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Similarly to the way we concluded from (5.8) that 0y (A, —A)aekK, we
conclude from (5.9) that 6, eK. This implies that « K.

As in [4] we can now prove that K = K. Let seS§. Repeating all our
construction with S replaced by the semigroup generated by S and s, we
observe that the latter semigroup is also contained in PSC(K). Thus
S < PSC(K).

The proof is thereby completed.
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On Mellin-Ramanujan expansions
by

Dieter KruscH (Rendsburg)

1. Introduction. Ramanujan’s trigonometrical sums are given by

— 25 q
(1.1) = Y e e Y d,u(g) (g, neN),
tihsc}:'ff dl(n.q)

where pu(-) is Mobius’ p-function. For fixed n the sequence (c,),>, satisfies
certain orthogonal relations. Thus in analogy to the Fourier theory of real
functions the theory of Fourier—-Ramanujan expansions

(1.2) fim)~ Y a,(f)c,(n) (neN)

gz1

for arithmetical functions f: N — C (including the cases when f is multiplica-
tive or additive) has been established by many authors [5], [6], [10], [12],
[14]. The connection with the theory of Mellin integral transforms was

studied by the author [7]. _
First special point-wise convergent expansions of the converse form

(13) ' f@=Y a(Nicm (qeN)

nz1
for arithmetical f: N — C are due to S. Ramanujan [9] and M. M. Crum
([4): [11], pp. 10-12), eg.

ﬂ 1-s _ __l_ “Se (n
e 2.:;“(4)“ TR
(Res > 1, {(s) being Riemann’s zeta-function). N

In contrast to (1.2) general criterions on the existence of the coefficients
a,(f) in (1.3) even for special classes of f/ seem not to be known.

In the present paper we solve this open problem for the class of
Dirichlet convolutions g: N — C defined for geN and Rea > 0 by

(15) 9.(@) = zu(g)d‘-ﬂw(d),

dlg
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where w = M~1 {F(s)! with F(s)eL(—o0, 4+ ) is an inverse Mellin trans-

form. Using the Fourier analysis of [7] we prove that each g, has an
absolutely convergent expansion of the form (1.3) with coefficients a,(g,)
defined by Mellin integrals.

In the applications we treat e.g. the sine and cosine integrals and the
logarithms of Jacobi’s elliptic theta-functions, including some new expansions
for Euler’s totient function ¢, its Dirichlet inverse ¢~ ' and v. Mangoldt s A-
function given in terms of the u-function by

on) = Zu(d)v o ' (n) =Y du(d);
(1.6) din din
' An) = Zu(dllogd (neN).

2. Theorem. For Rea > 0 denote by C, the class of all arithmetical
functions g,: N — C defined by (1.5) where

(2.1)  w(x) is real-valued and piece-wise continuously differentiable on R*,

(22) F(s)= [x*"'w(x)dx absolutely convergent in the strip
0

6, <o=Res <, (6;,6,€R),

+@®

(23) F(s)eL(—o0, +®), ie. [ IF(o+it)|dt <o (6, <0 <8)).

bt - ¢

Note that the Dirichlet inverse of the divisor function o,(n) is given b); ([11,
p- 39)

(24) o7 '(n) = Zd’ﬂ(d)#( ) (neN, se0).
din
For the class C, we prove the following

THeOREM. Let g,€C,. Then

(2.5) 9.(q) = Z au(gn)cq(n)
nz1
with
(2.6) ay(gs) = 2— [F(s) (s+a)} = n™*""ds,
(O]

(c) denoting the vertical line (c—ic, c+i), ¢ > 1 and the Mellin-Ramanujan
series in (2.5) being absolutely convergent for qeN.
Conversely define by (2.6)
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(2.7) U (q) = 2|:'u( )daaig..}
Then q
(28) U, (q) = ’El n~*w(n)e,(n)
with
(2.9) e, (n) = .%.:.GOI(d)C ( )

the series in (2.8) converging absolutely for geN.

CoROLLARY. Define for g, neN

(2.10) b,(n) = Zcq,,, (n)
dlq
and
(2.11) hy(n) = Z eqa(n).
dlq
Then
(2.12) q' *w(g) = 21 a,(ga) by (n)
and
(2.13) qa,(g.) = Z n~*w(n) h,(n)

nz1

with absolute convergence of the trigonometric series in (2.12), (2.13).

3. Proofs. In order to prove the Theorem observe that by (2.;)—{2.3)
Mellin’s inversion theorem ([3], p. 88) furnishes that w(x) is the inverse
Mellin transform of F(s). Hence

(3.1 w(x) = M~ |F(s)) =% [F(s)x™*ds (xeR™, ¢>1).
(G}

By definition (1.5) we get for Rea >0, geN

(. 0@ =5 (FO L (2 d)"' -ags.
(e) dlg
By (1.4) we have for Re(s+a) > 1
(3.3 C(s+a)z;l(3)d‘""“ = Y n~*%c,(n).
dlg nz1
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Hence

1
(34) 9:(@) =5 [F(9) L (s+)] ™" T n™" e mds.
(c) n21
Now let o =0, +ix,, o, >0 and s=o0+it, 6 >1. By (1.1} we have
leq(n)| < g, and since {{(s)) "' is bounded on any vertical line (c), c > 1, we
get by (2.3)
+ o
(3.5) [ [Fe+i] l(ctay+ilt+a))]™" X n ey (n)dt < oo.
- nz1
Hence by Lebesgue’s dominated convergence theorem it is permissible to
invert the order of summation and integration in (34) and we have

9a(q) = Z a,(g.) cq(”)‘

nz1

where a,(g,) is given by (2.6) with a,(g,) =0(n™°) (n 200, c > 1).
We now prove (2.8). By (2.6) we have

-
3.9 nay(g.) = 5 [ F(9) (o)} ™" n' =+~ ds.
(c)
Hence by (2.7) and (3.3)
1 .
(3.7) Us(q) =5 | Fls) K(s+a))™2 Y n~*"%c,(n)ds.
() nz1

But
()%= Y b,(kyn™* (keN, Res>1)

nz1

where the coefficients b, (k) are determined by

k
e =T10-p =11 ( Y (-1 (k)p"“) (p prime).
p 0 H

p u=

In the case k =2 we have by (24)

b(2) = 05" (n) = X u(d) (g)

dln

Thus (3.7) becomes

1
Ua(9) =5~ [F(s) Y n™* 05" (n) Y. n™* " *c, (n)ds.

(c) nz1 nz1

Now for ¢ > 1

Y log'(min~¢ <o, ¥ n"¢eg(n) <oo.
n=1 nz1
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Thus Dirichlet’s multiplication rule and (2.9) yield

Uy (q) = L | F(s) ), n~*"“eg(n)ds,

2mi (©) nz1

where the last series again converges absolutely for Re(s+a) > 1. Hence by
(2.3), Lebesgue’s dominated convergence theorem and (3.1) we get (2.8).

The Corollary follows by M&bius’ inversion formula ([1], Th. 2.9). By
(1.5 we get the inversion

q' *w(g) =) 9. (%).
dlq

and (2.12) with (2.10) result from (2.5) of the Theorem. Similarly we get by
(2.7) the inversion

qaq {ga) = Z uﬂ (%)v
dlg
and (2.13) with (2.11) follow from (2.8).

4. Examples. We here consider some characteristic examples from the
class C,. By (1.5) and the Theorem

(4.1) gi(g) =) 1 (3)“*(‘0 =Y a,(91)¢c,(n)
dlg nzl
and
@42 zu(g)aa,(g,} = ¥ n wine,(n)
dlg nz1
with
(4.3) na,,(gﬂ:%jf?(s) C(s+1))"'n"%ds (c>1).

(c)

Note further that by (1.4) and (2.9)

(4.4) Y n e, (n) = ZC(S)}"Zp(g)d"’ (Res > 1).

nz1 dlq

(a) The sine and cosine integrals are defined for xeR* by ([8], p. 267)

Si(x) = > (=" (2n+1)n+ 1)1 "1 x2"* 1 = (¢~ Isintdt,
nz0 0
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Ci(x)

I

y+logx+ Y (—1)"{(2n)(2n)!) ~* x?
nz1

= — [t costdt,

X

[ o]

si(x) = — [t7'sintdt = Si(x)—n/2,

y being Euler’s constant.

By [8], pp. 193, 68, and Cauchy’s theorern we have for 1 < Res < 2 the
Mellin transforms

2, . . :
4.5) - {Ci(x)sinx—si(x)cos x+x~'} = M~ {sec(ns/2) r(s)}

and

(4.6) w(x) =lo {x”z ) } =

B T T

=M~ {rn"22" #sec(ns/2) I(s) (21 =1){(s+1)).
chce by (4.1)H4.3) we get in view of (4.4)<4.6), (1.4) and (1.6) after some
obvious computations the expansions

@
4. 1A
@7n 3 ‘4’+§h“()’°gr(d+ﬂ

== Z n~ ! (si(d4nn)— 2si(2nn)) q,{n]—éqo“(q}

L
and conversely

(48) —Eu( ).si(4nd)—zsi(2nd)}

T diq

_ - I'(n) I
=) n ‘108{ﬂ"2m}fq(n)+—r¢ '(9).
Note the special case ¢ = 1 in (4.7). Since ¢~ !(1) = ¢, (n) =1, A(1) =0, and
r@ —%\/E we simply get

4.9) g+rtlog2 fnlogn = ) n~' si(4nn)—2si(2nn)).
nz1

(b) For teH = {zeC| Imz > 0] Dedekind’s eta-function is defined by
(4.10) n@)=q"2[[(1-¢*), g=e

nz1
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and the logarithms of the elliptic theta-functions 9;(r|0) = 9;(z) (i=2, 3, 4)
of zero argument are given by ([7], p. 522)

@.11) log8,(c) = Iog2+%+5103n(t)—2|ogq (#)—Nogn (%)
4.12) log 95 (1) = 5log n(zr)—2logn(t/2)—2log n(21),

(4.13) log 9, () ———+Slogn(t) 2]ogn( Lae ) 2logn(21),
where logn(z) = mit/12+0(1) (t =ic0). Take t = ix, x eR*. Set n(ix) = f(x),
9,(ix) = §;(x) and define

(4.14) P(s) = F(LEs+)2D ™ (Res>1).

Then we have the Mellin transform ([7], p. 522)

(4.15) wy (x) = log {e™/'27(x)} = M~ {-¥(5)}.

Hence by (4.11){4.13) we get ([7], p. 523)

@16  wy(x) =log {he™* ﬁz(x)' =M (12" ¥()},

@17 wi(x) =logds() = M~ {=(1=2"")(1-2") ¥(9)},
(4.18) wa(x) =log Ja(x) = M~ {(1-22"Y) P (9)}.

By (4.15)4.18) define the arithmetical functions

(4.19) 9P (9 = Zﬂ( )Wa(d) (k=1,2,3,4; geN).

dig

Thus by (4.1) and (1.6) we get the expansions

(4.20) rp(q)+Z N ( d)logn(d) Y, a,(g") ¢ (m),

d|g nz1

4.21) —logZZu(dH ¢(q)+2u(d)log§(d) Y, a,(g?)c,(n),

n=1

(4.22) Y u( )108 33 (d) = Z a,(g?) ¢, (),
dlg
(4.23) Y u( )log Je@d) = Y a.(g)co(m),
dlg nz1

where Y u(d=0(g>1), =1(g=1) and the coefﬁciems (4.3) are given by

(71, p.'522)
(4.24) na, () = —4 {coth(mn)—1},
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(4.25) na,(gt?) = 4 {coth(nn)—1} — {coth (2rn)—1},

. (4.26) na, (g%>) = 4 {1—5coth(nn)) +coth (n/2) + coth (2nn),
4.27) na,(g%") = % {coth(nn)— 1} = {coth(nn/2)—1}.
Hence by (4.2) we get conversely
(4.28) Z#( )daa{g“’) = ) n"'log {e™'27(n)} e, (n),

n=1
(4.29) E,u( )da,(g‘z‘) = ), n"'log 4e™* 3, (n)} e, (n),
n=1
(4.30) Zu( )daa(a"’) = Y n"'log 35 (n)e,(n),
dlq nz1
(4.31) Z#( )‘%(f“) =Y n~'log 8, (n)e,(n).
dlg nz1
(c) Consider Jacobi’s relation ([13], pp. 470-472)
(4.32) 91(1) = 9,(1) 95(1) 84(r) (r€H),
where
09
om0

For 1 =ix, xeR™ set

9 (ix) = §, (%)
and

g2 =Y u ( )Ws (d with wg(2) = log [3e™/* §, (%)}

dig

Then (4.20)(4.31) yield

dig nz1

and

(4.34) leu( )daa(gﬁ”) = Y n"'log (3e™* 3 (n)} e, (n)
dlg nz1

with

(4.35) : na, (@) = 3na,(g{") = —3 {coth(nn)—1}.

(433) —log2) pu(d+- cp(q)+2u( )logg' @=Y nta,@®c,(n
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(d) Consider the discriminant 4 (1) = g3 (r) —27g3 (1) (z €H), where g,, g3
are the invariants of the Weierstrass g-function.

Note the well-known fact ([2], p. 14) 4(z) = (2n)'2n**(z). For 7 =ix,
xeR* set A(ix) = 4(x) and

g% = ‘zll,u( )wﬁ(d} with we(x) = log {(2r) "2 e*™ 4 (x)!.
q

Then by (4.20) and (4.28) we get
(4.36) —121032n2u(d)+2nqo(q)+2logﬁ{d) Y n"ta,(g®) c,(n)

dlg nz1

and

4.37) Z,u( )da‘,(g‘ﬁ’) Y. nllog {(2m) "2 e A (n)) e, (n)

dig n21
with
(4.38)  na,(g\®) = 24na, (@) = — 12 {coth(nn)—1).

(¢) The above formulae become more sophisticated if we consider the
behaviour of #, 9, and 4 under the generator St =t~ ' (t € H) of the modular
group ([13], pp. 475476; [2], pp. 48-50)

9,(0) = (=) 29 (—17Y);  93(0) = (=i)" 2 93(—17")
(@ =(—i)" (=77 A@) =(=i)24(=17)).

Take 7 = ix, JH:‘R+ Then we get e.g. from (4.20)-(4.23), (4. 36) and (1.6) the
expansions

@39  Toe@-i4 (q)+zp(§)logﬁtd' Y= T alg)e ),
dlg ) nz1

(440) —log2Zp(d)+;qo(q)—{-A(q)+Z,u(%)logﬁ‘,(d“‘)

dlq dig
=Y a,@®)c,(n),
nz1

(4.41) —iA(q)+Zu( )losﬁa(d' H= Y a,@ec,(n),
dlg nzl

(442) ~44 (q)+):u(§)los§z(d") = ¥ a,6®) )
dlg nz1
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and finally
(443) —12log2ny u(d)+2np(g)—124(q)+Y logd(d™?)
dlg dig
= z a, (g(lm) Cq(ﬂ).
nz1
References -

[11 T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York-Berlin-
Heidelberg-Tokyo 1976.
[2] —, Modular Functions and Dirichlet Series in Number Theory, Springer, New York—
Heidelberg—Berlin 1976.
[3] R. Courant and D. Hilbert, Methoden der Mathematischen Physik I, Springer, Berlin—
Heidelberg-New York 1968.
[4] M. M. Crum, On some Dirichlet series, J. London Math. Soc. 15 (1940), 10-15.
[5]1 H. Delange, On Ramanujan expansions of certain arithmetical functions, Acta Arith. 31
(1976), 259-270.
[6] A. Hildebrand, Uber die punktweise Konvergenz von Ramanujan-Entwicklungen zahlen-
theoretischer Funktionen, ibid. 44 (1984), 109-140.
[7] D. Klusch, Mellin transforms and Fourier-Ramanujan expansions, Math. Zeitschrift 193
(1986), 515-526.
[8] F. Oberhettinger, Tables of Mellin Transforms, Springer, Berlin-Heidelberg-New York
1974.
[9] S. Ramanujan, On certain trigonometrical sums and their applications in number theory,
Trans. Cambr. Phil. Soc. 22 (1918), 259-276.
[10] W. Schwarz and J. Spilker, Mean Values and Ramanujan-Expansions of Almost Even
Functions, Coll. Math. Soc. Janos Bolyai, Debrecen 1974, S. 315-357. Budapest 1976.
[11] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford
1951.
[12] F. Tuttas, Uber die Entwicklung multiplikativer Funktionen nach Ramanujan-Summen, Acta
Arith. 36 (1980), 257-270.
[13] E. T. Whittaker and G. N. Watson, 4 course of modern analysis, 4th ed., Cambridge
University Press, 1927.
[14] A. Wintner, Eratosthenian averages, Waverly Press, 1943.

Received on 31.7.1987 (1741)

ACTA ARITHMETICA
LII (1989)

Bilinear form of the remainder term in the Rosser-Iwaniec
sieve of dimension » €(1/2, 1)

by

Jacek Pomykata (Warszawa)

1. Introduction. It is well known that the remainder term in the linear

sieve can be expressed in terms of bilinear forms Z z Ay b,r(.«/, mn). This
mEMnsN
result due to H. Iwaniec was established in 1977 (see [4]). This shape of the

remainder term is more flexible than the conventional one and usually
improves the estimates for the sifting function since the level of uniform
distribution may be increased. On the other hand, it seems that an applica-
tion of Rosser's weights would lead to the best sieving limit when the
dimension of the sieve lies in the interval (4, 1) (see [3]). In such
circumstances it is natural to ask for the analogous result to that of paper
[4] in the case when 1/2 <x < 1. The aim of this paper is to prove that the
remainder term in the latter case can be expressed in terms of bilinear forms
defined on the product [—1, 1] x[—1, 1], where M, N > 1 satisfy

MNP~ = 4.

Here f = f(x) is the sieving limit and 4 reflects the level of uniform
distribution.

I would also like to thank Professor Andrzej Schinzel for his critical
remarks and valuable comments concerning this paper.

Notation. Let .« = {a,, a,, ...} be a finite sequence of positive inte-
gers; a; €./ means that g; is an element of the sequence ./. For a given set 2
of primes and z > 2 we write

Pi)=[]»r.

pe®
p<z

The main object in sieve theory is the sifting function S(</, 2, z) which

Tepresents the number of elements g; €./ such that (a;, P(z)) = 1. _
For any d|P(z) we consider the subsequence ./, which consists of those

tlements g; €./ for which g; = 0(modd).
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