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1. Introduction. An excellent introduction to the foundations of the metric
theory of Diophantine approximation is provided by Sprindzuk’s book [8]. In
the first half the author deals with the question of whether the inequality

(1.1) lan—m| < y(n), n,meZ,

has infinitely many solutions for almost all « (in the sense of Lebesgue measure
on R). Generalizations are also considered to several linear forms in many

Variables. Here i ()€ [0, 4) and the divergence of Y. ¢ (n) is always a neces-

n=1

Sary condition for there to be infinitely many solutions of (1.1) for almost all 2.
This condition is also sufficient when ¥(n) is non-increasing, or if
¥ (n) = ¢’ (n) x (n) where ¥'(n) is non-increasing and y(n) is the characteristic
unction of an infinite set of integers on which ¢ (n)/n is bounded below on
average by a positive constant. In this way one can produce ‘non-linear’ results,
Say by taking ¢ (n) = 0 unless n is a perfect square, or prime, etc. Sprindzuk
femarks, however, at the end of the first half of his book, that the methods do
not give completely non-linear results, because the variable m in (1.1) is always
allowed to range over all integers. In [3], [4] and [5] we have sought to fill this
8ap in the theory by considering the inequality

(1.2) lan+m| < y(n), nesof, med,

Where o7 and # are given infinite sets of positive integers. For example, in [5]
¥/ and # are both the set of prime numbers. Here we shall continue these
Investigations to prove more general results.

In [3] we supposed that there exists a positive continuous function. o(m).
Which satisfies

Y 1= 5 om+o( T em)

1sm<M 1€msM l<msM
me#
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and for which there exist continuous functions f; and f, such that
0 < f,(0) < e(@m)/e(m) < 1>(0)
for every 0 >0 when m > M(6). We then established that if

(1.3) Y Y(me)

ne.of

converges, then there are only finitely many solutions of (1.2) for almost all a.
As usual with such problems (see [8]) the difficulty lies in deducing that there
are infinitely many solutions of (1.2) for almost all @ when (1.3) diverges. It
follows by the example constructed in [2] that at least one other condition,
that is a moderately weak statement on the multiplicative nature of the sets </,
2, is necessary.

In the main results of this paper, either g(m) is constant (so # has positive
density), or # has positive lower asymptotic density (in which case ¢ may not
even exist). We write

A(N) = %1, P(N) = Y ¢(n),

nEN nsN

n
eD,m)= Y 1
m=1
(mn)=D
We now list certain conditions which in suitable combinations will imply that

(1.2) has infinitely many solutions for almost all « if ¥ (o0) diverges. In some
cases (Theorem 1) the condition (m,n)=1 can be added to (1.2).

Density conditions:

(1.4) A(KN)/A(N)>c+1 for all N>1,
(here K, c¢ are constants depending only on <),
(1.5) AQN)—A(N) < C  for all N> 1,
(C depends only on &),
(1.6) lim lim (m, n) = co.

Vst e

Multiplicative conditions:

v sgeo 1 (D, n)
(1.7 lim lim inf = I,
) Lol T 0 S
nsN
(1.8) lim infL ¥ : Y 1>c@y—p)
’ Noow AN) e mea ,
n=N (m,n)=1
frnEm<yn
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for all y > g > 0, where cis a positive constant depending only on &/ and 2.
¥ conditions:

(1.9) ¥(n)/n is non-increasing,

(1.10) O<o, <y(mpmn)<o, forn<m<2n n=1,

Where ¢,, o, are constants depending only on v

We remark that (1.8) is a generalization of the condition that @(n)/n should
be bounded below on average by a positive constant for ne .o/, We also note
that, by Lemma 7A of [7], Chapter 3, we have

1
(L11) % ;N“’—u;i) = 14+0(1/D +(log D) (log N)/N),

S0 (1.7) holds for every set with positive lower asymptotic density.

! THEOREM 1. Let of and # be sets of positive integers, where # has positive
Ower asymptotic density. Suppose that at least one of (1.4)+1.6) holds for o/ and
at least one of (1.9), (1.10) holds for , a function with Y (n)€[0, %) and such that
¥(c0) diverges. Then, if (1.8) holds, there are infinitely many solutions to

(L.12) lentm| < y(n), nest, me®, (m,n)=1,
Jor almost all real o.

One may deduce many corollaries from the above result by noting that
(1.8) l_:o]ds for any & with positive lower asymptotic density when ¢ is the set
of primes, sums of two squares, values taken by a polynomial with integer
COeﬁimepts (having no fixed divisor), etc. To see this, swap the order of
Summation in (1.8). Clearly, (1.4) holds in all the quoted examples. Also, for
€Xample, one could take # as the set of square-free integers and

o ={r b=1,23,..}

:here r is a fixed integer at least equal to two. In this case both (1.5) and (1.6)
old. We state just one corollary.

- _COROLLARY. Given any set # with positive lower asymptotic density, there
re mj_)‘mtef y many convergents to the continued fraction expansion of almost all
% having the form m/n where me# and n is a prime.

" THEDREM 2. Let the hypotheses of Theorem 1 be given, but with (1.7)
‘:“ S{ltuted Jor (1.8) and & be required to have positive density. Then there are
"finitely many solutions to (1.2) for almost all a.

ol COI?O_LLARY. Let of be a set with positive lower asymptotic density, # a set
ith positive density, and suppose that \ satisfies at least one of (1.9), (1.10). Then
@O

there qare infinitely many solutions of (1.2) if and only if Y Y(n) diverges.

n=1
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This corollary follows from Theorem 2 using (1.11). The ‘only if* part
follows from [3], where the reader may also find an example which shows that
the condition that 4 has positive density cannot be relaxed without additional
information.

Finally we mention an extension of the result proved in [5], which may be
established by suitably modifying the argument presented there.

THEOREM 3. Let 2 be the set of primes, and & the set of numbers properly
represented as the sum of two squares. Let y(n)€(0, ) and suppose that at least
one of (1.9), (1.10) holds. Then there are infinitely many solutions of (1.2) for
almost all o, where o/, Bel{?, &}, if and only if

Y (n)
ngz {lﬂg n)1+"
diverges, where
0 fAg=B=2,
0=<4% ifod =P, B= or vice versa,
1 fA=%B=2.

COROLLARY. Almost all real numbers have infinitely many convergents 10
their continued fraction expansion with numerator and denominator simultaneous:
ly the sum of two squares.

We remark that the words ‘almost all’ in the corollary cannot be replaced
with ‘all irrational’. For example, all the convergents to 3+./1/5 (=3, 2, 4])
have numerator congruent to 3 (mod 4).

2. Proof of Theorem 1. The basic plan of the proof is the same as in [5]. It
suffices to consider a > 0, and so we write R* = {xeR: x > 0}. Combining
Lemmas | and 2 of [5] then gives the following result, where we use 4 to denot®
Lebesgue measure on R.

LeMMA 1. Let 9,, be a sequence of subsets of R* and write

-‘3’=ﬁU9w

n=1m=n
(thus 7 is the subset of R* belonging to infinitely many 9,). Suppose that for
every finite open interval ¥ < R*, there is a sequence of subsets #,, of R* with

B S Dy N Fs
2.0) Y A(#,) = o,
m=1
and
N
(2.2 imsup( Y, 2B )0 Y AB, AB)) ' = 04(F)

N-+s m=1 1<mnsN
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Jor some positive constant J (independent of #). Then A(R*\ 2) =0, in other
words, almost all a belong to infinitely many 2,,.

We note that in problems where m can range over all integers it suffices to
prove that (2.2) holds for one finite interval #. This is not the case here
however, as, although it is known that a ‘zero-one' law operates when m is not
restricted, we have given an example in [3] where no such law operates.

To prove Theorem 1 we shall apply Lemma 1 with

o if m¢.of,
@.3) 2,=3 J (”‘""”” "“”('")) if mest

redd m m
(mr)=1

and put 8, =2, A F£.
Hence (2.1) follows from (1.8), the conditions on , and the divergence of
¥(o0). If ¢ =(B,y) we obtain
N
(24) D A(@B,) = 2c(y—P)¥(N),
n=1
for all sufficiently large N. It is at this point that we require ‘liminf in (1.8)
rather than ‘lim sup’. It then suffices to show that, for some absolute constant
Cc

3

(2.5) Y UB, A B,) < (Cly—P)+o(1)) ¥(N)?,

1EmnsN

since 9 is the set of real numbers a for which there are infinitely many solutions
of (1.12).
To obtain (2.5) we note that

(2.6) AB, A B)<2 min(—"’:nmj ; —"':;") ) XY L
v se@
trom)=(s,m)=1
lrm—sm|< A

Where A4 = max(my(n),ny(m)), and a ~ b means that a/be(B, y). We shall
henceforth suppose that (1.9) holds, the proof when (1.10) holds is similar but
the constant C in (2.5) will then depend on o, and ¢,. We then suppose that
h<sm, M < m<2M which enables us to replace A by 2M y(n). Clearly that
part of (2.6) with n > m gives a similar order contribution. We then require the
following result.

LEMMA 2. Let A > 0, M = 1, and n a positive integer be given with n < 2M.
Let o be a set of positive integers and (B, ) an open interval in R*. Then the
humber of solutions of

(2.7) Ims—rn) < A
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withr~m, s~n, (n,s)=@r,m=1, m#n, meod, M<m<2M, is
(2.8) <AK(y—B) ) 1+0(E)
MEmeam
where K is absolute, and
Ee ACM)—A(M) if (1.6) holds,
~ |min(M, n(A2M)—A(M)))  otherwise.

Here the constant implied by the O notation depends only on (B, ), except when
(1.6) holds when it also depends on the speed of growth of (m, n).

2.8y

We now complete the proof of Theorem 1 and defer the proof of Lemma
2 until the next section. Suppose, firstly, that (1.4) holds. Then, by (2.6) and (2.8),
taking E = M, for some constant K’ we have, for fixed n,

29 T B AB)SKG-H T w(m)w(nHO(ﬁE“@)'

nEm<N nEm<2N
mesd

The first term on the right of (2.9) when summed over n gives the
C(y—PB)¥P(N)? of (2.5) (note that ¥(2N) < 2¥(N)), while

Y ¥ _'{’_(’1‘_)& $ “’(T"')A(mj=o('P(2N})=0('P(N))-

n<Nn<m<2n ™ m<2N
nesd

using (1.4). Since ¥(N)— o0, this establishes (2.5).
Now suppose that (1.5) holds. In this case we take E = n(4A(2M)— A(M)).
We then obtain (2.9), but now with an error term

(2.10) M
n<m<2Ny M
By (L.5)
Y, n<m.
1=nEm
nest

Thus summing (2.10) over n gives an error which is O(¥(N)) as required. The
proof when (1.6) holds follows similarly.

3. Proof of Lemma 2. We first need a lemma on the Fourier series of an
approximation to the characteristic function of an interval (mod 1). As usual,
llx]| denotes the distance from x to a nearest integer, and e(x) represents
exp(2mix).

LEMMA 3. Let n, u real, 0 < n <4, and T a positive integer be given. Then
there is a function f(x) such that:

ST if llx+ul <n;
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JX)20  if lx+pl=n;

T
SX)=2n+ T '+ Y a,e(nx);
n=-T
n#0

a, < min(n, [n| ™).
Proof. See Lemma 2.7 of [1].

Proof of Lemma 2. Write § = y— . We may suppose that n™! < 0 < %,
and 4 < n, for otherwise the proof can be greatly simplified. Let 4 be a divisor
of n and consider the contribution of those m belonging to

Ay ={meod: (m,n)=h, M <m<2M}.

We note that the conditions m 5 n, (n, 5) = (m, r) = 1 ensure that there is no
Solution with ms = rn, so we must have 4 > h for solutions to exist. The

Number of solutions of (2.7) is then no more than the number of solutions for v,
S, a of

(3.1) vs=a(modg), |al<A/h, a+#0, vhed,, s~n,

Where g = n/h. If h0 > 1 we can simply count the solutions in s for each pair
U, a to obtain a bound

(3.2) Eg(heﬂ) Y 1<440 ¥ 1.

me.sf mesdy

If h6 < 1, write B = [A/h] (where [ ] indicates integer part) and we then
Count solutions in v, s, a of

(3.3) vs = a(mod g), |a| < 2B, vhest,, s~n,

Weighted with a factor v(a) = (2B—|al)/B. Clearly this provides an upper bound
for the solutions of (3.1). Now write 4 = —(8+7)h/2 and let & denote a solution
* of vx = 1(modg) (note that vhe .o, implies that (v, g) = 1, while x only
appears in functions having period g so any solution suffices). Solving (3.3) is
then equivalent to solving

va “ Oh

—+pul <—, lal<2B, vhes,.

g 2

We now apply Lemma 3 with T=[(0h)™'] to show that the number of
Solutions of (3.3) weighted with the factor v(a) is no more than

T

(3.4 200 Y vi@) Y 1+0(m£ ho )’ &(B, rd/g)),

lal €£2B meafy, r=1
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where (B, x) = min(B, B~ !||x||"%). To obtain (3.4) we have noted that, for
lixl # 0, :

Y v(a)e(ax) =—

la|<2B B

- 2
l(sm 2an) <45(B, %).

sin x
Now the main term in (34) is

840 ) 1.
mesfy
To bound the second term in (3.4) we note that its value is not decreased by
changing the summation to include all v with (v, g) = 1 and M < vh < 2M (this
summation condition will be tacitly assumed below). Swapping the summation
order then gives

Oh i Y 8(B, ir/g).

r=1v

(3.5)

From nf > 1 we deduce T< g, so that (r, g) < g. Thus, if 1 <r < T, for any V,
we have

V+g-1 gltr.g)
Y. o(B,ir/g) <2(r,g) Y, min(B,(g/(r,9)>B 'v %)< 8.
v=¥ v=1

(g =1

Hence (3.5) is bounded above by
8g(M/(hg)+1)TOh < 24M/h,

since gh =n < 2M.
A different bound for the second term of (3.4) may be obtained by noting
that &(B, or/g) < g, and so the sum is bounded above by

n
IR

mesf p

(3.9)

Assembling our results so far then gives the following upper estimate for the
number of solutions to (2.7):

Y840 ¥ 1+o( y mim(E 5 1,ﬂ)).
hln mesdy hin huﬁdm h
Since
Y T 1= AQM)—A(M)

hin meafy

this establishes (2.8) with (2.8) except in the case when (1.6) holds. To deal with
this case we note-that if (1.6) is valid then, given 0, there is a number R such
that (m, n) = 0! for m, n = R. If we take the term (3.6) when n < R and note

Metric Diophantine approximation 215

that 4, = Gfor h < 0! when n > R, we obtain a bound from (3.2) and (3.4) of
840 Y. 1+0(R(A(2M)—A(M))),

mesfy

4s required. (R depends only on 0 and the speed of growth of (m, n) as claimed.)

4. Proof of Theorem 2. The outline of the proof is the same as for Theorem
- We. write

(%] if m¢ o,
Dn = U(T—i(m)‘r+i(m}) if mest.

SCC'W We must be careful in our choice of the sets #,, and avail ourselves of

Schmidt’s technique used in [7], Chapter 3. Let # = (8, y) = R*, and suppose
) <1 for otherwise the proof could be simplified. Suppose that # has
ensity ¢. Then, since (1.6) holds, we can pick D so that

- 1 @(D, n) c
l e S
A 2 g
Hence nEN
.1) li 1§ ¥m g
¥ m & 170D
m=N nedd
We Pt (mn)sD
(%] ' if m¢ o,
#,=4 U ("—Wm) r+y(m) iF e
" - m ' om )
tm,:}i.ﬂ
Thus, by (4.1),
. P 2.
e B, 2, M8 > =B
We must now obtain a satisfactory estimate for
42) Y i@, A B,
l1€EmnsN

W . . ,

g € may work as in the previous two sections, replacing (r, m) = (n, s) = 1 with

Si;lm] < D, (s, n) < D. This only brings in certain solutions of (2.7) with ms = rn
¢ We only used the co-primeness condition to show that no such solutions

L
Xisted. We must therefore deal with an additional term
4, m
1€Sn<Nn<m<y M r~ms~n
ness redd sed
Hr=3sm
(rim).(s,n) S D
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Now, if we fix a pair m, n and consider rn = sm subject to (r, m), (s, n) < D,
then it is clear that unless (m, n) > m/D there will be no solutions. When
solutions do exist, then there are no more than 2n of them. Hence (4.3) is
bounded above by

2 ¥ ym) Y n<2D*¥(N),

1<m<N ™ mznzmip
mes’ (mm)=m/D
since
n< Y md<D’m.

mznzm|D dim
(m.m)=m/D d<sD

It follows that the sum (4.2) is bounded above by
K(y—B)¥(N)*+O(¥(N))

for some absolute constant K and Theorem 2 then follows from Lemma 1. It
should be noted that, as in [7], the parameter D is vital to exclude from 2,
certain intervals which would have made A(%, A #,) too large on average.
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