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Let F, be the finite field with g elements and f(x) €F,[x] a polynomial
Received on 14.8.1987 (1749) of degree n. Let r(f) = #f(F,), considering f as a function f: F, —'FF. A
classical problem, raised by Chowla [3] (see [4] for other references), is to
estimate r(f) an terms of n and ¢. One has the trivial bounds g/n < r(f) <gq.
The lower bound is essentially best possible and a characterization of the
cases with equality when g is prime was obtained in [2].
On the other hand, if f is a “general” polynomial (in a sense that can be
made precise, see below) Uchiyama [6] proved that r(f) = ¢/2+0(q'/?) and
Birch and Swinnerton-Dyer [1] found the precise result

r(f) = q(i (_2‘_ )+ 0(g'?).
PR

They proved this when the Galois group of f(x) = y over F,(y) is the full

symmetric group. Of course these results are interesting only when g is large

compared to n. The purpose of this paper is to give lower bounds for r(f).

valid for f “general”, which improves on the above bounds in several cases.
Uchiyama’s condition is that the polynomial

S* () =(fW)—f @) u-0

is absolutely irreducible. When this is the case he could apply Weil's estimate
([7)) on the number of points of f*(u, v) =0 over F, to get his result.

To relate the number of solutions of f*(u,v) =0 in F? with r(f),
Uchiyama [6] proved the following:

LemMa 1. Let N be the number of solutions of f*(u, v) =0 in FZ and n,
the number of solutions of f'(x) =0 in F,. Then

r(f) = ¢*/(N+q—no).

Proof. First notice that f*(u, v) = 0 and u # v if and only if f () = f (v)
and that f‘ (u, u) =f'(l.l). Let {ah Vi a.-: =f(Fq}- F= r(f) and h;
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r. Then ) n; =gq and

i=1

= #.f_l(ai}s f= lv"'s

N — Z ﬂ;(ni"'l]'i'no.

i=1
Hence, z n? = N+q—n,. By the Cauchy-Schwarz inequality
i=1

r

Y nt> %(Z n)? ==—

and the result follows.

Using the trivial bound N < (n—1)q (since f* has degree n— 1) one gets
r(f) = q/n. If f* is absolutely irreducible (i.e. irreducible over F], Weil’s
estimate N < g+(n—3)(n—2)(¢"2+1) gives

q (n—3)(n— 2J(q”2+1)
4

r(f) =

We §ha]l now give upper bounds for N which follow from the results of
[5] and improve on the above bounds on several instances.

THeorReM. Let X be an absolutely irreducible plane curve of degree d
defined over F, with N rational points, then

(1) If q is prime and q'"* <d < q then N < 4d* g*?,
() If h(x,y)=0 is an affine equation for X and d*y/dx?® # 0, then
N<ldd+q-1).

Proof. () Let X be an absolutely irreducible curve of degree D
contained in P", not contained in a hyperplane. If p is the characteristic of F,
and D < p, it follows from [5], Theorem 2.13 and Corollary 2.7, that lhc
number of rational points, M say, of a non-singular model of X satisfies

M < (n=1)(g—1)+D(g+n)/n
where g is the genus of X.
Returning to the situation of the theorem, let x, y be affine coordinates

)*1 by (x, y) = (x, y,

xX2oxp v XM V™) in affine coordinates. In this case D = md, and this
embedding is not conlamcd in a hyperplane, so we can apply the above
bound if D < p. Now the number of singular points of X is bounded by
(d—1)(d-2)/2—g, hence for m <d and D < p we get

in the plane. If m < d, we can embed X in P", n = (m+2
2
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dw—ﬂ+Dm+m
2 n

N <(n—-1)

with n = fm;-z)*l, D =md.

If we take now m = [(g/d)""*], the conditions m <d and D < p follow
from the hypotheses ¢'/* <d <q and g = p, and the result stated follows
immediately.

(i) is just Theorem 0.1 of [S].

Applying item (i) of the theorem to f*(u, v) =0 when it is absolutely

| i
irreducible, it follows that r(f) > 3(”%1) , if g is prime and ¢
<gq. In this range this bound is better than those mentioned above.

Whenever (ii) applies, it gives

U «p—1

2q*
(n+1)g+(n—1)(n—2)

r(f) =

which improves on Uchiyama’s bound for n > ¢'/?/2. _

We shall now study when the conditions f*(u, v) absolutely irreducible
and d?v/du® #0 on f*(u,v) =0, hold. Consider the following condition
on f:

(¥} f' has n—1 distinct roots and f is injective on the roots of f".

This condition already appears in [1]. There they prove that (x) is
sufficient for the Galois group of f (x) = y over F,(y) to be the full symmetric
group ([1], Lemma 3). They also remark that () is equivalent to the non-
vanishing of the discriminant in y of the discriminant in x of f(x)—y. The
aforementioned discriminant is a function on the coefficients of f, which does
not vanish identically if p # 2 and p ¥n, where p is the characler.istic of F,.
Hence (%) is a generic condition.

Concerning condition (x) we shall prove

PROPOSITION. Suppose that the characteristic of F, is not 2 and let
f(x)eF,[x] be of degree n> 2.

(i) f*(u, v) =0 is non-singular if and only if f satisfies (*).

(ii) If f satisfies (x) then, on f*(u, v) =0, d*v/du® # 0.

Proof. (i) Let p be the characteristic of F,. If p yn it is easy to see that
f*(u,v) =0 has n—1 points at infinity, hence they are all non-singular
points. If p|n it is also easy to see that the point at infinity on the line u = v
is a singular point of f*(u, v) = 0. Also condition (x) implies that p fn, for
otherwise f” would have degree at most n— 2. This takes care of the points at
infinity.
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For the affine points, we have:

I* _w—0)f () —(f ()~ ()

ou (u—v)? )
I* _ —w=9f"0+fW)—f(v)
R (u—v)? '

A point (uo, vo) With ug # vg is in f*(u, v) = 0 if and only if f (o) =1 (vy)
and is a singular point if and only if 1’ (uo) = ' (vo) = 0, in which case [ is not
injective on the set of zeros of f'(x) = 0.

Let now (u, up) be a point of f*(u, v) = 0. Changing variables, x to
X+Up, U 10 u+tuy, v 10 v+uy, we may assume that uy =0 and f'(0) = 0. If
f(x) =) o, then a; =0 and

i=0
S*(u, v) = oy (u+v)+oy (W +ur+v?)+ ...

Hence (0, 0) is a singular point of f* = 0 if and only if a, = 0, which is
equivalent to x = 0 be a double root of f'(x) = 0. This proves part (i) of the
proposition. i

(i) On f*(u, v) = 0 we have f(u) = f(r), hence S'(u) = f'(v)dv/du and

S W) = £ () (dv/du)* +f (v) d>v/du?.

If d’v/du* =0 we conclude that f”(u)-f(v)? = f"(v)f" (u)?>, whenever
S (u) = [ (v). Suppose [ satisfies (). Let « be a root of f’(x) = 0. Since (%)
holds there exists B # a with f(B) = f(«). Then

S "@f B = f"(B [ (2)?=0.

Iff"(@) =0, is a double root of f’(x) = 0, contradicting (). If f'(f) = 0
then fis not injective on the roots of f'(x) = 0, again contradicting (). This
completes the proof of the proposition.

Remarks. 1. A non-singular plane curve is necessarily absolutely
irreducible, since two irreducible components would necessarily meet at a
singular point. Hence f* =0 is absolutely irreducible when (*) holds.

2. It follows from item (ii) of the proposition that item (ii) of the
theorem holds for f* whenever (x) holds for S and, in this case, we have the
corresponding bound on r(f).
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