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Using (2) for i =k—1 and i =k, this gives
k=3 = k-3 k—2 k=2
i E ﬁj = Tk (yk-—l_ Z ﬁffk_”)‘_ Z ﬁ:‘t] 2P Z ﬁ&m >0,
i=1 i=1 i=1 i=1
in analogy with (2). However, we do not know if (8) corresponds to the form
(1) for the basis (7), where we now need

k=3 "
9 e =7ya-,— 9, P;a; y=(—-).
j=1

*

regular by Ap 3

Equating the two expressions for a,, we get

k=3 k=3
Ja-2+ Y Biay=ya—+ Y Bja;.
i=1 =1

The left-hand side is a regular representation by the pleasant basis 4,_,, and
thus has a minimal coefficient sum:

K-3 k-3
F+ Z B;<y+ z Bi,

j=1 i=1
k-3 _ k=3

= Bi=i- ) ﬂj>0-
j=1 i=1

This shows that (2) is satisfied for the form (9). Since A4,_, is pleasant, so is
also the basis (7), and the Theorem is proved.
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A simple construction of minimal asymptotic bases
by

Xing-DE Jia (New York, N. Y.) and MeLvyN B. NatHanson (Bronx, N. Y)

1. Introduction. Let N be the set of all nonnegative integers. A subset A
of N is called an asymptotic basis of order h if every sufficiently large integer
can be represented as a sum of h not necessarily distinct elements in 4. An
asymptotic basis A of order h is called minimal if no proper subset of 4 is an
asymptotic basis of order h. St&hr [4] introduced this concept of minimality.
Hirtter [1] showed by a nonconstructive argument that there exist minimal
asymptotic bases. Nathanson [2] constructed the first nontrivial examples of
minimal asymptotic bases of order h = 2. In this paper we give a simple and
explicit construction of minimal asymptotic bases of order h for every h = 2.
In particular, it is proved that if h > 2 and 1/h < a <1, then there exists a
minimal asymptotic basis of order h whose counting function has order of
magnitude x*.

2. Results. Let W be a subset of N. Denote by .#*(W) the set of all
finite, nonempty subsets of W. Let 4(W) be the set of all numbers of the
form ¥ ;. 2/, where F e .7*(W). Note that @ ¢ #*(W), hence 0¢ A(W). For
any real number x, let [x] denote the greatest integer n such that n < x, and
(x> the least integer n such that n > x. If A is a subset of N, let hA denote
the set of all sums of h elements of A. Let A(x) denote the counting function
of A.

THeoreM 1. Let h > 2, and let t = (log(h+1)/log2). Partition N into h
pairwise disjoint subsets W, ..., W,_, such that each set W, contains infinitely
many intervals of t consecutive integers. Then

A = A(Wo}u ven UA(”’;'_.].)
is a minimal asymptotic basis of order h.
The proof uses the following two lemmas of Nathanson [3].

LemMa 1. (a) If W, and W, are disjoint subsets of N, then A(W)NA(W))
=0.
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(b) If W = N and W(x) =ax+0(1) for some a €(0, 1], then there exist
positive constants ¢, and ¢, such that -

g x*<A(W)(x) <cx*
Jor all x sufficiently large.

(c) Let N=W,uW,u ... UW,_; be a partition, where W, £ @ for r = 0,
1,..., h—1. Then

A =AWouA(W)u ... VA(W,_,)

is an asymptotic basis of order h. Indeed, hA = \neN: n= h} and h(Au|0})
= N.

LEMMA 2. Let w,, ..., w, be s distinct nonnegative integers. If

e

L
2\"; = Z 2.1:‘1',
i=1

i

]

1

where x,, ..., X, are nonnegative integers that are not necessarily distinct, then
there is a partition of \{1, 2, ..., t} into s nonempty sets J,, ..., J; such that
M= Y 29
Jed;
fori=1,2,..., 5.

Proof of Theorem 1. By Lemma 1, the set A4 is an asymptotic basis
of order -h. We: must show that A is minimal.
Let aeA. Then ae A(W,) for some r. Without loss of generality, we can

assume that a €A (W,). Then there is a finite, nonempty subset F = W, such
that

a=Y 2,

ieF

Let M denote the largest element of F.
Let a, = a. We shall construct positive integers a, for r =1, 2, ..., h—1.
Choose m(r)eW, such that m(r) > M and the r consecutive integers m(r),

m(r)+1, .=, m(r)+1—1 belong to W,. Let F, be any subset of (M, m(r))nW,.
Define a, by

mir)+1—1
(1) a=3y 2+Y 2+ Y 2
icW, ieF, i=mir) .

i=M
Then a,eA(W,) and

2!"("] g a, < 2M(ﬂ+l_

Let n =ao+ ... +a,-,. We shall show that this is the unique representation
of n as a sium of h elements of A.

Minimal asymptotic bases 97

Suppose n=bo+ ... +b,_,, where b €A for r=0,..., h—1. Then
b, € A (W, for some k(r) [0, h—1]. Suppose there exists se'l, 2, ..., h—1]
such that b,¢ A(W,) for r=0,1,..., h—1. By Lemma 2 there are subsets
U, = W, such that

mis)+1—1 . h=1 .
S #=3y T2
i=mis) r=0iel,
Clearly, each i in U, is less than m(s). It follows from the definition of ¢ that
mis)+1—1 . h=1 )
(22— = Y 2'= Y X 2
i=mis) r=0 iel,
i <mis)
mis)— 1
<h Y 2 < h2me < 2" (2 1),
i=0 -

which is impossible. Therefore, after suitable renumbering, b,€A(W,) for r
=1,2,....,h—1.

Next we show that by eA(W,). Suppose bo¢ A(W,). W_e may assume
without loss of generality that by € A(W,). Since b,eA(W,), it follows from
Lemma 2 that there exist Vo =W, and ¥, =W, for r=1,2,..., h—1 such
that

h=1 h=1
@ YT Y2=a+¥ L2
r=0ieV, r=1ieW,

i<M
Since i <M for all i€()!_, ¥, it follows that

L=y T

r=0ieV, ieVy r=1ieV,
h-1 h=1 h=-1
i i M i
SY2+Y ¥ 2<2Mt+ Y Y 2<ga+y ¥ 2,
ieVg r=1ieW, r=1ieW, r=1ieW,
i<M i<M P<M

which contradicts (2). Hence, by €A (W,). Since the representation of an
integer as a sum of distinct powers of 2 is unique, it follows that a, = b, for r
=0,1,..., h—1. In particular, b, = a. This completes the proof.

CoRroLLARY 1. Let N = WyuW, be a partition such that each W, contains
infinitely many pairs of consecutive integers. Then A = A(WouA (W) is
a minimal asymptotic basis of order 2.

CoroLLArY 2. Let N = W,uW,uUW, be a partition such that each

W, contains infinitely many pairs of consecutive integers. Then
A = A(Wy)UA(W))UA(W,) is a minimal asymptotic basis of order 3.

These two corollaries are immediate consequences of Theorem 1 with
ti=2 :
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LEmMMA 3. Let t > 2 and h> 2. Let a,, ..., oy—y be positive real numbers

such that ag+ ... +a,_, = 1. Then there exists a partition of N in the form N
= WouWiu ... UW,_, such that, for r =0, 1, ..., h—1,

(i) W (x) =a,x+0(1);
(i) W, contains infinitely many intervals of t consecutive integers;
(ii) In W,, the gaps between successive intervals of length t are bounded.

Proof. For any integer n > 1, define a,(n) and R, by

a,(n)=[na,] for r=0,1,...,h—1,

h—1
Rn == Z a,.(n).

r=0
Let Ru}iZ; be a maximal strictly increasing subsequence of (R,!Z,. It
follows from ¥''~ '@, =1 and the definition of R, that
3) n(k) <n(k+1) < n(k)+h,
4 Rury < Rug+1) < Rpgy+h,
(5) Ry < n(k) < Ry +h,

d, (k) = a,(n(k+1))—a,(n(k)) = 0 or 1.

Let Ruus1y—Ruyy=u. Then thére are u distinct integers r;e
10, 1, ..., h—1) such that

d (k)= ...=d, () =1.
The remaining h—u integers r,€!0, 1, ..., h—1} satisfy
dl‘u+ 1 (k) = e dl‘,.(k) = 0’

Let ¢ > 2. Define
Wox = [Rygy+i=1t, Ry +)t—1] for i=1,2,..., u:
Wx=0 fori=u+l, .., h

For each r=0, 1, ..., h—1, we define
(6) H‘:-=kU1 W;.l-

It is clear that N = W,u ... UW,_,, that W,nW, = Q for i # j, and that each

W, contains infinitely many intervals of length ¢. It follows from «, > 0 that
(iii) holds.
Let x > 1. Suppose that
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Then, by (4) and (5), we have
|x—tn(k)| <th,
|x—tn(k+1)| < 2th.
Therefore, for each r=0,1, ..., h—1,
W,.(x) < a,(n(k+1))t = [n(k+1)a,]t
<tn(k+1)e, < xa,+2the,,
= a,(n(k)t = [n(k)a,]t

> tn(k)a,—t > xot,—tha,—t,

W, (x)

and so W,(x) =a,x+0(1). This completes the proof.

THeorem 2. For every a such that 1/h<a <1, there is a minimal
asymptotic basis A of order h such that

(7) e x* < A(x) <cx*
Jor all sufficiently large x.

Proof. Let ap =«, and define a, = (1 —a)/(h—1) for r=1,2, ..., h—1.
Then oo+ ... 4oy, =1 and ay=a, >0 for r=1,2, ....,h—l. Let
t = {log(h+1)/log2>. By Lemma 3, there is a partition of N in l_he form N
= Wyu ... UW,_, such that each set W, contains infinitely many intervals of
length ¢ and

W.(x) =a,x+0(1).

Theorem 1 implies that 4 = A(Wp)u ... UA(W,_,) is a minimal ‘asymptotic
basis of order h, and Lemma 1 implies that (7) holds for all sufficiently large
x. This completes the proof.

THeoreM 3. Let h= 2 and let t = {log(h+1)/log2>. Let og, ..., o, be
positive real numbers such that ag+ ... +o,_; = 1. Let N=Wu ... uW,_,
be a partition satisfying conditions (i), (ii), and (iii) of Lemma 3. Let A
=AWou ... UA(W,_,), and let a€A. Define E,=hA\h(A\a}). If
acA(W) and a =a,, then

E,(x) > x' ™=,

Proof. Condition (iii) implies that there is an integer Lsuc!‘n that in
every interval (y— L, y— 1] there are t consecutive integers belonging to W,
for each r=0,1,..., h—1.

Let aeA. Without loss of generality we can assume that a e A (W,). We

must show that E,(x) > x .

Let 2™ be the largest power of 2 that appears in the binary representa-
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tion of a. Let x be a large positive number, and let y = (log x)/log 2. The
interval (y—L, y—1] contains integers m(1), m(2), ..., m(h—1) such that
m(r)+je(y—L, y—1]1nW, for r=1,2,...,h—1 and j=0, 1,...,t—1. Let
F. (M, y—L]nW,. Define a, by (1). Let n=a+a;+ ... +a,-,. Then
n <2’ = x. The proof of Theorem 1 shows that nehA\h(A4\ |a}) = E,, and
that different choices of the h—1 sets F,, ..., F,_, lead to different numbers

n. Since there are 2”7 7¥"™ choices of the set F,, it follows that the

number of n determined by F,, ..., F,_, is

h=1 e h=1
l—l 2“’,-0‘ L)y- W (M) > 2-M2}:,=,W,tr~m

r=1

h—1
=2"M2o¥,_ @y+0o(1)

h-1 - -
> (2)r=1% = ()" 70 = x' %0,
Therefore, k,(x) > x'~“°. This completes the proof.
An asyrnhp_t?lic basis A of order h is called strongly minimal if
E,(x) > (A(x))’ ~ for each aeA and for all x sufficiently large.

CoroLLARY 3. Let A satisfy the conditions of Theorem 3. If a, = 1/h for r
=0,1,..., h=1, then A is a strongly minimal asymptotic basis of order h.

Proof. Since A(x) < x'" the result follows immediately from The-
orem 3.

3. Open problems

1. For h=2, find all partitons N=W,uW, such that A
= A(Wy)uA(W,) is a minimal asymptotic basis of order 2. Nathanson [3]
has constructed an example of a partition of N into two disjoint sets that
does not produce a minimal asymptotic basis of order 2.

2.If N=W,uW,u ... uW,_, is a partition such that weW, implies
either w—1€eW, or w+1€eW,, then is A = A(Wp)uAd(W)u ... uA(W,_,) a
minimal asymptotic basis of order /?

3. It would be interesting to extend the results of this paper to asympto-
tic bases constructed from partitions of N by means of g-adic representations
for g = 3.
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