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1. Introduction and statement of results. For a fixed integer k > 2 the
(general) Dirichlet divisor problem consists of the estimation of the function
(1.1) A, (x) = Y di(m—Resx*{*(s)s™' = Y dp(n)—xPy_, (logx).

nEx s=1 n€x
Here d, (n) is the divisor function which represents the number of ways n may
be written as a product of k (=2, fixed) factors, P,_,(¢) is a suitable
polynomial of degree k—1 in t, and {(s) is the Riemann zeta-function. The
function 4,(x) in (1.1) is the error term in the asymptotic formula for
Y. di(n), that is, 4,(x) =o(x) as x —o0. Following standard notation, we

n<x
define o, and B, as the infima of positive numbers a, and b,, respectively, for
which
(1.2) 40 <x™,  [4F(dy <x' T

1
It is known that (k—1)/(2k) < B, < «, for all k > 2, and it was conjectured a
long time ago that o, = B, = (k—1)/(2k) for all k > 2. For the time being the
proof of this conjecture is hopeless, since f, = (k—1)/(2k) (for all k > 2) is
equivalent to the Lindelsf hypothesis that {(3+it) <t* (see Ch. 13 of [8)]).
Many authors have given upper bound estimates for o, and S, and for a
comprehensive account of problems involving 4,(x), we refer the reader to

Ch. 12 of [8] and Ch. 13 of [5]. The latter contains the sharpest known
bounds, which for k > 4 are as follows:

o < (3k—4)/(4k) (4 < k < 8), a9 < 35/54, a; < 41/60, a;, < 7/10,
(13) o <k=2DNk+2)(12<k < 25), o < (k—1)/(k+4) (26 < k < 50),
o, < (31k—98)/(32k) (51 < k < 57), oy < (Thk—34)/(7k) (k = 58).

* Some of the results of this paper form part of the second author’s doctoral thesis at
Université Laval, Québec, Canada, 1987.
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Moreover, for k very large, the last bound is superseded by

(1.4) o, < 1—%(Dk)~23,
where D > 0 is such a constant for which
(1.5) C(o+it) P12 10g23t (1 >4, 1/2<0< 1)

holds. From the work of H.-E. Richert [6] it is known that D < 100, and
several authors (in unpublished works) have obtained smaller values of D.
Explicit values of f are also contained in [5], and they are

B =(k—=1)/(2k) for k =2,3,4; ' Bs < 119/260 = 0.45769...,
Be <1/2, B, <39/70 =0.55714...

It is possible to obtain upper bounds for other B,’s also, but a general
formula seems complicated. This is due to the fact that the bounds in
question depend on the functions M (A4) and m(o), which are connected with
power moments of {(s). These functions are defined as follows: For any fixed

A > 4 the number M(A) (> 1) is the infimum of all numbers M (> 1) such
that

(1.6)

. .
(ICG+in*de < TM**
1

for any & > 0. Similarly, for 1/2 <o <1 fixed we define m(c) (> 4) as the
supremum of all numbers m (> 4) such that

T
[[E(e+it)mdt < T'**
1

for any ¢ > 0. Upper bounds for «, and f, in (1.3) and (1.6) were made in [5]
to depend on upper bounds for M(4) and lower bounds for m(o), especially
on the latter. Thus in order to obtain new bounds for a, and f, we shall first
refine the technique of Ch. 8 of [5] and obtain new lower bounds for m(o)
(see § 3). Our results concerning o, are contained in

THEOREM 1. @9 <27/40 = 0.675, «,q <0.6957, a,, <0.7130, 03
<0.7306, «,4 <0.7461, a;5 <0.75851, «;6 <0.7691, a;; <0.7785, a,e
<0.7868, 2,9 <0.7942, a,, < 0.8009, o, < (63k—258)/(64k) for 79 < k < 119,
o < 1—165/(28k) for k =120, and if (1.5) holds, then

(1.7) o < 1—-4-223(Dk)=23,

The bounds of Theorem 1 improve, for k > 10, all the corresponding
bounds in (1.3), which give e.g. a;o < 0.68333..., a;, < 0.7, a;, < 0.71428...,
a3 < 0.73333..., a,4 <0.75 etc. Likewise (1.7) improves (1.4). As in [5], the
bounds for «, are not the optimal ones obtainable by our method, and small
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improvements could be attained by further elaboration. It will also transpire
from the proof of Theorem 1 that new bounds for «, in the range
21 < k <78 may be obtained, but a general formula embodying the new
estimates would be cumbersome, and it is for this reason that we omit it. We
are also going to prove several new bounds for f,. This is

THEOREM 2. Bs < 0.45625, B, < 0.55469, By < 0.60167, By < 0.63809, B,
< 0.66717, and if (1.5) holds, then

(1.8) B < 1-3(Dk)=2".

New bounds for f, when k > 11 may be also derived, but as in the case
of upper bounds for «,, a general formula appears to be complicated. Note
that ¢ > 4223, so that the upper bound in (1.8) is smaller than the upper
bound in (1.7).

Our last result concerns asymptotic formulas for the mean square of
4, (x) (see Ch. 13.6 of [5]). If we set

(1.9) R, (x) = idf(y)dy—(ﬂk—?.] W ()l e R
. 1 n=1

then it was established by K.-C. Tong [9] that under certain conditions,
which involve power moments of {(s), R, (x) is of a lower order of magnitude
than x3*~ Y% In particular, it is known that

R,(x) < xlog®x, Rj(x) <x!4°*e
It was stated in [5] that R, (x) < x'3*~3/(20=2 cannot hold for any é > 0. We
shall sharpen this result by proving

THEOREM 3. If R, (x) is defined by (1.9), then for k = 2 fixed

(1.10) Ry (x) < x3*~ M2 (Jog x)ik=113=2012k
x (log log )™ exp (— D (log log log x)'/2)

cannot hold if B, = (3k—3)(klogk—k+1)/(2k)+3k—3 and D > 0 is a suitable
constant.

It was conjectured in [5] that R, (x) < x®*~3Zk*e for k > 2, which in
view of Theorem 3 would be essentially best possible. This conjecture, if true,
is very strong, since by Lemma 2 of Section 5 it immediately implies the
classical conjecture o, = (k—1)/(2k) for k = 2.

2. Estimates of o, and 8, when k is large. First we prove (1.7) and (1.8),
which are of interest when k is large. These estimates do not depend on
power moment estimates for {(s) (i.e, M(A) or m(c)), but only on (1.5) (see
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Ch. 6 of [5] for a derivation and discussion of (1.5)). We shall start from the
standard Perron inversion formula (see the Appendix of [5]) applied to

A@s) =) = Z dy(mn™*  for cr-—-Rcs>l.

We have, for X* < T < X' 4 X <x< X, b=1+¢,
l b+iT

Y dm) === [ (*E)x*s 'ds+O(X'+ T,

n<x 2y Zip
Now we replace the segment of integration in the above formula by the
segment [0 —iT, 0+iT], where 1/2 < ¢ <1 will be suitably chosen later. We
pass over the pole s =1 of the integrand, which gives rise to the main term
in (1.1). Writing G = XT"! it follows that

X/G c+ll

Q1) A(x) =(2n)"! [C"(a'-i-:r)x
-X/G

1+e

+0(GX*+G [ [{(@+iXG™ ) x*"!dy).

Suppose now that G satisfies, besides X* < G < X' ¢, the additional condi-
tion
1+e

(2.2) [ K+iXG™ ) X*~'da < X*.
We use then (1.5) to obtain from (2.1)

X/G
(23)  4(X) < XE(G+X° | 200214 & X*(G+ X7 (X/GYO ~ %3,
1

We choose G so that the last two terms in (2.3) are equal. Thus G = X'~/
where

f(o) =(1—0)/(1+kD(1—0)*?),
hence f'(¢) =0 for
0 =0, =1—223(Dk)~ 23,
We have
1= f(oo) = 1-42%*(Dk)= 2,

hence (1.7) follows with ¢ = o, in (2.1), provided that (2.2) holds. To see this

note that {(c+it) < log®?|t| uniformly for ¢ > 1, and it follows from (1.5)
that

max [{(@+iXG Yk X*"! < max {(X/G)P-o¥? xa- ‘}log"x <X

opSasl ogSasl
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This is because

max exp {(§-2%3(Dk)'P(1—a)**+a—1)log X} < 1,
ggSasl

since
§-22"3(Dk)”3(1 —a)3’2+a'—l <0
reduces to
1>a>1-9-2"%3(Dk)~283,
and we have
a>0,=1-2% (Dk)‘m >1-9-2"43(pk)~23,

This proves (1.7).
The bound for f, given by (1.8) will follow from

X
(24) I= [ Af(x)dx < X'*21*% pn=1-%(Dk)~?P,

X/2
on replacing X by X2~/ and summing over j=0,1,2,... We use (2.1),
supposing again that (2.2) holds. This gives

X/G xa+ll 2
I < X' G2+ [ | C“(a+it) t| dx
x/2 1-x6
XIG X/G rk k
=X1*G24 | Clo+it) (o~ "“]( [ X200 ) dt du.

~x6 -xc (o+it)(o—iu) i,
Using |ab| < $(la?>+|b]?), it further follows that

1422 1420 e S 2k (2 p2h—1 A du
(25) 1 €« X'**G*+X _[ [ (a+it))** (e*+1t%) _[ — |dt
-XIG _leGl‘l'Ir_ul

. X/G
KX'GPH X log X (14 [ [[(o+in)* e dr)
2

¢~g){1+;G.z+)‘r1+zu+z(l +x"ftzmu~o)3i1-zdt)
2

<& Xe (XGz'f‘ Xl. +2a+X20+ 2Dk(1 _6}3_!2 Gl - ".’.Dl.{l—s):”z),
provided that '
(2.6) 2Dk(1—-0)** >°1.

This time we choose G to make the first and the third term in the above
estimate equal. We obtain

G=X'"9,  g(o) =2(1-0)/(1+2Dk(1—0)*?),
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so that g'(6) = 0 for 0 = ¢, = | —(Dk)~%?, and (2.6) holds. Hence we choose

G=X"""" where 1—g(a,) =, as given by (24). Since o, <1—g(a,),
(1.8) follows from (2.5), provided that (2.2) holds. This will in turn follow
from

- —ay3/2 s
max :{XG I}DHI a3/ Xe l:
gy =asl

= max exp [((DK)"(1—a)* +a—1)log X < 1.

oy <asl
The inequality
$DK)'P(1-a)*?*+a—-1<0
reduces to 1 > a > 1—3(Dk)"%3, and we have
1>a>0, =1—(Dk)"%3 > 1-3(Dk)~ 23,
so that (1.8) is proved.

3. New bounds for m(o). In this section we shall derive some new bounds
for the function m(o) (defined in Section 1), which will lead then to bounds
for o, and B, in Theorem 1 and Theorem 2. We shall refine the method
which is exploited in Ch. 8 of [5]. Therein one of the key ingredients in
estimating m(o) was the following

Lemma 1. Let t; <... <ty be real numbers such that T <t, <2T for
r=1,...,R and |t,—t|>1og*T for 1 <r#s<R.If

TP<vV<| Y amn ™"

M<n<€2M
where a(n) < M* for M <n<2M, 1 <« M < T€ (C > 0 a fixed number), then
R <T¢(M?~ 20y~ 24TV fo)y,

where
2/(3—40) Jor 1/2 <a < 2/3,
10/(7—80) for 2/3 < o < 11/14,
(3.1) f(o) =< 34/(15—160) for 11/14 < o < 13/15,
98/(31—-320) for 13/15 < ¢ < 57/62,
5/(1—o0) Jor 57/62 <o < 1—s.

~ We shall indicate how for ¢ relatively close to 1 the last expression for
f (o) may be replaced by a better one. Namely, one can take

I — —
2(1-2+2 - 1—-;—15_0& _;
2I+1_2

va - Je=gtaas 72

Some new estimates in the Dirichlet divisor problem 247

for any /| =3,4, ..., and also for k>3

k k
(3.3) f{o‘}=-1TU- for l—mgagl—ﬁ
for any fixed &£ > 0. Therefore the last value of f (o) in (3.1) may be replaced
by an arbitrary number of values furnished by (3.2) for / > 6, plus a value of
f (o) furnished by (3.3) with a suitable k. The proof is analogous to the proof
of (3.1) given in [5], and therefore the details will be omitted. If as usual one
defines

plo) =inf jc = 0: {(o+it) <|t|°}

for a given real o, and c(o) is an upper bound for (), then it was shown in
[5] that f (o) of Lemma 1 may be determined by the equations

(34) 2(0)+1+60—2(1+c(6)o =0
_2(1+c¢(0)
(3.5) S (o) =" @

Using the classical estimates (see [8]) u(o) < 1/(2L—2) for ¢ = 1-1/(2L-2),
L=2""' 1>3, and convexity of u(o) it follows that one may take

2-1_1=2"19 -1 [
(36] C{G)=W for I—mgﬁg l—m,
and similarly one can take
1-0 k
: = l—— <0<
3.7) c(9) p for %5 1
Substituting (3‘.6} and (3.7) in (34) and (3.5), we obtain (3.2) and (3.3),

respectively.

Wc are now going to bound the function m(o) for the values o = 33, 3,
1,2, 4 and }£. It was shown in [5], Ch. 8 that to obtain bounds for m(o) it
suffices to obtam bounds of the form R < T'**V ™™ where R is the
number of points t, (r=1,..., R) such that |t|< T, |t,—1,>1log* T for
1<r#s<Rand|{(c+it,) =V >0 for any given V. Moreover, by (8.97) of
[5] we have (with T* omitted for brevity)

(4-4a) -12 4(1 —a)(x+4) —4(1+ 2x+24)
R<TV"™ 2f“”+Tn+za|Vu+zaa+Tuz+4).1a 1+2x—-24) YZ+aha—1+2x—-22)

= R|+R1+R3,

say. Here f(o) has the same meaning as in Lemma 1, and (x, /) is an
exponent pair (see eg. Ch. 2 of [5] for the definition and properties of
exponent pairs). To avoid unwieldy expressions, we shall work primarily with




248 A. Ivié and M. Ouellet

the exponent pair (x, 1) = (3}, 23) = BABA* BA% B(0, 1) in the usual notation
of the 4- and B-process in the theory of exponent pairs, since we found this
exponent pair very convenient for our purposes

For ¢ =4} we obtain f(3}) =%, c(3}) =&, hence R, = TV 252 R,
= T26/47 = 240/47 & TV~ for V <« T2147x~ 3“0’ which is certainly satlsﬁed
for

27) 4 21 1905
¢ (-— =—S———, XS<—
40 45 " 47x-240 188
whence R, < TV 191329 With (x, i) = (4, 23) we obtain

R3 & Tl 144/1273 V—l!ZSO,"lZ?S < TV

=10.1329...,

for 4/45 < 129/(1273y—11280), which gives y < 50925/5092 = 10.000981 ...
and proves that m(33) > 10.000981 ... By a similar procedure we obtain for ¢
=5/7 (using ¢(3) = 1%) that m(3) > x for

177 34 14x+64
and for ¢ =3 (using ¢(3) = %) that m(3) > x for

; (?2 8(3+6x+24)
X=mn|—, ——
S5 144x+24

Taking (x, 4) = (7%, 18) and (}, 33) respectively, we obtain

. (210 14(5+10x+2)t])
X=M\—

5 133 3 2328
m (— 2 — = 12.0909 - =
) T 09.. m (4) 163 = 14.28220859..

Similar calculations with (x, 2) = (8, 33) yield m(3) > 26.881578..., m(3)
> 39.8181..., m(1%) > 93.5880... All these values improve the corresponding
ones in Ch. 8 of [5], and for intermediate values of ¢ one may use the
properties of m(c). Namely by Th. 8.1 of [5] one has, for 1/2< 0, <0 <0,

<,
m(o,)m(o;)(0,—0,)

(3.8) m(o) = ;
m(c,) (o, —o)+m(a,)(c—a,)

Fgrther slight improvements on the above estimates could be obtained by
using the recent algorithm of S. W. Graham [2] for minimizing certain

expressions involving exponent pairs. For values of o between 14/15 and 1,
we can use the bound

(o) = £(1~0) (%sag 1)
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and
R <« TV—f(0]+ T[Z-Zo]}(fta— 1) V—6H4-a—l)+ '1112-1261;‘(340‘— 15) V—3Bft34a—15)_
This is (8.99) and (8.100) of [5], and it gives R <« TV ™~ for

o ( 00-12 2380124
X = min f(U)-{4‘,_1)[1_0)‘(340—15)(1—“) '

Hence using (3.2) with | = 6 and (3.3) with k = 6 we obtain

258 for 14/15 < o < ¢y,
63 — 640
(3.9 m(o) =
300—12
—————— for oo <1—g,
(4o—1)(1—0)

where ¢o = 733 (1714 /1602) = 0.95056...

4. Proof of other bounds for o, and fB,. To obtain the remaining bounds
for o, in Theorem 1 we use

(4.1) o A(x) <x7TE

which is the estimate proved in Ch. 13.3 of [5]. Here 1/2 <o <1 is a
constant for which m(o) = k, where for m(c) one may take lower bounds for
this function, such as those furnished by Section 3 and convexity. All the
latter are easily seen to satisfy m (o) < 1/c(0), where c(o) is given by (3.6) and
(3.7), and this condition is necessary for (4.1) to hold. Using only m(33) > 10,
m(3) > 133/11 and the bound in (3.8) we obtain
UL .. I T V..

"> S81—6ddo 20S°ST
Setting the right-hand side equal to 11 and 12 and solving for ¢ we obtain
@y, <0.695652... and «,, < 0.712862... In general, from (3.8) and (4.1) we
obtain

k(m(ﬂ'zi0'2""("1)“1)_m(ﬂ'i}m(az)(ﬂ'z_al)
k(m(o;)—m(o,))

for 13 < k < 26, where o, = 5/7, 0, = 3/4 or o, = 3/4, , = 5/6. Hence from

(4.2) we easily obtain the remaining upper bounds stated in Theorem 1 for

13 < k < 20. It is obvious that, using the remaining values of m (o) calculated

in Section 3 and (4.2), one can improve all the bounds given in (1.3). In
particular, from the first bound in (3.9) one has

258
63— 640

4.2) o

(14/15 < 0 < ¢y),

m(a) =
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implying by (4.1)

(4.3) oy < -63}{64%‘35% (M9 <k<119).
Likewise for o > 19/20 = 0.95 we have (30c—12)/(d0—1) > 165/28, hence
m(o) > - (co<o<1-g),
28(1—g)
implying by (4.1)
449) w2 iz 120)

The bounds in (4.3) and (4.4) complete the proof of Theorem 1.
To obtain upper bounds for §, one may note that §, < o, = g, (k), if o,
satisfies

2T
(4.5 [ 1oy +in)**dr < T>~*
T

for some 6 = (k) > 0. This follows e.g. from Lemma 13.1 of [5], and was
used in the proof of Th. 13.4 of [5]. To prove fs < 73/160 we observe first
that, from m(27/40) > 10 and the functional equation for {(s), we have

27
[ IEE3+in)|*0de < T!1/4%e,
T

while
27

[ ILG+in)|'0dt < T4+
T

by Th. 8.3 of [5]. Combining the preceding estimates by convexity we obtain

2T

"' K’(o-+ir)110dt < T‘(129-|60¢],'28+¢ (13/40 -...‘<.‘ o é,_ 1!2)'

T
Since (129—1600)/28 < 2 for ¢ > 73/160, one obtains fs < 73/160 = 0.45625
from (4.5). For the time being it does not seem possible to improve the
bound B¢ < 1/2 of [5], but for k > 6 one can improve all the existing uppet
bounds for f, by using the improved estimates for m (o), which were derived
in Section 3. For k fixed let ¢ = c(k) be such a constant for which M (2k) <1
"+¢, and let gy = 0,y(k) > 4 satisfy m(o,) > 2k. Then we can show that

(c—1)ay+1/2
S

(4.6) Bi <
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Indeed, if

2c(0p—0)+20,—1
i B 0,
.

then F(3) = 1+c and F(a,) = 1. Hence by convexity
2T
[ K (o+in*dt < TFO* (1/2< 0 < 0),
T

and F(o) <2 for ¢ > (cop—0,+3)/c, so that (4.6) follows from (4.5).
Following the proof of Th. 8.3 of [5] and using the new bound
u(3) <9/56 of E. Bombieri and H. Iwaniec [1], we obtain

4.7) MQ2k) < 1+5%5k=3) *k=7),

whence ¢ = c(k) = 75(k—3). From the proof of the ;Jpper bounds for o, we
readily find that

0o(7) = 07461, 0,(8) = 07691, 0o(9) =0.7868, a,(10) = 0.8009.

It follows then immediately from (4.6) and (4.7) that
B, <0.554688..., Pg <0.60166..., Po <0.638088..., f;o < 0.667166...
and upper bounds for f, when k > 11 may be calculated analogously. |

5. Proof of Theorem 3. For the proof of Theorem 3 we need the
following

LemMA 2. For x* < H< x and k > 2 fixed we have uniformly
x+H

(5.1) 4()=H"' | 4,())dy+O(Hlog" " x).

Proof. We have

x+ x+H

H
H' [ 40 dy—-4(x)=H" [ (40)-4(x)dy

x+H

<Hlog" 'x+H™"' | Y di(ndy
x x<n¥y
x+H

<Hlog" *x+H "' | Y, di(mdy

x x<nsx+H

< Hlog" ' x.

4 — Acta Arithmetica L11.3
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Here we used (1.1) and the estimate

Y  di(m)<Hlog""'x (x*<H<X),

x<n€x+H

which follows from the work of P. Shiu [7].
We proceed now to the proof of Theorem 3. Suppose that we have

x

(5'2) [ Af (y) dy = Ak x(2k= 1)!k+ O(xlak~3}1{2k} Gk {x)),
1

where

Ay =@k=2"1n"2 Y @ (mn~EHDK

n=1

and G, (x) is a decreasing function for x > x,(k) such that log! % x < G, (x)
< 1. We use (5.1) and the Cauchy-Schwarz inequality. Then (5.2) gives, for
xX*< H<x,

(53) A2(x) <H! xT[H A2 (y)dy+ H?log?*~ 2 x
- H“A:((x+m‘2"‘”""—x‘3"‘""")
+0 (xC*~ 3 G, (x) H™* + H? log? ™2 x)
< X&~ Dk 4 Y(3K=3NE G, (x) H™' + H? log™~ 2 x.
Choosing '
H = x*~ (G, (x)log?~ 2 x)!/®
we obtain from (5.3)
(5.4) Au(3) < x*~ VI (1 4(G, (x) log** )113)
< Xk~ VICY (G, (x) log* ™ x)1P3.
On the other hand, it is known (see J. L. Hafner [3], [4]) that, for k > 2,
(5.5)  4(x) = 2, {(xlog x)*~ V2V (log log x)"* exp (— C (log log log x)'/2)},

where y, = (k—1)(klogk—k+1)/(2k)+k—1, C > 0. Comparing (5.4) and (5.5)
we obtain

(5.6) (logx)*~ Y (log log x)™ exp(— C (log log log x)*/?)
< (G (x) log* =1 x)'/3.
Thus if we choose

Gy (x) = (log x)**~ 13~ 20125 (100 Jog x)*™ exp (— D (log log log x)"/?)
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then G,(x) is decreasing for x > x,(k, D) and satisfies log' "*x < G,(x) <1,
but (5.6) is false with a suitable D > 0. Hence we obtain the assertion of the
theorem.
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