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The representation of squares to the base 3
: by

In memory of V. G. Sprindzuk

1. Let N be the set of all positive integers. Each xe N has a unique
Iepresentation to the base 3 of the form

h=0

or in abbreviated form
) X = Byly—y oo dydy(3).

Here the digits d,, have the allowed values 0, 1, or 2, and n > 0 is the largest
suffix h such that d, > 0. Those of the digits d, of x distinct from zero will be
Called the essential digits of x.

Define three subsets I, J, and K of N, as follows.

I consists of all xe N with digits 0 or 1.

J consists of all xeN with digits 0 or 2.

K consists of all xe N with at least one digit 1, at least one digit 2, and
With any number >0 of digits 0.

The three sets I, J, and K evidently are disjoint in pairs, and their union is
€qual to N. From now on, for xeN, f(x) denotes that set I, J, or K, which
Contains x. This function f(x) evidently is well defined.

One finds that for the first 100 integers x = 1, 2, ..., 100 the value of f{(x)
iIs 23 times equal to I, 15 times equal to J, and 62 tlmes equal to K. More
8enerally, as x runs from 1 to a large integer X, both equations f(x) = I and
f(x) = J hold only o(X) times, while the number of solutions of f(x) = K is
asymptotic to X.

2. Two integers x and y in N are called related if their quotient x/y is an
lntegral power of 3. Such related integers have the same sets of essential digits,
but need not agree in the sets of their digits 0. Related integers x and y satisfy
the equations

(3) f)=fly) and fIx?) = f(y?).
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The integer xe N is said to be reduced if its lowest digit d, does not vanish.

Since

4) x=d,(mod 3),

this is the case if and only if (x,3) =1, ie, x and 3 are relatively prime.
It is easily seen that to every integer ye N there exists a related integer

x which is reduced. In order to study the values {f(x)] xe N} it suffices there-
fore to consider reduced integers.

3. The equation
) , X = 2x

establishes a reversible 1-to-1 correspondence between the elements x of I and
the elements x' of J. If x' has the representation

=Y dy3t=d,d,_, ... d1do(3)
h=0
to the base 3, then the digits dj, of x’ are connected with the digits d, of x by the
formulae
(6) dy, = 2d,

Thus the essential digits of x are equal to 1 and those of x' are equal to 2. The
elements of J are even integers, while those of I may be even or odd.

4. The following problem will be studied.

ProBLEM. If xe N, and f(x) is given, find f(x?).
A first almost obvious result is as follows.

for h=0,1,...,n

THEOREM 1. If x€N, then always
fx®) #J.

Proof. If the assertion is false, then there exists an element y of N such
that f(y?) = J. There also exists a second element x of N such that

(i) x and y are related, and
(1) x is reduced.
Here by (i) and (3),
fx?) =fy*) =J.
Further, by (ii), the lowest digit d, of x does not vanish, and therefore the

lowest digit, d? say, of x2, also is distinct from 0. Since f(x?) = J, df”
necessarily is equal to 2, and so it follows that

x2 = d® = 2 (mod 3).

However, 2 is a quadratic non-residue of 3, giving a contradiction.

The representation of squares to the base 3 101

One can easily find examples of elements x of N such that all but one of
the essential digits of x2 are equal to 2, while to lowest digit 4§’ is equal to 1.

" S. Let us next consider simultaneously any pair x, x’ of integers in N such
at

x'=2x,

fix)=1, and fix)=J.
fl‘et :gain d, run over the digits of x and dj, over the digits of x’, so that d}, = 2d,
or h=0,1,...,n.

Assume, say, that x has r > 1 essential digits, and that these essential digits
Correspond to the suffixes

h =j1!jzs ceea Jr
Where without loss of generality

h>iy> .. >j, 20

Then by the hypothesis,

d,=1 and d,= for B=j.lseiis

While d, = d;, = 0 for all other suffixes h. It follows that, by the representations
to the base 3 of x and x/, these integers can also be written as
() x=3"4324 .. 4+3F and x =2(3"+32+ ... +37),

thus as 1 times or 2 times a sum of r distinct integral powers of 3. This property

Will now enable us to evaluate f(x?) and f(x'%), where the result depends
hGWever on r.

In the lowest case r =1, (7) states that
x=23" and x'=2x30,
hence

x2 =3 and x2 =4x? =321 432,

This means that the representations of x* and x'? have 1 or 2 essential digits,
"éspectively, where these digits are in both cases equal to 1 and where all other
digits are 0. Hence
®) A =fxy)=1 if r=1.

Next let r = 2, so that

x=3"+37 and x' =2(3"+43%),
Where

J1>J,20.
On squaring x and x',

x2 =324 93ty 3212, x?2 =4x? = 4(3211 +2x3htiagy 3212).
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In the first equation,
2y >jy1+i2> 2,20,

so that this representation of x? is already its representation to the base 3. We
see that x? has three essential digits, and of these two are equal to 1 and one is
equal to 2, showing that

f(x*) =K.
In the formula for x'? we split the factor 4 into 3+1 and find that
x'2 = (321 ¥ 1 £ 3200 4 (3N tiatl  Jiviny 4 (32240 4 320,
If now j, = j,+2, then
2, +1>2 > +j+ 1> +j,>2/,+1>2, 20,

so that by the last formula x'2 has four essential digits 1, and two essential
digits 2, whence

fix'?) = K,
If, however, j, = j,+1, the formula for x'* can be simplified to
X2 = 2 x J202+3 4 3202+2 4 322

and shows that x'? has one essential digit 2 and two essential digits 1, so that
also in this case

fix*) =K.
Hence
9 A =fxH)=K if r=2.
Finally assume that r > 3. Then x can be split into the sum

r—2 r
x=x;+x,, where x;,=) 3 and x,= ) 3h
h=1 h=r—1

while
x2=x3+2x,x,+x3 and x? =4x? =4(x}+2x,x,+x3).
Here
r—2r-2 r—2 r
. o ; : .
x% = Z Z 3.I‘r«+..fk, Xy Ky = Z Z 3}n+Ju, x% =341 42 % 31r~|+1r+32Jr_
h=1k=1 h=1k=r—1

In the double sums for x{ and x, x, all the exponents j, +j, are at least equal to
Je—2+Jj, and therefore are greater than the exponents j,_, +j, and 2j, in the
second and third term of x} because by hypothesis

Ji=j> ... >j.=0.
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It follows that in the representation of x? to the base 3 there is at least one
¢ssential digit 2 and at least one essential digit 1, whence

fx}) =K.
Finally x'? can be written in the form
(10) X2 =4x? = 3+ 1)x}+ 203+ 1)x, X, + (3 + 1)x2
where
r=2:r—2
(3+])x} — Z Z (3Jh+jk+l+3jl|+jk),
h=1k=1
r—2 r
234 1)x,x, =2 Y ¥ (@tictiy 3intie),
h=1k=r—1
and

(3+1)x§ =(32J‘f—|+]+32J‘r—1)+2(3jr—l+j,-+l+3j|-_1+jr)+(321‘,+1+32jr)l

Again the exponents of 3 in the terms 4x} and 8x, x, are not less than j,_, +j,
and hence are greater than the exponents j,_; +j, and 2j, of 3 in 4x2. The terms
2x 3-1+ir and 32 of 4x3 are therefore not affected by the other terms in the
E”fpression (10) for x'2. Hence at least one essential digit in the representation of
X% to the base 3 is equal to 2 and one is equal to 1. This concluded the proof of
(11) ) =fix)=K if r>3.

On combining the partial results (8), (9), and (11), the following theorem is
Obtained.

THEOREM 2. Let x and x' = 2x be two elements of N such that
fx)=1 and flx)=J.
If x is an integral power of 3 and hence x' is twice such a power, then
f(x) =fix?3) =1
Otherwise '
f(x?) = fix?) = K.
6. There remains the evaluation of f{x?) when xeN satisfies
fix)=K.
By Theorem 1 either f(x?) = I or f(x*) = K. We can show the following result.

THEOREM 3. The set K contains infinitely ma'ny integers x prime to 3 such
that

) =1,
and it also contains infinitely many such integers: such that
fx) =K.
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Here the restriction (x, 3) =1 has been imposed since without it the In a second table, I have tabulated reduced integral solutions up to
assertion of the theorem is obvious. X = 6563 of f(x?) = I; however, this table is probably not complete.
A small table of the development of x2 to the base 3 shows that for

=1,2,...,60 the equation Table lf(§’}= 1

- x(3) X x2(3)
fe) =1 L 1 ! 1
2 2 4 T
holds for the 16 integers, 11 102 121 i
16 121 256 100111
x=1,2,3,6,9, 11, 16, 18, 19, 27, 29, 33, 48, 54, 55, 57. 19 201 361 111101
29 1002 841 1011011
However the condition (x, 3) = 1 excludes the 9 integers 35 2001 3025 11011001
83 10002 6889 100110011
3, 6,9, 18, 27, 33, 48, 54, 57, 143 12022 20449 1001001101
163 20001 26569 1100110001
and leaves only the seven reduced integers 245 100002 60025 10001100011
262 100201 68644 10111011101
1,2, 11, 16, 19, 29, 55. 421 120121 177241 100000010111
451 121201 203401 101100000101
i 1 487 200001 237169 110001100001
2 3 2 2 131 1000002 534361 100001100001 1
x x x*(3) x x x*(3) 889 1012221 790321 1111011010011
1 1 1 3 961 1022121 1331 1211022 1771561 101 10101
2 4 11 32 1024 1101221 1459 2000001 2128681 11000011 g
3 9 100 33 1089 1111100 1487 2001002 2211169 11011100011011
4 16 121 34 1156 1120211 2189 10000002 4791721 10000011000001 1
5 25 221 35 1225 1200101 2242 10002001 5026564 100110101011001
6 36 1100 36 1296 1210000 2323 10012001 5396329 101011011101001
7 49 1211 37 1369 1212201 2537 10110222 6436369 110010000001001
8 64 2101 38 1444 1222111 2644 10121221 pros FEC
9 81 10000 39 1521 2002100 _ 2662 10122121 7086244 1111000001 11111
10 100 10201 40 1600 2012021 3788 12012022 (4348542 i i
11 121 11111 41 1681 2022021 4375 20000001 19140625 IOIUOOOOODOOO”
12 144 12100 42 1764 2102100 6563 100000002 43072969 1 :
13 169 20021 43 1849 2112111 I 0000001 100000011
14 196 21021 44 1936 2122201 tis easy to verify that the equation f(x?) = I has infinitely many reduced
15 225 22100 45 2025 2210000 Solutions. i itive i s JTeauce
16 256 100111 46 2116 120101 ns. Consider all positive integers
17 289 101201 47 2209 10000211 x=3"+2 where n=23,4,5,.
18 324 110000 48 2304 10011100 Thei v
19 361 111101 49 2401 10021221 eir squares are
20 400 112211 50 2500 10102121 2 _a2nqn+ly qny 2l
21 441 121100 51 2601 10120100 Xt =3"43" 4343041
2 484 122221 52, 2704 10201011 and obviously lie in I and are prime to 3.
23 529 201121 53 2809 10212001 On :
24 576 210100 54 2916 11000000 the other hand, the squares of the integers
25 625 212011 55 3025 11011001 x=3"+1 where n=1,23,...
26 676 221001 56 3136 11022011 are
27 729 1000000 57 3249 11110100
28 784 1002001 58 3364 11121121 X2 =3"42x3"+1;
29 841 1011011 59 3481 11202220 fhcse fic i K )
30 900 1020100 60 3600 11221100 le in K and also are prime to 3.
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For n=2,3,4,...,
@x3"4+1)2 =301 432 437" 14 3"t el

and
(32n+1+2x3n+1}2 i 34n+2+33n+2+33n+l+32n+2+32n+3n+l+3n+161_

It seems probable that there exist infinitely many similar identities of this type

giving solutions xeN of
=1 =1

Canberra 1/1/88

Final remark. The problem discussed in this note can be generalised. Let
g > 2 and x > 1 be integers. Then x can be represented to the general base g in

the form
x=Y dyg" orsay =d,d,—y...d,do(9)
h=0
where now the digits d, belong to the set {0,1,2,...,g—1}. We can now
again ask whether there exist infinitely many squares x = y? where y is
a positive integer such that the following properties are satisfied,

(a) x is prime to g.

(b) All digits of x to the base g are either 0 or 1.

This problem is trivial if g =2 and has been solved for g = 3 in this note
affirmatively.

The trivial identity
Bx4"+1)2=4""14+4"+1 (n=2,3,4,..)

shows that the problem has also for g = 4 a positive answer, with the special
solutions

92 = 1101(4), 33? =101001(4), 1292 = 10010001 (4),

513% = 1000100001 (4), etc.

I have not succeeded in solving the problem for any base g = 5, and

I found only the one solution _
20% = 1111(7)

for the special case g = 7. It would have some interest to study the case of
a general base g > 5 and in particular the case g = 10.

Canberra, 28/1/1988
Received on 9. 2. 1988 (1785)
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