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1. Introduction. It follows from a result of Koksma that, if (f)%, is
sequence of real numbers satisfying some mild condition, for example |t;—1}]
20 for i+ j, where & is a certain positive number, then (t, 2)<, is dense
modulo 1 for almost every a €R (cf. [8]).

Characterizing the set of exceptional o's is, however, usually a more
formidable problem. One instance where this problem was solved is the
following. Call non-zero numbers 4, u rationally independent if ™ = " for
integers m, n implies m = n=0. A multiplicative semigroup is multi-par-
ameter if it contains two rationally independent numbers. Using this termi-
nology, we can state a result of Furstenberg [5, Th. IV.1] in the following
form.

THEOREM A. Let S be a multi-parameter semigroup of integers. Then S« is
dense modulo 1 for any irrational a.

Now let K be a real algebraic number field. Denote by K* the
multiplicative group of K. For A =K, let Q(A) be the subfield of K
generated by A. A generalization of Theorem A is

THeorem B [4, Th. 2.1]. Let K be a real algebraic number field and S a
multi-parameter subsemigroup of K* n[—1, 11 with Q(S) = K. Then Sx is
dense modulo 1 for every a¢K. If, moreover, S is not contained in the
semigroup of Pisot or Salem numbers of maximal degree in K, then Sa is dense
modulo 1 for every o # 0.

An analogue of Theorem B for multiplicative semigroups lying in the
field Q, of p-adic numbers was also obtained irr [4].

Our main theme is examining to what extent the aforementioned results
generalize to other local fields. Thus R, for example, is replaced by C; we are
given a subsemigroup S of K*, where K is a complex algebraic number field,
and want to find out whether or not S is dense modulo Z[i] for every
@ # 0 (or, alternatively for every a¢K). Theorem 2.1 provides sufficient
conditions for § to possess this property. Theorem 2.1’ is of a very similar
nature; here Z[i] is replaced by an arbitrary lattice in C, spanned by two
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numbers belonging to a certain complex quadratic extension of Q. Theorem
2.2 is an analogue of Theorem 2.1’ for semigroups lying in finite extensions of
Q,. It turns out, similarly to the special cases studied in [4], that the
conditions in our theorems are quite mild, so that “most” semigroups have
the property in question.

Section 3 deals with semigroups lying in local fields of finite character-
istic. Different phenomena are encountered here, and already in the simplest
cases semigroups satisfying the property in question must be quite large (see
Proposition 3.1 infra).

In Section 4 we study the question to what extent the conditions on S,
assumed in our theorems, are actually necessary. Some of these are shown to
be so, but we also give examples of semigroups having the required property,
yet not satisfying the conditions in question.

" Section 5 is devoted to the proof of Theorem 2.2. The proofs of
Theorems 2.1' and 2.2 do not differ in principle, but the latter is technically
more complicated, as extensions of an arbitrary degree have to be con-
sidered.

I am grateful to Andrew Pollington for many discussions related to the
contents of this paper.

2. Semigroups whose dilations are dense modulo 1. A set A = C is dense
modulo 1 (or, alternatively, dense modulo Z [i]) if for every zeC and ¢ >0
there exist aeA and geZ[i] such that |a—(g+2z) <e. We are looking for
the conditions under which the properties to be defined now, and versions
thereof in other settings, hold.

DeriniTion 2.1. Let K be a complex algebraic number field and § a
subsemigroup of its multiplicative group K* with Q(S) = K. § is an almost
DM, semigroup (resp. a DM, semigroup) if Sa is dense modulo 1 for every
x¢ K (resp. for every a # 0). (DM, —Dense Modulo 1.)

Denote C¢, = |z€C: |z] < 1}. A complex number 4 is called a complex
Pisot or Salem number if A is an algebraic integer, A¢ C<,, and all the other
conjugates of A, except for 4, lie in C¢, (compare with [10, p. 25, 34, 113]).
Let K be a complex algebraic number field. Put m =[K:Q], and let
0,, 0,, ..., 0, be the embeddings of K in C, #, being the identity and 0,
—complex conjugation. We denote by PS(K) the subset of K consisting of
all algebraic integers A€K such that 6,(4)eC¢, for 3 <i < m. Thus, PS(K)
contains all roots of unity lying in K and some, but not all, Pisot or Salem
numbers belonging to the field.

Lemma 2.1. PS(K) is a multiplicative semigroup.

The proof is straightforward (compare with [10, p. 33]).
For a multiplicative semigroup S < K* and keN denote by S* the
subsemigroup {s*: seS).
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Tueorem 2.1. Let K be a complex algebraic number field and S < K* a
multiplicative semigroup with Q(S) = K. Assume that:

(i) S is multi-parameter,

(i) S E Cqy,

(i) Q(S') = Q(i) for every positive integer I.
Then S is an almost DM, semigroup.

If, moreover,

(iv) S & PS(K),
then S is a DM, semigroup.

We now proceed to a more general setup. A set A = C is called a lattice
if it is of the form

A= mu+nv: mneZ)

where u, v€C are linearly independent over R. Given a subfield F of C, A4 is
an F-lattice if u,veF. A set A = C is dense modulo A if for every zeC and
&€ >0 there exist aeA and g €A with |a—(g+z)| <e. Given a multiplicative
subsemigroup § of K* with Q(S) = K, K being a complex algebraic number
field, and a lattice A, S is an almost DM , semigroup (resp. a DM , semigroup)
if Sa is dense modulo A for every a¢ K (resp. for every « # 0).

THeEOREM 2.1'. Let K be a complex algebraic number field, S = K* a
mu!ri;lt'i‘c_arfve semigroup with Q(S) =K, D a positive integer and A a
Q(\/ —D)-lattice. Assume that:

(i) S is multi-parameter,

(ii) S & Cqy,

(i) Q(S") =2 Q(\/—D) for every positive integer I.

Then S is an almost DM, semigroup. '

If, moreover,

(iv) S & PS(K),
then S is a DM | semigroup.

Now we shall state a p-adic analogue. Denote by Q, the field of p-adic
numbers and by Z, its subring of p-adic integers. Let E,, be a finite extension
of Q,, and put d = [E,:Q,]. E, can be realized as follows (cf. [11, Th. 54]).
There exists a number field E with [E: Q] =d, containing a prime ideal P
lying above the ideal pZ, such that the completion of E under the ‘B-adic
valuation is E, (hence the notation E.).

Denote by Z[1/a] the ring obtained from Z by adjoining 1/a to it. Any
¢ €Q, can be uniquely decomposed in the form & = [¢]+ {¢], where [E]€Z,
and {¢) €eZ[1/p] N[0, 1). Denote by T the circle group: T = R/Z. Let Z(p%)
be the subgroup of T consisting of all torsion elements whose order is a
power of p. Since Q,/Z, is algebraically isomorphic to Z(p®), we may view
i&] as an element of the latter. A set A = Q% is dense modulo 1 if the set
(x1), {x2), ooy (XD (x4, X3, ..., x5) €4} is dense in T, More generally, let
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®;, @,, ..., w; be an arbitrary fixed basis of E, over Q,. Denote this
(ordered) basis by A. Correspond to any x€E, its vector of coordinates
(%1, X3, ..., Xz) wWith respect to the given basis. A set A < E, is dense modulo
A if the set {(x;, X3, ..., X;): x€A) is dense modulo 1. Let K < E, be a
finite extension of Q. A semigroup S < K* with Q(S) = K is an almost DM,
semigroup (resp. a DM , semigroup) if Sa is dense modulo A for every a¢ K
(resp. for every o # 0). :

Denote by |-|, the p-adic norm on Q,, and also its extension to the
algebraic closure Q, of Q,. Put Ey <; = |x€Ey: |x|, < 1]. A number A€E,
is called a Pisot—Salem—Chabauty number if (i) A is an algebraic integer over
Z[1/p), (i) A¢ Ey <, (iii) all the conjugates of 1 over Q in Q,, which are not
conjugates of 1 over @Q,, are of norm not exceeding 1, and (iv) for any
embedding 6 of Q(4) in C we have |6(4)| <1 (compare with [10, p. 65]). If
K < E, is an extension of degree m of Q, let 6,, 6,, ..., 6,, be the embed-
dings of K in Q,, where 6y, 0,, ..., 6, are the restrictions to K of embed-
dings of E,, over Q, in Q,, and 6}, 05, ..., 6,, — the embeddings of K in C.
We denote by PSC(K) the subset of K consisting of all those numbers 4
which are algebraic integers over Z[1/p] and satisfy [6;(2)], <1 for
d+1<i<mand | <1 for 1 <is<m

THEOREM 2.2. Let A = |w,, w,, ..., ;| be a basis of E over Q, K = Ey a
number field and S < K* a multiplicative semigroup with Q(S) = K. Assume
that

(i) S is multi-parameter,

[11] S $ E\lt-.":l- i

(iii) Q(S") = E for every positive integer l.
Then S is an almost DM , semigroup.

If, moreover,

(iv) S & PSC(K),
then S is a DM, semigroup.

We shall prove this theorem in Section 5. The proof of Theorem 2.1" is
analogous (and simpler), and will thus be omiitted.

3. Semigroups in local fields with finite characteristic. Do the results of
the preceding section admit analogues in other local fields? We shall see in
this section that the situation in local fields of finite characteristic is quite
different.

Let F be a finite field, say F = GF(p?). F[x] denotes the ring of
polynomials (in one indeterminate) over F, F(x)—the field of rational func-

tions, F[[x]]—the ring | a4 x*: a,€F, k=0,1,...] and F((x)) — the
k=0

field of formal power series, namely Y a x*: n€Z, g €F, k=n,n+1,...}.

k=n
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The topology on F((x)) is given via the norm ||| defined by
Ifll=c" (f=D) ax*, a,#0)
k=n

where 0 <c < 1.
oo

Let H=! Y ax* a¢€F, k=0, +1,...]. Under formal addition of

k=—-w

power series H forms an abelian group. We may view the additive groups of
both F((x)) and F((x~!)) as subgroups of H. Each set D < Z gives rise to an
endomorphism 7, of H defined by

ED( Z akx")=2akx*.
. k=— o keD
Thus, for example, ny(F((x)) = xF[[x]] and my(F((x™")) = xF [x].
Let A = F((x™")). A is dense modulo F[x] if the set m_y(A) is dense in
x"!F[[x~']]. In other words, 4 is dense modulo F[x] if for any r e N-and

a0
b_y,b_s, ..., b_,€F there exists a power series  @ax*€A4 witha_,=b_,
k=~-r

for 1 <k <r. Ais dense modulo F[[x~']] if the set my(A), considered as a
subset of xF[[x]], is dense in it (or, equivalently, if for any reN and
r

by, bs, ..., b,€F there exists a power series ) a,x*€A with a = b, for
k=— o

1<k<r).

We shall now see that these two notions of density modulo a subring of
F((x~") are analogous to those of density modulo 1 in R and in Q.
respectively. In fact, in the first case the Dedekind domain Z is replaced by
F[x], the global field Q — by F(x), and the local field R — by F((x™1).
When Q is endowed with the spot |-|,, that is the equivalence class of the
usual absolute value, its completion is R; the completion of F(x) under the
spot |*|,, defined by -

Ifle =c 817902 £ f1f, 01, €F[x]

where 0 <c¢ <1, is F((x™')). (For more details regarding global and local
fields, spots, etc., see, for example, [12]) To explain the second asserted
analogy, let us interchange the indeterminates x~' and x. Thus, a set
A S F((x)) is dense modulo F[[x]] if n_n(A) is dense in x~'F[[x™']].
Again, Z is replaced by F[x] and Q by F(x), but this time Q is equipped
with the p-adic spot ||, and F(x) with the x-adic spot |-|,, defined as
follows. If f(x) = x" f; (x)/f2(x), where n€Z and f,, f, are polynomials nei-
ther of which is divisible by x, then |f]|, = ¢", where 0 <c¢ < 1. The comple-
tion of Q at |-|, is Q,; the completion of F(x) at ||, is F((x)).

We note that one can easily define the notion of density modulo a more
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general lattice, as done in the cases of C and of ¥B-adic fields. However, these
generalizations are unnecessary for our purposes.

Let K < F((x™')) be a finite extension of F(x). A multiplicative semi-
group S € K* with F(x)(S) =K is an almost DMy, semigroup (resp. a
DM,y semigroup) if Sa is dense modulo F [x] for every a ¢ K (resp. for every
a # 0). Almost DMy, -1, semigroups and DM gy,-1; semigroups are anal-
ogously defined.

Lemma 3.1, Let S be a subsemigroup of K* with Q(S) =K, where
K < F((x™Y) is a finite extension of F(x). Then S is an almost DMy
semigroup (resp. a DMy semigroup) iff it is an almost DM gy, -1y semigroup
(resp. @ DM g1y semigroup).

Employing the characterization of density of a set A modulo F[x] and
modulo F[[x~']] in terms of the blocks of “digits” appearing in various
elements of A, the lemma is easily proved.

The properties (i)<iv) assumed in Theorems 2.1-2.2 admit analogues to
the case at hand (for the definition and various properties of the analogues of
Pisot numbers in formal power series fields see [1], [6], [7]). Similarly to the
discussion in the next section, one can show that at least somewhat weaker
conditions on S are necessary for it to be a DM, semigroup (or almost
such). To examine whether these conditions are necessary, we consider the
simplest case, namely K = F(x) and S < F[x], corresponding to the one
encountered in Theorem A. Our results in Section 2 would suggest that,
provided S is multi-parameter, it is an almost DM semigroup. That this is
not the case we see by

ProposiTioN 3.1. If S < F[x] is finitely generated, then it is not an almost
DM semigroup.

Before turning to the proof, we need some information concerning the
action of polynomials on F((x™')). Let P€F [x] be a non-zero polynomial. P
gives rise to an endomorphism on F((x~')), which we denote by P also,
defined by

P(f(0) =P f(x), [feF(x™").

Since F[x] is clearly a P-invariant set, P induces an endomorphism, again
denoted by P, on the additive group of x™! F[[x~']]. It is easy to see that P
is surjective, whence it is measure preserving with respect to the Haar
measure u. (For the definition and properties of measure preserving transform-
ations, both in general and in the special case of group endomorphisms, see,
for example, [15]). Now suppose that P is actually a polynomial in x” for

a certain positive integer t, say P(x)=Q{x"'} for some QeF[x]. Set
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q = p'. Consider the set

-1
(3.1 A=Y agxt:a_;,=0j=1,2,...}.
k=—-w
Evidently, A4 forms a closed P-invariant subgroup of x~* F[[x~']] and u(A)
=0.

Proof of Proposition 3.1. Let S be the semigroup generated by the
(non-zero) polynomials Py, P,, ..., P eF[x]. Select a positive integer , and
define 4 as in (3.1). 4 is Pf-invariant for 1 <i <[ Put

q-1 . - -
U Ptpyi2 pTiA).

jl,jz ..... j,zo

Ao

Ao is a union of ¢' closed sets of zero measure, and hence it possesses the
same properties itself. Clearly, A, is P;-invariant for 1 <i < L It follows in
particular that Sx is not dense modulo F[x] for every a €A4,. Since A4, is
uncountable, this proves the proposition.

Remark 3.1. Taking in the proof larger and larger t's (not just t =1,
which suffices for the proof), we observe that, moreover, although the set of
o's for which Sa is not dense modulo F[x] is “small” in terms of Haar
measure (unless S < F), it is “large” in terms of Hausdorff dimension.

4. Examples. In this section we shall try to find out to what extent the
conditions (i}iv) in Theorems 2.1-2.2 are necessary for the conclusions of
those theorems to hold. For the sake of simplicity we shall emphasize the
situation with respect to Theorem 2.1.

Condition ‘(i): Let us recall first why this condition is necessary in
Theorem B (for more details see [4]). It was proved by de Mathan [9] and
Pollington [13] that, given a lacunary sequence (t,)i~, of positive numbers,
ie, a sequence satisfying t,.,/ty = g > 1 for each k, there exists a set of
Hausdorff dimension 1 of a’s for which 0 is not a limit point modulo 1 of the
sequence (f, o). From this one can infer that the condition for S to be
multi-parameter is necessary in Theorem B. Now call a sequence (z;);% in C
lacunary if |z, 4 1/z] = q > 1 for each k. It is readily observed that, provided ¢
is sufficiently large, there exist uncountably many dilations of (z,);<, which
are not dense modulo 1. We get accordingly

ExampLE 4.1. The semigroup S = {(10+i)": neZ) = Q(i)* satisfies con-
ditions (ii}iv) of Theorem 2.1, but is not even an almost DM, semigroup.

Thus, condition (i) is not superfluous in Theorem 2.1. However, we are
unable to show it is necessary. In fact, in [14] Pollington could only show
that, if z is an arbitrary complex number, then the set of &’s for which the
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sequence (z"a),=, is not uniformly distributed modulo 1 is “large”. (More-
over, to prove that the condition in question is necessary, one would have to
sholw that sets of the form |w*{™ k, n€Z), w being a root of unity and { an
arbitrary algebraic number, have non-trivial dilations which are not dense
modulo 1.) In the p-adic case an analogue of the result of de Mathan [9] and
Pollington [13] is not available even for lacunary sequences in Q,.

Condition (ii): This condition is obviously necessary in both Theorems
2.1 and 2.2.

Condition (iii): This condition is not necessary already in Theorem
2.1. Furthermore, neither of the weaker conditions

(iii") S" ER for every positive integer I,
and
(iii") Q(S) = Q(),

is necessary.

ExampLe 4.2. Let w be a primitive cubic root .of unity and §

-
=0*UQ*wuUQ*w” Then §* <R and Q(S)=Q(i\/3) 2Q() so that §
satisfies neither (iii’) nor (iii”), yet S is a DM, semigroup.

On the other hand, the condition in question cannot be omitted nor
even be relaxed to (iii”).

E}XAMPLE 4.3. The semigroup § = Q* U Q*i satisfies conditions (i), (ii)
and (iv) of Theorem 2.1, and also (iii”), yet it is not even an almost DM,
semigroup.

We do not know whether or not (iii) may be replaced by (iii’).

Condition (iv): With respect to this condition we have
ProrosiTion 4.1. Condition (iv) is necessary in Theorems 2.1-2.2.

. The key role in the proof is played by the following two lemmas, of
which only the latter will be proved.

LEMMA 4..1. Le{ K be a complex algebraic number field. Then for every
€ > 0 there exist infinitely many y €K such that Re(PS(K)y) <(—¢, ¢)(mod 1)
(where Re(A) denotes the projection on R of a set A < C).

LEMMA 4.2. Let Ey be an extension of degree d of Q, and K < E, an
algebraic number field with Q,(K) = E,,. Suppose that 5, =1, 1, ..., n4 is a
basis of E, over Q, satisfying trgyg, (m) =0 for 2<i<d. Let n;: Ey — G,
be the homomorphism taking any x€E, to the coefficient of n, in the
representation of x with respect to the given basis. Then there exist infinitely
many y €K such that n,(PSC(K)y) = (—¢, &) (mod Z,). -
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~

Proof. Take x e PSC(K) with |x|, > 1. (We do not need to show there
exist such x's, as otherwise PSC(K) is finite so that the lemma is trivial)) Let
6,,0,,..., 0, and 6,, 0, ..., 6, be as before Theorem 2.2. Take an increas-
ing sequence (m), such that for each d+l1<ism the sequence

(6; (x™)) ; converges in the normal closure of Ey/Q, and for each 1 <i<m
the sequence (6;(x™))i, converges in C. Set f = x™*'—x™ for some k.'We
can make all the numbers |6;()l,, d+1<i<m, and W;(B), 1<i<m,

arbitrarily small by choosing k sufficiently large. Let « e PSC(K). Expand af
with respect to the given basis of E, over Q,:

af=aym+ayna+...+an, (@, 8y ..., G,€Q)).

We shall show that {da,! is restricted to a small neighbourhood of 0 in T
independently of a. In fact, according to our assumptions concerning the n;’s
we have

U'E”,-le(aﬂ) = dal .
On the other hand

d m
4.1) tfaﬁgop(“ﬁ) = Z 0;(@p) = tl'x;o(aﬁ)" Z 0; () 6; (B).
i=1 i=d+1
The first term on the right-hand side of (4.1) is an ordinary rational number.
Writing

trjo(ah) = 3 0@ Gi(B)

we observe that, considered as a real number, it can be made arbitrarily close
to 0 by selecting k sufficiently large. The second term on the right-hand side
of (4.1) belongs to @, and, since it can be also made arbitrarily close to 0 by
taking k large enough, it may be assumed in particular to lie in Z,. Putting
y =df we now see that, in the expansion of ay with respect to the given
basis, the coefficient of 1, taken modulo Z, can be confined to an arbitrarily
small neighbourhood of 0, independently of a. This completes the proof.

Proof of Proposition 4.1. We shall deal only with the p-adic case.
Let us show first that we can pass from the given basis w,, @, ..., @ 10 2
basis 7y, 2, ..., s satisfying the conditions of Lemma 4.2 by means of a
rational transition matrix. In fact, we may certainly assume that , = 1, and
then, setting

1
n= CD,-—EI.I'E_;Q[CLFE), i = 2, 3, seay d

we arrive at a basis 1y, 12, ..., fla possessing the required properties. Let
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R = (r,j)}'.J-:l €M,(Q) be the transition matrix between the two bases, namely

Wy =TyM+rpn+...+rgn, i=1,2,..,d.

Denote by {_x,, X2, ...y Xg) (resp. (xy, x5, ..., x})) the vector of coordi-
nates of x €E, with respect to the basis w,, w,, ..., w, (resp. ny, 15, ... Na)-
We have (x}, x5, ..., . Xa) = (X1, X3, ..., Xg) R for every X€Ey. For ¢ >0 put

A, = \xeEy: x)€(—¢,¢) (mod Z,)).
Y

In view of l_,‘.amrna 4.2, for any ¢ > 0 there exist infinitely many numbers
;re@"{. for which PSC(K)y < A. It suffices therefore to show that, if ¢ is
sufficiently small, then the set

Bt = :(xl, x:, veny xd'): XEA:: E Q:,

1s not dense modulo 1. Select a positive integer ¢ such that gR e M,(Z).
Let n:'Qp — T denote the homomorphism given by 7 () = &1 for (f;Q
According to our assumptions, if ¢ < 1/2g, then the set B,-gR is not den:e.
modulo l,_and consequently m(B,)-gR is not dense in the d-dimensional
torus T". Since ¢R forms a continuous epimorphism of T, n(B,) is not dense
in TY either. This proves the proposition. 2

5. Proof of Theorem 2.2. Let S be a semigroup satisfying conditions (i)~
(i1). We have to show that if Sx is not dense modulo A for some o # 0. then
S g PSC(K) and « €K. We shall concentrate on the features of the ,prool'
which are particular to our case, only briefly sketching those already
appearing in [4].

L_et @: E‘_, — @, denote the mapping taking each xeE, to its vector of
coordinates with respect to the basis w,, w,, ..., ;. ¢ forms an isomor-

phism between the two Q,-vector spaces. Hence th i :
e e mapping y: Ey —>Mi(Q)

V(@) (@) =o(ax), a,xeE,

is well-defined. We may write y (a) = (y; (@)=, a€E,, for suitable Q-
linear transformations v, ;: E, — Q,. ;

G‘iven any positive integer g, the mappings ¢ and ¢ admit g-fold
exteilsmns ¢, and Y, defined as follows. If u = (u,, u,, ..., u,y €EY, where y

= Zl ujw; for 1 <i<gq, then
oo

Pat) = (Uyy, Uzgy ooy Ugyy oony Upgy Uzgy ...y ug) € Q9.

@, forms an isomorphism between the Q,-vector s 1
; : : paces E% and 9. The
mapping ¥, is defined via ¥ b

(e (D) (0, () = @ (Au), AeM,(E,), ueQs,
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and is readily verified to form a Q,-isomorphism between M,(Ey) and a
certain Q,-subalgebra of M,,(Q,). Extending the mappings ¥, ;, 1 <i, j <d,
to M,(E,) by letting them act on matrices entrywise, we get

Yi4(A) ... Yia(4)
Vo =|........... | AeM,(Ey.

Va1 (A) ... Yaa(A)

Restricting ¢, to M, (E) we obtain a Q-isomorphism between M, (E) and a
Q-subalgebra of M,,(Q). We shall subsequently denote ¢, and ¥, by ¢ and
iy, respectively.

If a €E, then the minimal polynomial of the matrix  (a) coincides with
the minimal polynomial of a over Q,. Consequently, the eigenvalues of ¥ (a)
are a and all its conjugates over Q, in the normal closure of the extension
E,/Q,. Fix an arbitrary a€E, of degree d over Q,, and let veE; be the
eigenvector of ¥ (a) corresponding to the eigenvalue a. Evidently, ¢ (b)v = bv
for every b €E,. The conjugates o =p, o2, ..., v of v over Q, are all the
eigenvectors of ¥ (a). Moreover, they form common eigenvectors of the whole
algebra Y (E,). Requiring to begin with that acE, we may ensure that
v cE4. In the following, given a vector y we shall denote by yi, y2, ... its
components. It may be assumed that of" = 1.

oo
Set K = ) Q(S"). Select a positive integer [ such that Q(S) = K, and
k=1

put § =S Let r = [K:E]. In the sequel, ¢ and ¢ will usually stand for ¢,
and ,, respectively.

According to [3, Lemma 4.2] and by the choice of S we can find an
so €8 such that Q(sy) = K for every positive integer n. Let f=x+c_ X!
4 ...+c, be the minimal polynomial of s, over E. Denote by t the
companion matrix of f:

0 1 0 0o |
0 0 1 0

e (T R R
0 0 0 1

|_—c0 —-C —C3 s =Cp-1 |

The vector u = (1, S, 53, ..., 5 ') forms an eigenvector of 1 corresponding
to the eigenvalue so. Its conjugates u'® =u, u?, ..., u" over E are all the
eigenvectors of 7, and the corresponding eigenvalues are all the conjugates of
s, over E. Set go = Y (7).

Let o: K = M,(E) denote the (unique) K-isomorphism from K into
M, (E) carrying s, to t. The minimal polynomial of oo =¥ (o(so)) clearly
coincides with the minimal polynomial of s, over @, whence it is also the
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characteristic polynomial of oy,. It follows that the eigenvalues of gy are s .

fmd all its co‘njugates over Q. We claim that the eigenvector of o, correspond-
ing to the eigenvalue s, is the vector w given by:

W= (U By Dy Uy coiy Oy llyy oony Uglly, Oglls, .., Uglt).

That is, we have to show that
(5.1) ao(w) = sow.

In fact, let 1<m<dand 1 <k<r. Write 1= (ty)on=1- Then

d r
(ao(w))[m—lir-i-k = Z Z !l/m,i(‘fkj)viuj-

i=1j=1
Since Y (ty)v =10 for 1 <j<r we get

(ao{w))(m_l}r-i'k e Z (
j=

_El Vm.i (tU} vf) Uy = Z ('J" (tij) '-’)m u;
= i=1

o = - . _
ki UmUj = Up (TU)y = U So Uy, = 5¢ Wim— 1)r+k

g B

j=1
which implies (5.1).

Choose:‘ an s €S such that the subsemigroup S of S, generated by s, and
sy, also ‘saushcs conditions (i)(iii) of the theorem. From our assumptioon it
follows in particular that Sa is not dense modulo A. Let o =y (e(sy))
Denote by X the multiplicative subsemigroup of M,,(Q) generaleld by ag aiu:i
o,. Let P1s P25 s Ph be all the primes dividing the denominator of Dsome
entry of either o, or o;. We may assume that p, =p. Put a=p;p,...p
: We now describe a certain compact abelian group which willI piay a:
1mpo.rtant role in the proof (for a more detailed survey see [2, Sec. II 1)
Consider first (the additive group of) RxQ, x...xQ,. Putting f(:;r c:on-'
venience p, = o0 and Q, = R, we can write this group as f] Q,,j. The set

=0

H = (b, —b, ..., —b): beZ[1/a])

h

forms a discrete subgroup of [] Q,,J. We denote by Q, the quotient group
j=0

h
h
j];]o QFJ/H and by n the projection of [] ij on ,. For any positive integer
i=0

h
g, the g-fold product of 7z, mapping [] Q:} onto 4, is also denoted by .
One can show that ©, is compact. =
Let us describe the rings of (continuous) endomorphisms of Q, and of
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h
4. Any ceZ[1/a] gives rise to an endomorphism 6. of [1 Q,, defined by
i=0

h
B, (Xos X1 --vs Xp) = (CXoy €X1, oovs €Xp)y (X0 X1y oevy X) € I1 Q,.
j=0

Obviously, 0, leaves H invariant, and therefore induces an endomorphism of

Q,. It can be shown that all the endomorphisms of £, are of this form. Thus

the ring of endomorphisms of Q4 is (isomorphic to) M,(Z[1/a)); the action
h

of CeM,(Z[1/a]) on [] Qf; is given by
=0

h
C(x()s Xiyversy xh) =(Cx0' Cxl! sery th)- (Xg, Xy eens xh)El—l Q:J.
j=0

We define a homomorphism =,: Q, =T as follows. Given y€Q,, we

h
pick a point x = (Xq, Xy, Xp) €] ij with 7m(x) =y and put m;(y)
j=0

h
=Y {x;}. It is easy to check that =, is well-defined.

j=0

h
Set t = (0, ¢(aw), 0, ..., 0)e [] Q‘,’,: For any s€S we have
i=0

¥ (e(s) () = (0, @(som), 0, ..., 0).

Recall that Sa is not dense modulo 4, so that in particular the set m; n(Zr) is

not dense in T¥. Hence n(Z1) is not dense in Q4. Put B =n(Z1).

We claim that B may be assumed to be infinite. In fact, if r > 1, then
certainly au¢ E’, and hence ¢(xu)¢ Q", so that B must be infinite as in [4].
Assume therefore that r = 1. Employing similar reasoning we may assume
also that «€E and that S < E. Take an se€S with |s|, > 1. The sequence
(s"@)™, is unbounded in E,, and consequently the sequence (¢ (s"a))i=, is
unbounded in Q4. It follows that the set ‘n, me(s"®): neN| = T contains
points of arbitrarily high order and is therefore infinite, whence B is certainly
also infinite.

The semigroup £ may be viewed as a semigroup of endomorphisms of
Q. One can verify that X consists of epimorphisms, and consequently the
set B’ of all accumulation points of B is Z-invariant. Let M < B’ be a 2-
minimal set. Select a point xeM and a sequence (x,).2, of distinct points in
n(Zt) converging to x. Set y, = x,—x for neN. We can find a sequence

h

(5=, converging to 0 in [] (g; such that =(y,) =y, for each n.
j=0
Denote by L the normal closure of the extension K/Q. Let w'" =w,
w®. . w be all the conjugates of w in L. These vectors form a basis of
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Lf" and each of them is an eigenvector of 09, and therefore a common
eigenvector of X. For 0 <j < h denote by L; the splitting field of f over ij

1.5 2. r.j - di x : =
and let w'’/, w®J w4 be a basis of LY corresponding to the given basis

of L. We may assume that w''', w! . wa! are all the conjugates of w'!
over Qm'

_ Let 4;j, (_eLj denote thp eigenvalue of an endomorphism ¢ eX correspond-
Ing to the eigenvector w/, 1 <i<dr, 0<j<h Put

Ci=11<i<dr: |Al, <1 Voex),
=i A5 7 N
V<1, =sp w: ieC}) c I, Vory=Sp{wh: i¢C,) crr

for 0<j<h, and
h
V~‘<~l = H Vﬁl,js V>1 = n V>I.j'
=0 j=0

If y,¢ Vs, for infinitely many indices n, then the discussion in [4]
follows verbatim to our case to prove that B = Q. yielding a contradiction.
We may assume accordingly that, say, 7, y, € V<,. Thus there exist distinct
endomorphlims T1, T, €2 such that n(t, (1)) - x and n(t,(t))—x have inverse

images in ;l-_[o »; lying in Vg,, and in particular we have
T2() =7, (t) eV, +Ker(n).
Set j.* =j'lltk‘ Then
(52 (0, o((2—4))am), 0, ..., 0)
=(E ﬁi{)wi'os z 3”“,.'.1‘ wainy Z ﬁin“"'h)'?(b- _b9-"a _'b)
ieCp ieCy ieCy

for B;eL; and beZ[1/a]". _
To exploit (5.2) we first need to show that for any ze€E, we have

d
(5.3) @lzu) =Y 3w
i=1

for appropriately chosen y,€L,, 1 <i<d. In fact, write
dr
Q) = Y ywhl.
i=1
For every non-negative integer n we then have

dr
(5.4) @(sh2) = 9 ("(2u) = Y (" p(u) = 3 3, W
=1

i
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where s,; is the conjugate of s, over Q corresponding to the conjugate w"! of
w'1, Now the sequence (¢(shzu))s, satisfies the linear recurrence deter-
mined by the minimal polynomial of s, over Q,, and consequently

d
(5.9) o(shzu) = Y shz¥, n=0,1,2,...
i=1

for suitable vectors zV, ..., z¥ e[4. The choice of s, ensures that so;/so; is
not a root of unity for any i # i'. Comparing (5.4) and (5.5) we conclude
therefore that y; = 0 for d+1 < i < dr, which yields (5.3).

From (5.2) we can now infer, similarly to [4], that

1,2, ...,dr, j=0,2,3,....h,
(9 C":{:d+1,d+2,...,dr}, j=1

and that ¢((4;—A,)oau)€L?". (5.6) clearly implies that S < PSC(K).
We want to show now that o €K. According to (5.3) we can write

(57) o)=Y 6w
i=1

for certain &, 8,, ..., 84 in L. Let 8, 65, ..., 6, be the embeddings of E in
L,, enumerated in such a way that 6, (w''!) = w"!. Obviously, ¢ (zu) = z¢ ()
for zeQ,. It follows therefore from (5.4), since |1, so, 53, ...} span Ey over
Q,, that

d
ou) =Y 8,6i(2)w"', z€Ey.
~

From (5.2) we then obtain

(5.8) Z 5; gi ({A;-Al}m) WE‘I — ._Z B“ w“l‘..—_. —b.

Viewing (5.8) as a linear system of dr equations over L in the unknowns
8,0, ((Az =21 a), ..., 84 04((A2— A1) @), Barras s Bar.1s WE o!:serve that each
of these must lie in L. Consider any 6€Gal(L/Q) belonging to the fixed
group of K. Letting 6 act on both sides of (5.8), we see that. ] Ieave§ fixed the
vector w!'!, and hence also its coefficient. From this we infer that
8,(A,—4;)a eK. Rearranging the vectors v, @ v@ if necessary, we
may assume that v® = 6;(v'")) for 1 <i<d. It is now easy to deduce from

(5.7) that
d
(59) o) = ¥ 81",

Since the vectors ®,, ®,, ..., W, form a basis of E over 0, o()e.
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Similarly to the way we concluded from (5.8) that 0y (A, —A)aekK, we
conclude from (5.9) that 6, eK. This implies that « K.

As in [4] we can now prove that K = K. Let seS§. Repeating all our
construction with S replaced by the semigroup generated by S and s, we
observe that the latter semigroup is also contained in PSC(K). Thus
S < PSC(K).

The proof is thereby completed.
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On Mellin-Ramanujan expansions
by

Dieter KruscH (Rendsburg)

1. Introduction. Ramanujan’s trigonometrical sums are given by

— 25 q
(1.1) = Y e e Y d,u(g) (g, neN),
tihsc}:'ff dl(n.q)

where pu(-) is Mobius’ p-function. For fixed n the sequence (c,),>, satisfies
certain orthogonal relations. Thus in analogy to the Fourier theory of real
functions the theory of Fourier—-Ramanujan expansions

(1.2) fim)~ Y a,(f)c,(n) (neN)

gz1

for arithmetical functions f: N — C (including the cases when f is multiplica-
tive or additive) has been established by many authors [5], [6], [10], [12],
[14]. The connection with the theory of Mellin integral transforms was

studied by the author [7]. _
First special point-wise convergent expansions of the converse form

(13) ' f@=Y a(Nicm (qeN)

nz1
for arithmetical f: N — C are due to S. Ramanujan [9] and M. M. Crum
([4): [11], pp. 10-12), eg.

ﬂ 1-s _ __l_ “Se (n
e 2.:;“(4)“ TR
(Res > 1, {(s) being Riemann’s zeta-function). N

In contrast to (1.2) general criterions on the existence of the coefficients
a,(f) in (1.3) even for special classes of f/ seem not to be known.

In the present paper we solve this open problem for the class of
Dirichlet convolutions g: N — C defined for geN and Rea > 0 by

(15) 9.(@) = zu(g)d‘-ﬂw(d),

dlg
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