r+R) x0T and  (t(n+(a+ 1) gt N-E@r -1

Both sequences satisfy the condition of the above case and therefore

(4.7) Dy (1) < 4¢* max D(1).
O0sjsN
Thus the proof of Theorem 4 is complete.

S. Appendix. In the following we establish an “explicit” formula for

LS n|logn
S =Y G)—> .
=3 cw-3[ =]

First we note that

Gm+2 for0<n<2t,

(5.1) G2 +n = {G(n) for 2*"'<n<2t

Applying (5.1) we obtain for

n-1
Am= 3 Gk

k=1
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the identity
A= Y G+ Y GO

1<r<28—1 25— lgp<ys
=A2"H+ Y G(n+ Y G(r)
25— lgpcs— 24251 25— 1425-2g, <25
=AY+ Y Gm+2 Y 1
osr<2s—1 o<r<2s-1

=242 Y)+2" L

Hence, by induction,

5
(5.2 A(2) = 52’.
Every odd number has a unique representation of the form
(5 3) n. = 2!‘0+2lo+11+ . +2lo+...+l'm
with integers m >0, t, =0, t; > 1 (j > 1). Furthermore we set
(54) no=1 nm=1+2"14 . +22"" for 1<i<m.

Then we have

5.5) Ay = A" T4 ¥ G(r)

231 +“l+'m"c"m

lll)+ Z G(ztl'l".‘*'lm-l_r)-

O0sr<my,_

i1+t

=A(2

In the case t, =1 (ie. ny_; >2"""""™"") we obtain by (5.1) and (5.5)
(m=2)

(5.6 A =A@ ™) 4 Ay ) +2 Y !

osr<2tl *otim—1

=A™+ ANy 1)+ 2(Mpe 1 — M- 2)-

In the case t,, > 1 (i.e. nu_y <217""™") we obtain by (5.1) and (5.5)

(5.7 Am) =A™+ ¥ (G(N+2)

O%r<my_1

™+ A(Np—q)+ 20,1

0+t

=A(2
Combining (5.6) and (5.7) gives
(58) A(m)=AC" "™+ ANy )+ 2y 120Ny (m21),



194 G. Larcher and R. F. Tichy

where
5. = 0 for ¢, >1,
I for 1, =1,

ﬂ_1 = 0.
Summing up and applying (5.2) (note that A(ng) = 0) yields

m

Ay =Y (AR """ +2n,_)-2 f o,n,_,

r=1 r=1

ol T AR, o ey =
Y (At +2n.-1)—2§16,n,-2

r=

I

r=1

i t ti+ ... +t e
= ZI (2—.5)”’_1+{—1__._M)_E'!_2 Z 6,",_2.
p= r=1

L ul
=3 (-—Z——(m—n.-1}+2n,-.)—2r§l5r"r—z

2

y logn,
Observing that t,+ ... +t,, = [Bgﬁm:' we have proved the following formula

Sny) 1T g
(5.10) zl ((2—5):1,_145, n,_z).

R Ry r=

It should be remarked that the expression (5.10) does not change its value if
ny is replaced by 2°n, (B an arbitrary positive integer). Hence the explicit
formula (2.10) is valid also in the general case (not only for odd numbers n,).

Since n,_,/n, < 1/2 (for every r > 1), an application of Foster's lower
bound [6, Theorem 1] yields ’

S(n,) | .. s

T = E’EI [2—?,)”,_. 1 +;1'l;r§1 (-4 *26r"r-—2) > _'i'lg

An elementary observation shows that S(n,)/n, increases if all t,>2 are
replaced by r, = 2. Hence, for determining an upper bound for S (n)/n, it
suffices to consider the case r,=1 or 2 (r=1,...,m). We pr::'we
S(ny)/n, < 7/10 by induction; the cases m =0, 1 are trivial. Assuming this
bound for m—1 we obtain in the case tm =2 by (5.10)

S(n,) _ 1
(5.12) i < r (S(nm—1)+(2_££)nm—'l _%m"m—z)

(5.11)

Ny i 2

< -?_"”'"" .|_n"‘;l < _7_
10 n, n, 10’

since M, /n, < 1/(14+2™"").
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In the case 1, =1 we have

S(n) _ -y (S(n.,._u_g)”nm—nm.-z

Ny N Hme1 2 i
The expression (n,,—, —n,-.)/n,, takes its maximal value if t; = ... =, =1
and t;,; = ... =1, (for some [ with 1 <!< m—1). Hence after a simple
calculation
nm—l'—"m—z _ 22m—l—2 < 3
n, _(21‘+l_1)+_§_21+2(4m—l-t_|)+22m-l-l = 10°

From this estimate and the induction hypothesis we derive

S(n,,,){l(? 1) 37

m <2\1072)75 "

(5.13) T

which completes the induction argument. Combining (5.11) and (5.13) we
have for all positive integers n (note the remark after (5.10))
1 St 7

13 n 10

10 2)'5

(5.14)

These bounds seem to be quite far away from the optimal bounds. It may be
possible to derive the optimal bounds from (5.10) using inductive arguments
similar to Foster’s [6]. However, some numerical calculations become rather
extensive in this case.
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Let F, be the finite field with g elements and f(x) €F,[x] a polynomial
Received on 14.8.1987 (1749) of degree n. Let r(f) = #f(F,), considering f as a function f: F, —'FF. A
classical problem, raised by Chowla [3] (see [4] for other references), is to
estimate r(f) an terms of n and ¢. One has the trivial bounds g/n < r(f) <gq.
The lower bound is essentially best possible and a characterization of the
cases with equality when g is prime was obtained in [2].
On the other hand, if f is a “general” polynomial (in a sense that can be
made precise, see below) Uchiyama [6] proved that r(f) = ¢/2+0(q'/?) and
Birch and Swinnerton-Dyer [1] found the precise result

r(f) = q(i (_2‘_ )+ 0(g'?).
PR

They proved this when the Galois group of f(x) = y over F,(y) is the full

symmetric group. Of course these results are interesting only when g is large

compared to n. The purpose of this paper is to give lower bounds for r(f).

valid for f “general”, which improves on the above bounds in several cases.
Uchiyama’s condition is that the polynomial

S* () =(fW)—f @) u-0

is absolutely irreducible. When this is the case he could apply Weil's estimate
([7)) on the number of points of f*(u, v) =0 over F, to get his result.

To relate the number of solutions of f*(u,v) =0 in F? with r(f),
Uchiyama [6] proved the following:

LemMa 1. Let N be the number of solutions of f*(u, v) =0 in FZ and n,
the number of solutions of f'(x) =0 in F,. Then

r(f) = ¢*/(N+q—no).

Proof. First notice that f*(u, v) = 0 and u # v if and only if f () = f (v)
and that f‘ (u, u) =f'(l.l). Let {ah Vi a.-: =f(Fq}- F= r(f) and h;
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