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Diagonal cubic equations, II
by
R. C. Baker (Egham)

) 1. Introduction. Let 4,, ..., A, be positive integers, with IT = 11...11. The
object of this paper is to prove

THEOREM 1. The equation
(1.1) - X3+ oo +Aqx3 =
has a solution in nonzero integers satisfying
(1.2) A P+ .. 4 Aqlx, P < T8

Here and subsequently, implied constants are absolute. (We use C,, C,,.
to denote absolute constants satisfying various conditions spemﬁed below)
The number of variables here cannot be reduced, as we see by considering
the equation

xi—Ax3+p(x3—Ax)+p* (x3—-Ax}) =

This has only the trivial solution in integers when p is a prime, p =1 (mod 3),
and A is a cubic non-residue modulo p.
The proof of Theorem 1 is based on the important ideas of Vaughan [8]

- On Waring’s problem. The constant 61 could be made smaller, but only at the

Cost of lengthening the very complicated argument. The theorem may well be
true with 61 replaced by 1.
The ordered set 4, ..., 4, is said to be reduced if

(1.3) Ays...s Ay are cube-free;
(1.4) no prime divides A; for more than four values of j; and
(L5) =>4, 2 A=A 2 4,.

After introducing some more notation, a result on solutions of (1.1) that
applies only to reduced sets will be stated as Theorem 2. This will be used as
a stepping stone to reach Theorem 1.

Throughout the paper, the symbols , p, p,,... are reserved for primes. Let
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(1.6) N=cC,n*

where C, is sufficiently large. Let & denote a sufficiently small positive absolute
constant, and let & = 2.
Let R(4,, ..., 4,) denote the number of solutions of the equation

(1L.7) A x*=2,p%° +A3p°p3zi + A4p°piza +Asu’+ APavi + A,p3v3 =0
in integers x, y, z,, Z,, U, vy, v, and primes p, p3, Py, Pes P7 satisfying

(18) P<x<2P, W<y<2W, R<z<2R, U<u<2U, V<n <2V,

(1.9) pAX, D3XY, Paky, PeXu, PaAu,

(1.10) Y<p<2Y, p= 2(mod3),

(1.11) Z, <p;<2Z, p;=2(mod3) (i=34,67).
Here

(112) P= Nl,‘.\ '11_ 1;’3‘ Y = NI'HM»S '11_ l‘?f345’ R = (]/40) N84,|r345,
[113] W= N9813451}1;345A2—l;3, U= {1/40)N”3).;”3, V= (1/40)N2”,
(]]4) 23 s N14{345 "{}'.'1345 "“'3—113, z4 —_ 2N141345 117}345 A; l,f3’
(1.15) Zom NGB, Z, mQNIRLJTIR,

The inequalities
(LI6) N < A4,P?, A, Y2 W3, A, Y3Z3R3, 4, Y3Z3R?, AU3, A6Z3V3, 1,Z7V° < N
are easily verified. It is also easy to see that (1.10), (1.11) imply

(1.17) p>pa>ps>1M, p>p,>pe>11
using (1.5) and (1.6). In particular
(1.18) (PP:{PAPGP-:,H): 1.

Here (a,, a,), or more generally (a,, ..., a,), denotes greatest common
divisor; while [a,, ..., a,] denotes least common multiple.

THeOREM 2. In the above notation, we have

R(Ays.vvy A7) >0

for reduced sets A, ..., A,

It follows from Theorem 2 and (1.6), (1.16) that (1.1) has solutions
satisfying (1.2) whenever 4, ..., 4, is a reduced set. Thus the assertion of
Theorem 1 holds whenever 4,, ..., 4, satisfy (1.3) and (1.4).

To extend this result to general sets 4,, ..., 4, we use the case k = 7 of the
following lemma. The cases k = 8,9 will be used in a subsequent paper [21.
Lemma 1 is essentially due to Pitman and Ridout [4].
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LEMMA 1. For given K >0,C > 1, k> 1, let A(K, C, k) be the following
Proposition.

A(K, C, k). There is a solution of
(1.19) A3+ .+ A =0
in nonzero integers such that

S 4%} < KA ... 3)°.

i<k
Suppose that A(K, C, k) holds provided that the A, are cube-free positive integers

Such that no prime divides more than k — 3 of them. Then A(K, C, k) holds for
every set of positive integers A, ..., A,.

_ Prc:of. We first show that A(K, C, k) holds for every set of cube-free
Positive integers A;. Let po = 1 and let p, be the rth prime (r =1, 2, ...). It will
be sufficient to prove that A, holds for all r, where A, is the proposition:

N A,: If the A; are cube-free nonzero integers such that no prime greater than p,
divides more than k — 3 of them, then A(K, C, k) holds.

By the hypotheses of Lemma 1, 4, holds. We now show that A4, implies
A4, .. Let us assume that A4, holds and that the 4, are cube-free positive integers

Such that no prime greater than g = p, , , divides more than k - 3 of them. Then
We can write

2 AxP=ayit .. +ayi+qbizi+ . +bz)+ai (e wit ... e wd),

ik
'{l ’q'k s q;+2u},.

:('lere s+t+u=k, qfy, and no prime greater than p, divides more than
=3 of the a;, b;, c;. If s > 3, then A(K, C, k) follows from A4,. If s <2,t> 3,
then by 4, the equation

(1.20) Flayi+ )+ + . )+qle,wi+ ...)=0
has a solution in nonzero integers with
@ ayly P+ ) +Glz, P+ )+ gleylwy P+ ..) < K(g=Hy)F.
Multiplying (1.20) by ¢, we obtain a solution of (1.19) in nonzero integers with
LAl < Kq(@™**9)° <K@ *9)° =K@y ... 3)°.

To obtain the second inequality, note that t+u=k—s2k—2 > 5, so that
1+C2s+u) < C(1+25+u) S C(5+u) < C(t+2u).
Similarly, if s <2, t <2, then by applying A4, to the equation
glagyi+ ...)+q*(b 23+ .. )+ (c,wi+ ...)=0
and multiplying by g2, we obtain a solution of (1.19) with
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Y Alxi® < Kg*(g** 2 9)° < K(g" 2y .
i<k
Here we use u=k—s—t>k—4 >3, and
24+ C(s+2t) < C(2+5+2t) < C(6+1) < C(t+2u).

Thus our assumptions imply that A(K, C, k) holds in all cases, and we have
shown that A, implies A4,,,. By induction, 4, holds for all r.
We now remove the restriction to cube-free coefficients. Suppose that, for

each i,
A= v
where the positive integer v; is cube-free. Thus 4, ... 4, = u’v, where
k k
n= ]._l B V= n Vi-
i=1 i=1

By what has just been proved, there exist nonzero integers z,, ... , z, such that

Y vz} =0, Y vilzd® < Kv©.
i<k i<k
Multiplying by u® we see that the nonzero integers
X, = pup; tz; i=1,...,k

satisfy (1.19) with
T Alxl® < Kp*ve < K@) =K@, ... 1),
i<k

and A(K, C, k) holds. This completes the proof of Lemma 1. In particular,
Theorem 1 follows from Theorem 2.

2. Outline of the proof of Theorem 2. Let e(f) = exp(2nif). We write
21) - X, = ¥ el@x®,

X<x<2X
(xd)=1
and use the notation f in place of f].

Let p denote the ordered set p, ps, Ps Pe» P; and let

22) F(p;@) = £,(P, 2,0 fpsp, (W, 2,0°0)f (R, 23p°p3a)
X fpspAU, 2s0)f(V, Asp3a)f(V, A,p30),
2.3) F@= Y F(po).

r
(1.10),(1.11)

The summation here is over ordered sets p satisfying (1.10), (1.11); we often use
this type of notation below.
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Let % be the unit interval (LN ~*, 1+LN ~1]; then clearly

(2.4) R(Ay, ...y A9) = [ F (@) da.
L 4

Here

(2.5) L= )4, A,NT8/345"

When 1 Sa<g<Land (a, g =1, we take M(g,a) to be the interval

- {a: la—a/ql < g7 LN~'}, and let M denote the union of all such M (g, a). The

M(q, a) are disjoint subsets of ¥, as we easily verify using (1.6), (2.5). Let
(2.6) m = #\M.

We shall introduce below an approximation F*(x) to F(x) on k. We shall
proceed to show that

@7 [ F*(@)da > 434342 [1713 - V426345 og N)
and that

(2.8) i’;lF‘ (@) — F (a)| doc < A34/345 [~ 1/3 N426/345-¢
and

2.9) [ F(a)da < A34/345 [1~1/3 N426/345

It follows from (2.6)2.9) and (2.4) that
(10)  R(Ay, ..., 1;) > 34345 [[~ 1132 4261345 (150 N) -5

Thus Theorem 2 will follow once (2.7)2.9) have been proved.
We recall the standard notations

(2.11) S(g,b) = ie(!—’(’;—s), J(B,A) = 214 e(fx3)dx.
The estimate ' ’

.12 S(g,b) < q'**¥(q) for (g,b) =1,

Where y/(g) is the multiplicative function with

(2.13) Y@ty =phri2 h=0,1,...;0<r<2)
follows from Lemmas 4.3 and 4.4 of [5]. By partial integration,
(2.14) J(B, 4) < ﬁl‘tﬂ

for positive 4 and real .
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The following lemma enables us to approximate to sums f,(X, Ax). This
gives rise naturally to the approximation F* mentioned above.

LEMMA 2. Let d be an integer with < 1 divisors. Let

b
@19 @)= a7 T u) %20
bld

Let A be a positive integer. Then

(2.16) f,(X,].a)=s,(q,Aa]J(}.(a—g),X)+O(q”“‘(l+1X3

for any X >0, real a and rational number a/q.

al\12
=)
q

Proof It is an immediate consequence of Theorem 2 of [6] that

s t 1/2
217 f(A,0)=r"" S(r,t)J(a—;, A)+O(r”2“(l + A3 a—- ) )
for any rational number t/r with (¢,r) = 1, any real « and 4 > 0. We observe
that
(2.18) roiS(r.t)=s"1S(s,tsr™ %)

for a multiple s of r.
The sum f,(X,Ax) may be expressed in the form

(2.19) fi(X, ) =Y u®)f(Xb~1,Ab%a).

bid

We have

3
(2.20) (Xb~1) Ab‘-"a:—ab—qf = X3 a—5~.

q

Thus

b
@21) f(Xb“,Ab’o:}=q"S(q,Ab3a)J(Ab3a— qa,Xb“)
+0(q”2"(l +AX3

al\12
3"
q
from (2.16), (2.18) and (2.20). Moreover,

(2.22) J(Ab’a—'lb;a,)fb") = b“J(A(a—g),X)

on a simple change of variable. Combining (2.21), (2.22), (2.19) and (2.15), we
obtain (2.16). This proves Lemma 2.
For aeM(q,a), we introduce the notations

(2.23) - s(p,a)= ,(q,ila)l(ll(a—g),P),
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(229 9P, P3» Pas ) = 5,,,.(q, A, p*a)J (12 (a —g) p*, W),
(2.25) h(p, p;» @) = 5,(q,4,p* PP a)J (lg(a—‘—;) p’ p?,R) (i=3,4),
(2.26) k(Pgs Pys @) = S,,p, (4, A50) J (A_,, (a—g), U),

27)  lp, o) =s,(q, 4P a)J(i; (a—g-)p?, V) (i=6,7).

The natural approximation to F(x) on 9 is now seen to be the f;Jnction
F*(a), defined on M in the following way. For aeM(q,a), let

(228)  F*(p, o) = 5(p, ©)g (P, P3, Pa» D h (D, D3, D (D, Pyy W)k (Pg, P70
X !{pﬁl a)f(p'}'r a);

and let
(2.29) FF@= Y
tl-loi.l’(l.ll)

_The proofs of (2.8) and (2.7) are along standard lines and are given in
Sections 3-4. In Section 5 we state Lemma 12, and show that it implies (2.9).
The prgof of Lemma 12 occupies the remainder of the paper.

3. Proof of (2.8). It is convenient to write
:
o ——|,
q

LeMMA 3. Let p satisfy (1.10), (1.11). Let xe M (q, a) where | <a<q <L,
(@, q)=1. Then

F*(p, ).

(3.1) 4=4(,a,9=1+N

(32) Jo(P, 2 @)—s(p, @) < q'/2** 412

o Tosne(Ws 220°0 =g (P, P3, P, @) < 127 4172,
(3.4) f(R, “_‘pap? a)_h(p' P:s u) < ql;'2+sA1,'2’
(35) fps?‘r (U, j’S d)-—k(ps' D7, a) < ql.f2+zA1;],
and .

(3.6} f(v, J.,pf a)_,‘(pl_’ @) < q112+=d1;2'

Proof. The bound (3.2) is an immediate consequence of (2.16) with

X=P d=p, A= Ay, in view of the definitions (2.1), (2.23), (3.1). Note that,
from (1.16),
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AX*=A,P*<N.
The inequalities (3.3)43.6) are proved similarly.
LeMMA 4. For any A > N° and natural number r, we have

3.7 Y, (r, w) < Ar.

A<o<2A
Proof. The sum in (3.7) is

< Y 1+ Y w<Ar

A<os24  A<a<24
LEMMA 5. Let p be a prime satisfying (1.10) and let e (q, a). Then

(3.8) Y. |F(p,a)—F*(p, o)

Pa:Ps.P6.P7
(1.11)

£ 2.2, 2.7, I qg 3%y PYPWRUV AR,
Proof. For any natural numbers g and b we have the rather crude bound
¥(a/g, b*) <by(q) < bg™'?
from (2.13). Hence, we may deduce from (2.15) and (2.12) that

(39) 54(a, ©) < ¢°¥(9/@, o) < (@,0)'"* ¢~
for a positive integer d with O(1) divisors.
Let
(3.10) Al____q—uspd—l, A, =(q, ps]uzq-us wa-1, As=q—1;3 va-t,
(3.11) A, =q 'R(g, p°)(g,p)'PRA™!  (i=3,4),
(3.12) A, =q Y3 (@q,p)'PVv4a~! (i=1,8).

The following estimates are a consequence of the definitions (2.23)-(2.27)
and the bounds (3.9) and (2.14):

(3.13) s(p, @) < A} q° A4,,
(3.14) g0, P3» Pas @) < A3°q° Ay,
(3.15) h(p, py, 0) < AM3 A, (=3, 4),
(3.16) k(pg, P> @) < 243 ¢ As,
(3.17) I(p;, ®) < APq A, (i=6,7).

Here aeM(q,a) with 1<a<g<L, (aqg=1
It is easy to see from (1.12), (1.13), (1.6) that

(3.18) ' R =min(P, W,R, U, V),
(3.19) g "PRA™ 2 ¢'* (1<q<D).
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For the last inequality we require the observation that
qAR_l ‘gLR—l < n‘N—ﬁﬂds <N~

that may be deduced from (2.5), (1.12), (1.6).

From (3.18), (3.19), (3.10){3.12) it follows that the right-hand sides of
(3.13)3.17) are all > ¢*/>**. In conjunction with (3.2}3.6) and (2.2), (2.29) this
implies that

.
(320) F(p, )= F*(p, @) < ¥, q"*** 113 472 ] 4,
i=1 is7
J#i

whenever aeM(q, a) and p satisfies (1.10), (1.11).
Let ¢,,...,0¢ be any subsequence of six of the terms

g '3, (q,p)'"q '3, (q,p))"(q, p}'q >,
(@, P (g, pD2q 13, q 1B, (q,pd)q '3, (q.p)q 'R
From (3.7) we see that

(321 Y 0106 €Z3Z,Z6Z4(q, PP q 2T

P3:P4P6PT
(1.11)

Moreover, a subproduct of six of P, W, R, R, U, ¥, V is seen from (3.18) to
< PWRUV?. Combining this observation with (3.20), (3.21) and
(3.10)«3.12) we obtain (3.8). This completes the proof of Lemma 5.

Proof of (2.8). In view of Lemma 5, we have
(322) [ |F*(0)—F ()| da

3 ZSZ4ZSZ7H”3q‘3J’2"'2‘(q, Pa}PWRUVzdu

< b3 Lz L ! (I+Nla—a/q|)5"2

2L atg -—wo

{a,q)=1 "
< 23242627H1’3PWRUV2N'1 Z z @, p3)q—lf2+25_

p 4q=L
(1.10)

P q
(1.10),(1.11)

Moreover,

(3.23) Y Y@ p)g PP« i Y p Y gTl2+8 g YLy,
p_q<L i=0

P qsSL
(1.10) (1.10y  pllg
From (2.5), (1.12) and (1.6),

(3:24) [TV L112+28 4 RN ",

Moreover, :

(3.25) YZ,Z,ZsZ,PWRXUVAN ™! = 134345 [] =113 N426/345
from (1.12)1.15). The bound (2.8) now follows from (3.22)~(3.25).
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4. Proof of (2.7). We begin by noting that

4.1) S(q, cm®) = S(q, ¢)
for (g, m) =1; in particular,
4.2) S(g, —c)=S(g, o).
On the other hand, for mjg it is easy to see that
L cx
(4.3) S(g,em*)=m Y ( )
x=1 q
mlx
It is convenient to write
il ax?
4.4 S(g,a, )= ) e(T)
i =1

where h, g are natural numbers and a is an integer. Note that

(4.5) S(g,a,h)=S(g,a) for (g.h)=1.
Let
1 if pXg,
(46) x(@.p) = {0 i ol
LemMma 6. We have
: x(vp)s{q c, p]
e g = (1)L,

For distinct primes p,, p, we have

1 x{q-ml( 1 )m""‘S(q, ¢, P3Pa)
48 Ll ) T a
(4.8) S.P.wa(q ) ( p ) Pa q

3

Proof. We have
1 S(wﬁ)}
s (q,¢) =-<8(q, c)—————.
2, ) q{ (q 5

If pyq the last expression is

y_S@en

1 s
~S(q, )(1—p
q

from (4.1), (4.5); otherwise it is

1
ES (. c. p)
from (4.3). This proves (4.7).
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Next,
1 S(q, cp3) _S(g, cpd) | S(q, cp3pi)
49  s,,,.(0,0= -{S(q, ¢)— e .
P q P3 Pa P3Pa

If p,fq the last expression is

1{3@, c)(l *J—)—M(l -i)} = (1—i)( 1 _L)’"”"S{‘I- ¢, Pa)
1 P Py Py P3 Pa q

_ (1 1 )(] 1 )x(q.m}s(q, ¢, PsPs)
145 Ps q
from (4.7).

Now, let p,|q. By the above, we need only consider the case p,|q. The
right-hand side of (4.9) is

A2 )25
q{le (q Pa le
pPatx pakx

_l 2 Efi _ g ‘ﬁ _ S(q1 C, P3P4)
ﬁq{x;e(fa*) El e(q)}_ q

pafx pakx.palx

from (4.3). This proves Lemma 6.
LeMMA 7. For coprime positive integers q, r we have
S(g,a, h)S(r, b, h) = S(gr, ar+bg, h).
Proof. Let (g, h)=d, (r, h) = d', so that (gr, h) = dd'. In the sum

(4.10) S = E i [(ar + bq)q(: r+ uq)a] ,

{:d} 1 [ud'l 1

(P{d)rtp( )
d

the values of tr+ug run over g——

of which have (x, d) = (x, d) = 1.
Hence these values x run once over the gro(dd')/(dd’) residue classes
(mod gr) with (x, dd’) = 1, that is, with

(JE, gr, h)=1.

This proves that S = S(gr, ar+bq, h).
Discarding cross terms in (4.10),

q r 3.3 3.3
@4.11) S(gr,ar+bg,h)= Y Y} el:atqr +bq ¥ ]

distinct residue classes x(mod gr), all

= r
=1 (wd)=1
In the last summation tr runs over g ¢ (d)/d values (mod g) coprime to d,
and qu runs over re¢ (d')/d’ values (mod r) coprime to d'. The right-hand side of
(4.11) is therefore equal to S(q, a, k) S(r, b, h), and the lemma is proved.



228 R. C. Baker

For the remainder of this section, we write

q
(4'12) S(P: Q) = z S(Qs ilas p)S(Q3 Azap3’ P3P4)3(9; '13 ﬂpg)
{u‘.'it_)é 1
x 5(q, A, ap3) S (g, A5a, PP+) S (4, A6 apd) S (q, 4 ap?).

In view of (2.23)«2.29), Lemma 6 and (4.2) we have, forg < L, |f| <q 'LN7',

2 a
4.13) 2 F"‘(p.ﬁ+‘—1)=9(4.f')3(l’, 9 e(p, B
a=1
whenever p satisfies (1.10), (1.11). Here
1
(4.14) 0(q,p) = [1 (1 —5)
we{p,P3.P4sP6,P7}
wtq
and

@15  o(p, B)=J (4B, P)I(—Ap°B, W)J (A3p°p3 B, R)J (A, P°pi, R)
xJ (A5 B, U)J (Agps B, V) J (A7p7 B, V).
Lemma 8. S(p,q) is a multiplicative function of q.
Proof. Let g, r be coprime. Then

I q q
(qr)'? agl_ b§1 S(q! ‘ll (ar+ bq)’ p) e
(@a@=1 (=1
1 q
= Z 2 S(q, 24a, p)S(q. Ab, p) ..

S(p, qn) = S(q, 27(ar+_bq)p$

b=1
(M)=l (byr)=1
on decomposing each of the seven factors using Lemma 7. Lemma 8 now
follows at once.

LeMMA 9. We have, for any p satisfying. (1.10), (1.11),
(4.16) S(p, =0 (i=3,4,6,7;t21),
4.17) S(p,p)=0 (t=1).

Proof. Since p;= 2 (mod 3), we have
(418) - SGhap)=0 (=2 pha),
(4.19) Sp,a)=0 (pka)

(cf. [8], p. 166). We recall that p, ' 4;forall i=3,4,6,7andj=1,...,7; see
(1.18).

Now let 4 > > 2. Then we apply (4.18), (1.17) to deduce that the factor S (pi',
A,p*a, psp,) in (4.12) vanishes (for i =3, 4) and the factor S(pf!, 254, PsP7)
vanishes (for i = 6, 7). Hence (4.16) holds for ¢, > 2. ’

. 5(g, A,ap3)S(g, AP
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As for S(p, p), we deduce from (4.19), (1.17) that S(p;, 4;ap}) vanishes,
where je{6, 7}, j #i. This completes the proof of (4.16).
For (4.17), we again use (1.17), (4.18) and (4.19). This time,

S, 4a,p)=0 (t22),
S(p, Agapd) = 0.
This yields the desired result. The lemma now follows.
LemMa 10. We have

(4.20) [F*(@da= Y IT (l —l) S, 1(p)-
o P ©e(p.p3.P4.P6:P7) @
(1.10),(1.11)
Here
(4.21) S.(p) = Y Sk,
g=L
(@.pP3papep7) =1

LN-!
4.22) IM= | o(p, Bap.

~LN-1

Proof. From (2.29), (4.13) we have

q afg+LN-1

3 2 E |
r q€L a=1 alg—LN-!
(1.10),(1.11) (ag)=1

LN-1
- 2 1 (el
(1. 10] (1. 11} N “:;;i

@423)  [F*(a)da= F*(p, a)do
w

LN-1

- Z Y 0@ pnS®e.a [ o, pdp.
oy T =R

In view of Lemmas 8 and 9, we may insert the summation condition
(9, PP3PaPsP7) = 1
In the last summation over g. For these values of ¢ we have

(4.29 0(q, p) = 1 (1 —1).

«©€lp.p3.P4PEPT) o
The lemma now follows from (4.21)+4.24).
LemMMA 11. For p satisfying (1.10), (1.11) we have
4.25) S.(p)>IT".
Proof. We have

Z IS(p, q)l & Z 3 ql—4,'3 < I3 8- 1/3

q>L e>L
(g.pp3papep7)=1
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from (4.12), (4.7), (4.8) and (3.9). Thus

{426] 6.’“’} — 6‘.”}"‘0(””3 LB_ID),
where
(4.27) sp=Ysrpa= Il @

iq w¢{p.p1.pa.ps.p7)
by a standard argument. Here
(4.28) 2(@) = 1+S(p, w)+S(p, 0)* + ...

Moreover, for w¢{p, ps. Ps> Pe> P7} We have

o S(w', £ S(w), 4

(4.29) Stp, e 5 040 SO 5D
L w o
wla

from (4.12), (4.4), (4.1). The last expression is, of course, independent of p.

From (1.4), for given  there are at least three values of i <7 for which 4;
is not divisible by w. Thus, for I = 1, 2, we deduce from (4.29) and Lemmas 4.3
and 4.4 of [5] that

7
(430) S{p, (.l)‘) < wi‘ l—l {ml/(wl’ Ai)]—uz < wl'w-auz < w—lul
i=1
For [ >3 we appeal to both (1.4) and (1.3). Much as above,
7 7
S(p, (0!} <& wi' n {wl/{wl, ii)}ﬂl,f}@ w—-«ﬂﬂ l‘[ (w’.ﬁ.,-)‘” < w—d-lfa waﬂ;

i=1 i=1

Y. S(p, ) € 0™,

1>3
Hence

4.31) (@)1} € 0™ V2

This may be strengthened for @ not dividing IT to

(wA 1)

by an obvious variant of (4.30). Combining (4.31) and (4.32), we have, for
a suitable absolute constant C,, the lower bound

(4.33) [T x(w)> 7"
wzC:

For the remaining factors @ with w < C,, we use the easily verified
formula

4.32) |x(@)—1] < 0™%?
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(4.34) 14+8(p, o)+ ... +S(p, w'}=M(:ul}

w
Where M (w') denotes the number of solutions of the congruence
Axi+ ... +45x3 = 0 (mod o).
Using the work of Lewis [3] almost exactly as in [4], Lemma 10, we find that

(4.35) 0 "M@z (@#3,1>1)

while

(4.36) 37 M@3) =373 (1>6).
Combining (4.33), (4.34){(4.36) we see that

(4.37) S(p)>mn*

fO_r all p sat.isfying (1.10), (1.11). Lemma 11 now follows from (4.26) and (4.37),
On taking into account (2.5) and (1.6).

Proof of (2.7). From Lemmas 10 and 11, we have
(4.38) [F*@da> T Y  I(p).
m

(l.lﬂ]?[l.ll‘
We now show that min (I(p),0) < N" 'L SPWR*UV?, and

(4.39) I(p) > N"'PWR*UV?
for all p satisfying (1.11) and
(4.40) 6Y/5 < p <4Y/3.

The lower bound (2.7) follows at once from (4.38) and (4.39), on taking into
account the identity (3.25).

To begin with, we apply the upper bound
o (p,B) <« PWRUV*(1+N|B|)~¢
Which is a consequence of (4.15), (2.14). This yields

@41 I(p)= | ¢(p, dB+O(N 'L SPWRUV?).
By a change of variables in each of the J-factors in (4.15),

442)  o(p, p) :

T
= K(8, NP)K(B,— B
T pppabels B )K(B z)jl;[:’ K (B, B).

Here

8p3

(4.43) K(B.B) = [ 4y Pe(By)dy,
. BJ
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B, = 133 pW, B, = AY3pp,R, B, = A{* pp,R, Bs = A}U,
2 3 3 5

(4.449)
Bg=Ag?psV, B, =4 p,V.
Let B(v) denote the set of points (a;, ..., %) in RS with
(4.45) N <v+oa,—a,— ... —ag < 8N,
(4.46} BJ+1 aj = BBJ+1 U = 1, seey 6}-

Using Fubini’s theorem, we find that

(4.47) IT'p*p3pspep+ ¢ (P, B) = _I ¥ (v)e(Bv)dv

where
l!’ (") I 31 (V +a 1
B(v)

is a continuous function with compact support. In view of Fourier’s inversion
theorem, it follows from (4.47) that

.o —0g) B (ay ... ag) " da, ... dag

(4.48) I I1'3p3psp,pep; @ (b, BB = ¥ (0) > (N7) "7 u(B(0)).
Here u denotes Lebesgue measure in RS:; we have used (1.16) in the last step.
Let p satisfy (1.11), (4.40). For all (ay, ..., e) satisfying (4. 46) and
B3 <a, <9B3}/8,
it is clear from (1.12)«(1.15) that

¢ 3 3
0<oa,+ ... +ag < N/5, (g) N<a, ﬁ%(;) N,

hence
N<a,—(t,+ ... +ag) <8N
Thus it is clear that
(4.49) u(B(0) > Bg B3> NS.:
Combining (4.48), (4.49), (4.41) we have
I(p)> N~ PY ¥Z,2,Z¢Z,)"* N*? > N"'PWR*UV?
in view of (3.25) and (1.12). This establishes (4.39) and completes the proof of
2.7.

5. The minor arcs: preliminary reduction. In the remainder of the paper we
use the notations

(5.1) H=C,PY™3 Q=PY!
where C, is a sufficiently large absolute constant; also
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(52) M = L2Y)™3.
Further, let
2
(53) S@= Y Y Sospd (W A,0)f(R, A3p30)f(R, A,p30)
Zy<p3<2Z3 Za<pas2Zs

p3=2 (mod 3) ps=2 (mod 3)
and
(54 o= Y 1+2ReY ¥ e[)ﬁ(Shy’+h3p6):|.
P<y<2pP h<H 2P+hp*<y<4P-hp? 4

ply pty.y=h(mod 2)

Let n denote the set of real numbers in (0, 1] with the property that
Whenever |x—a/g| <q 'LN~! and (a, g) =1 we have g > M. Let

(5.5) T=( Y &,(S(@)da.

" (l.'il]}
LEmMMA 12. We have
(56) T < {21—51133 15113 A;,‘S A;ZJ‘ZI!_I_I'%GSIZB(IA;ZI.’: ‘1;2,-‘3} N‘54"345+66.
In the remainder of this section we shall show that (2.9) follows from

Lemma 12. Consequently the proof of Theorem 2 will be complete, once we
have established this lemma.

Given positive integers p,, u,, we write S(u,, u,, B, Z E) for the number
of solutions of the equation

(5.7) RO+ 2P 03 +93) = pyx3+0° 03 +2)
in integers x,, X5, Y1, V2, V3, Vs and primes p satisfying
(58 B <xy,x, <2B, pk¥p,x,x,;,
(5.9 Z<p<2Z,

LEMMA 13. Let B> 1, Z>

E <Yy, ¥2, Y3, ¥4 < 2E,
p = 2 (mod 3).
1, E> 1. Let p,, p, be positive integers,
(5.10) 1,22 B3 < p, B < p,Z°E?;
and write A = BZ™3. Then
(S.ll) S(uy, 5, B, Z,E)
& ZE?B!** 4 AB1Y6+e X ~1/6 | 7pS/2+e,2 x=7/2
+X12412B12 e E(412 Z12E 4 Z A8 E®I® 4 Z ASIPE).

My < B0

Here the parameter X, 1 < X < B, is at our disposal.
Proof. This is Proposition A of [1], with a change of notation.

2 — Acta Arithmetica LIIL3



234 R. C. Baker

LemMMA 14, Let
2
l -
G12J,=f| X Y Soups (U Ast)f(V, A6p2)S(V, p700)| do.
Ol 2P %) 7= mod 3
Then
(5 13) Jl < 1;2{3 ).; 1/3 ’1‘15,*3 N23;21 +el

Proof. From the inequality |zw| < |z|?+4|w|?, we have

7 1
LY j( b3 L
k=6 0 \ Ze<ps=2Zs Z7<pr=1l;
p:E' Z?mmi 3) pr=2(mod3)

1, pep7 , 1150'.)f ({4 j'kpka 0'-)2

2
) do.
Hence, by Cauchy’s inequaiity,

7 1
(14) J,<ZZ, 3 | L >

yeps (U As@) [ (V, Aypia)*| do
K60 Lot 3) by= S mod 9
€ Z3ZS(As, Ag, U, Zg, V)+Z%Z.8(Ass Ay, U, Z4, V).
We may apply Lemma 13 to S(4s, 4;, U, Z;, V), since (5.10) is a COP;
sequence of (1.16). Taking X=1 in (5.11), we have A=UZ;

< N4 ljl;“'a, .
(5.15) zjyzu < N20/21)-1/3 3213
(5.16) AU3E & Nusnzslﬁ;tgus,
(5.17) ZJUW 12 < N37142)- 137/6,
(5.18) AUVPVAZI? < N20/21)316, 2112
(5.19) ASBULRYVIBZ < N7O8447124) 2 308,
(5.20) ATJ’BUUZZ}VZ < Nm‘m/l?"z"‘l;“"z“_

If {k,j} ={6,7}, it is easy to see that
(521) A PA; Ll 13, 1!3+if1615—1!2+111 3124 ~11/24)
< AR (AR5 Y+ (A5 )+ (A5 1))
< AT (35 < (hehs )RR
using (1.5). Appealing to (1.5) and (1.6), we also find that
(522)  ApPA7YR (A A 1SN TS24 47 ”%}’“N‘”i“+.1}’2"').;3*'“1\’"*’34)
<& 1;2,-'3‘1},‘3‘15— 1/3 (2},-’31\[—5{126+1312N—1,f14+1}

& )'k_ 2,‘3‘1},’31; 1/3 & A%ISA; 1131;2)'3'
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Combining (5.11), (5.15)5.20) and (5.21)5.22), we obtain
Z}ZS(As,ApU,Z;, V) < N23214eQL3) 0113) 2213

In view of (5.14), this completes the proof of Lemma 13.
The next lemma is only slightly different from Lemma 10 of [8].

LEMMA 15. Let

(5.23) J2=I’ 2 X Y (P A0)

m| p Za<p3<2Z3 Z4<pa$2Z4
(1.10) p3=2 (mod 3) ps=2 (mod 3)

2
x Papa (FV’ j,zp3a)f{R L] lspapga)f(R ] '14P3P2°€) da .
Then
(5.29) J, < YT.

Proof. Since the integrand in (5.23) has period 1, we may suppose that
m s the set of « in (0, 1] such that whenever |x—a/q] < ¢g"'LP~3and (a, q) = 1
we have g > L.

By Cauchy’s inequality and (5.3) we have

(5.25) I, <Y Y [|f, (P40 S(p*0)da.
(l,’iﬂ)m
For a given p satisfying (1.10), we write D = p®. Let
D-1

n={wa—ken}, Bpy=Jn, op={x aDe®Bp}.
k=0

We show that m < . Let aem and choose k so that 0<k
<aD < k+1 < D. Then we have aD—ken. To see this, suppose the contrary.
Since 0 < aD—k < 1 there exist a, g with (a,q)=1, g< M, |aD—k—a/q|
Sq 'LN™', Thus

k
’a—q—“ <(@D)"*LN-1.

gD
Hence there exist b, r with (b, r) =1, la—b/rl <r'LN-!, and
r<gD<MQ2Y)*=L.

This contradicts the definition of m. So aD—ken, and ae .o p- This proves
that m ¢ o b '

It follows that

(5.26) 015, (P, 4, 0)* S@* 0y de < [ |f, (P, 4,0)* S (De)da.
m jn
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By the change of variables f = Do we obtain

1
[ 1f, (P, ,0* S (D) de = & [ |, (P, 2,B/D)* S(B)dp
.ﬂ'D gD

D-1 >
=15 11, @, 28D s (BaB
Do

D-1
=% Y. S5 (Ps Ay (@+k)/D)|* S (a+ k) do.

Thus

(527 | |f,(P, A,0)* S(Do)da = | %D)il |£, (P, A,(+Kk)/D)|* S (@) de.
“‘D n k=0

By (2.1),

1 b-1 ,
w51 {Ses)
D=o PexiSarP<x<ar D

pAx pPAx2

A,x‘:s A;x: {mod D)

Since D = p*® and p = 2 (mod 3), p¥ 4, (by (1.18)) the conditions px;, pf X,
4,x] = A,x3 (mod D) are equivalent to pXx;, pt X, X; =X, (mod D). Let
h = (x,—x,)/D, y = x,+x,. Then the summation conditions are equivalent to
2P < y+hp® < 4P, 2P < y—hp® < 4P, pXy, y = h(mod 2). Thus the double
sum becomes

ﬁ(oh 3By’ + Dzhz))]

e
h 2P+ |h|P3<y<4P—|h|p? [4D
pry, y=h(mod 2)

l s
= Y 1+2Re ¥ e[f(3akyz+a:h3p5)].
P<y<2P h>02P+hpd<y<4P+hp?
pkY pty. y=h(mod 2)
Clearly the innermost summation conditions imply that h < H. Therefore,
by (5.4),
1221 A+ K\
5 k;ﬂ fp(P, —-—D = ¢P(G'.'].

Thus, by (5.25), (5.26), (5.27) and (5.5),
J,<Y| ) @,()S(@da=7YT.
“{l.l;(}}
This completes the proof of Lemma 15.
Proof of (2.9). Suppose for the moment that Lemma 12 is true. We
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apply Cauchy’s inequality, recalling (2.2), (2.3), (5.12) and (5.23); and th
the bounds (5.13) and (5.24). This yields (38 . Has

(5.28) [ F(a)da < JY/2 Y2 ¢ Ji2 yriz a2
m
< N23||’42 +1 7{6901‘&}15— l,l’ﬁ"{%fbj?— lfJ-Al— 1 7{690'}"1}2‘
By (5.6) the last expression is
(529) < N29712615+45) - 161116 1/3 = 17/690
X {'1; 5}27612- 1151;;’614— 1/3 + 1%6314}60’1; 113)‘: l,'3} .

Two separate calculations are now needed to show that the ion i
(5.29) is 023434511113 N426/345-¢)  Firstly, (1.6) yields SRR

(530) N426,F345 —2971/2415- SGH‘— 1/3 - N'l 1/2415—- SJH— 1/3
671/2415-1/3 - - - -
> [I57Y 1374003 5, [T-1/18 5, ) =1/61/6~1/3)~1/6)1/6 ) - 1377 13/92
since
-1/67-1/611/6 . y= s -
As OATTOAS® < (Ashpdy) ™18, Q7MPAYS < (R4he)~ 118,
j__; 1,’311—13392 < ('17;.1}—1313
from (1.5). Similarly, the first expression in (5.30) is
S. — - -
(531) > JI7118 5 ) 116)1/6) ~1/3)619/1380)~1/3; <13
Since
A;Iﬁ_— 111825 Ulsl‘liﬂv‘— 1!13’11,-‘3— 1!131; 1!6-—1}181%;3— 1118’11—619;’1 380-1/18

1/18 25 == =
> ’12; ’13:‘18'{%{1813.‘181' 619/1380-1/18 > 211118—619;1380 > 1.

Sfo;g\azig)ing (5.29)5.31), we obtain the desired bound (2.9) for the left-hand side

6. Manipulation of the sum T. This section follows §5 of [8] quite closely.

Let
(6.1) FB,p;h= Y  e(3By*—yy),
2P<y<4P
" y=h(mod 2)
©62) Gyle,0)= ), e(toep®+op),
Y<p=2Y
p=2(mod 3
- P<(2P/m)Y/
.3) : F,(a; h) = Y e(34,xhy?),
2P+hp3<y<4P—hp?
(64 y=h (mod 2)
4) ¥,(@) =2Re ¥ F,(x h)e(}4i,ah’p®),
h<H
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(6.5) D, (a; h) = Y e(34,2hp?y?),
2P/p+hpt<y<4Pjp—hp?
¥= h(mod 2)
(6.6) E,(@=2Re ) D,(x% h) e (34,2hp®).
h<H
We form the integrals
(6.7) T,(p) = [ ¥, (@) S (2)da,
(6.8) T,(p) = j.'.’*.'p (o) S (o) dox
and
1
(6.9) T, = | S(0) da.
(1]
By (5.4),
D,(0)=Y¥,(0)—E,(0)+0(P)
whence
(6.10) T= Y (T, ®-T @)+O0(PYT;)
{1.10}
from (5.5).

We estimate T; via Lemma 13. Just as in (5.14), we have
(6.11) T, € Z3Z,S(Ay, A3, W, Z5,R)+2Z3Z,S (A3, 44, W, Z4, R).

We may apply Lemma 13 to S(4,, 4;, W, Z,, R), since (5.10) is a con-
sequence of (1.16). Taking X = 1 in (5.11) as before, and recalling (1.12)-1.14),
we now have

A= WZJ_S < N56,|'345‘1l—34,134512— 11311'

Moreover, )

(6.12) Z RAW < No6169)343455 1337113,

(6.13) AW3I6 & N”gli"-’molg 19!1811,

(6.14) ijs,rzlg & N259/345119/6907/6 =113
(6.15) AWI2R2ZY/2 ¢ NS6/69) 71713457 12,506
(6.16) ASBWIRRIIBZ ¢ N353/690417/8 380 -3/8;7/24
(6.17) ATBW2Z R* < NS6/69) ;1771380 ~11/2413/24

Arguing much as in (5.21), (5.22) we find that

z%z}suz’ AJ" "/, st R) < N322;345+:3’{716912—1{3’1:14;3;_;2}3
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for {k, j} = {3, 4}, and consequently

(6-18} P'YT3 <N454}345+zz;47;‘3451;1!315131‘;2f3
from (6.11), (1.12).
Let
(6.19) Ts(v, 0) = [ T |F(adsh, ; b) Gy (ad,h3, Oyh)| S () da.
nhsH

By a very minor adaptation of the proof of (5.26) of [8], one finds that

(6.20) Y T,(p) <(log P) sup Ti(y, 0)+N*3*>45171,
B 0<6<1
(1.10)
We omit the details.

In the next section we estimate T (y, 6) and in Section 8 we give a bound
for Z T, (p). We will then be able to combine these results with those of this

{_I .‘;0}
Section to prove Lemma 12.

7. The estimation of T, (y, 6). Although this section and the next are very
Similar to §§ 6 and 7 of [8], it is necessary to give full details because of the
Powers of A, 4,, A5, 4, that enter into the estimates.

LEMMA 16. Suppose that aeR,

1
7.1 . . -
Then
—lHPZ
(7.2) F (ah, y; h)|? <P"]:q—+HP+ ]
T v B < P o o T P+

Proof. As in the proof of the Lemma of [7] we have

(7.3) Y |Flah, y; B> <P Y min(P,|aj] "),
h<H j<12HP

Where ||...|| denotes distance from the nearest integer.

By (7.1), when j < 12HP and gq/}j we have

; a a aj a all 1 _ 1l|la
llo =||—+ (a——) >[5 —12HP|a—— 2=-=== —1
/ a \""q qa llall 29 2|lq
Moreover, when g|j we have
a a
ol = '(a——) = jju—=|.
Yy J p J p
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- Hence

(74) Y, min(P, ||ocj||‘.‘)<q);: (¥+l)

J<12HP

ari|”

A 1
$°5 winlP, .__]
q ‘ k< 122:1:?;4 [ kqlo.—a/ql

2
<P‘[HP +q-+min [EP—, L ]]
q " qla—a/q|

Since HP? = C,Q3, the lemma now follows on combining (7.3) and (7.4).

LemMA 17. Let aeR, yeR. Suppose that

“*E‘Q‘I"Q—’H“. (@ q=1, qg<QH

Then
HY?*q 'R
1+ Q% |e—a/q))'?

Proof. This is essentially Lemma 8 of [8]. We are able to quote directly,
because '

(76) Y= PlT,‘llS’ Q = P98H.15’ H= C3P64,'115

from (1.12), (5.1); and this is just as in [8]. An insignificant difference {§ that the
condition p < (P/(2h))!/® in (5.25) of [8] has been corrected to p < (2P/h)'7? in
(6.2) of the present paper.
D
= i
q

It is convenient to write

LemMmA 18. Let g=>1, (a,q)=1 and acR. Let p,, p, be primes,
Z;<p;<2Z;(j=3,4). Then
1,39 (@)° WR*
14+ NY ™ 3|a—a/q|)®

(7.5) Y |G, (@h?, yh)? < P‘[( +H”‘Y{|.

k€H

(1.7 I'=r(,a,q= q”“"(l+."»’Y"3

(7.8) S(x) < ¢°Z3Z% {{ +2,4* Y (9> W? +I‘6}.

~ Proof. By Lemma 2, we have

Sraps (W As) = 5,,.(d5 320 (Az (rx —‘E’), W) +o(n

and

SR, 4pie) = 5, (@, A.p?au(a. (a—g) 7, R)+om.
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(Note that
NY 3 <,W?, AZ}R*<NY™?
from (1.16).) Applying (3.9), (2.13) and (2.14), we find that

q'v(a/g, )W ey QW
1+NY 3 |a—a/q| 1+NY 3|a—a/q|

(?'9) fp;p.. (W; 2’2“) <

and

+I' <

4 ¥ (a/g, Ap?) R
1+NY 3ja—a/q|

74", p)Y (@R
1+NY 3 |a—a/q|

(7.10)  f(R, A;pfa) < 4T

for i =3, 4.
Combining (5.3), (7.9) and (7.10), we have

(7.11)  S(m)'/?

< q:h

[ APy W &P A32(q, p)¥ (@R 5
Zy<pec22s Ze<prc2z 1+ NY 3 la—a/q| 1+NY™?|x—a/q|

x[ii” (9:p)¥ (@R F]
1+NY 3 |a—a/q|

Ay (W 43¢ (9)* R?
Se 3
<q 2324[1+NY"]a—a/ql+r:”:(l+NY'3Ia—a/ql)’+rz]'

For the last step we require (3.7), (1.5).
Suppose for a moment that

(7.12 A @ W
) L> TNy S —ajal
Then clearly, from (1.5), (3.18),
A:¥(q)*R?

r .
Z T+ NY 3 la—ajq)?

Thus (7.11) yields
5(@)'? < q%Z,Z,I°,
Which implies (7.8).
Now suppose (7.12) is false. Then

S(a)l,*z < quzaz 4’1;"2 ‘l’ (Q) w
1+NY 3|a—a/q|

Aﬂl‘(‘l’}z Rz 2

+NY =) ' |

Again, (7.8) follows. This completes the proof of Lemma 18.
LemMma 19. Let yeR, 0e{—1,1}. Let
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(7.13) X = AVS,
Then
(7.14) Ts (v, 0) < {X”zﬁ.f””“l;”al;”l; 213

+ X—9f2117123;‘; 2!31; 2[3} N4541345 +54 .

Proof. Let n, denote the set of « in n with the property that whenever

b
3.10'.—;‘

(7.15) <r 'H'AQ73X7Y, (b,n) =1,

one has r > X " 'H"*, Let aen,. We apply Lemma 16 with 4,a in place of a.
By Dirichlet’s theorem there exist integers b, r satisfying (7.15) with
r< Q*H"74X; here we must have r > X " 'H"/*. Now the condition (7.1) is
easily verified, since Q*H~7*X > HP'** from (7.6). Thus

(7.16) Y |F(ahd,, y; B|? < PP(PPH™3*X + HP+Q>H ™ 7*X) < P**3H 34X
h=H

L

by (7.6).
We may also choose c, s so that (c, s)=1, s< Q*H™* and

%

c = -
Aa——| < sTTHY4Q T3,
S

Then |A,a—c/s| < s 'H"#Q73X"!, so that s> H"*X~! > H* Here we
appeal to (5.1), (1.12), (1.5). By Lemma 17, applied to A,a in place of «,

Y |Gy (3 ah?, Oyh)* < PPHA4Y2.
h<H

Hence by Cauchy’s inequality, (7.16), (6.9) and (6.18),
(7.17) | Y |F(ahiy, v; h) Gy (A 0k, Oyh)| S (o) dat _
e < XUZPI +éYT3 < X112N454,‘345+2#1;41}34512— 1}31533)“;2,:3_

It remains to consider n\n,. Let aen\n,. There are integers b, r satisfying

lid—b < r—iH'IM-Q—sX—l, (b, l") i l, r< X—JHTM.

r

(7.18)

We write b/A,r = a/q in lowest terms. Clearly q = rd where d = 4,/(4,, b). Also
A
(r, —‘) =(r,(d;, ) =1.
d
Because aen, we know that either

=] r-id- LN,

rd

or rd > M, or both.
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Let d be a given divisor of 4,. Let

a
of——

rd
It is clear from (2.5), (5.1), (1.12), (1.6) that the interval

(7.19) N, d,r,a)= {at:

ér"d"LN_'}.

a
o —

(7.20) N,(d,r,a)= {a:
rd

-..{.,_ r—lH3,"4Q—JAl— 1}
contains N, (d, r, a). Similarly, the interval

a
o——

(7.21) N,d,r,a) = {cx: i

<r” lHTI4Q‘-311— 1X_ l}

Contains N,({d, r, a).
Let M, (d) denote the union of the N,(d, r, a) with

(7.22) 1<a<rd, (a,rd)= (r, %) =1,

(7.23) r<Md !,

Let 9, (d) denote the union of the N, (d, r, a) with (7.22) and r < H**. Let
R, (d) denote the union of the R, (d, r, a) with (7.22) and r < X ~'H"/*. By the
discussion following (7.18) we have, modulo one,

mn, < tIJ {9}3 (d\R, (d)}
d|dy
Since Md~! < LY 3 < H¥* from (5.2), (2.9), (1.12), (5.1), (1.6), we have
N, (d) =N, (d). Similarly N, (d) = N4(d). Thus, modulo one,

(7.24) m\n, c .H (N5 (@\N, ()} U (N, (@\R, @)}

Let &(d, r, a) denote N,(d, r, a) when H¥* <r < X"'H"'* and (7.22)
holds; and denote 9, (d, r, a)\N, (d, r, a) when r < H** and (7.22) holds. For
fixed d, we have

(?'25) . ms (d)\mz (d) = U

r<X-1H7/%q
(7.22)

Let ae #(d, r, a). The fraction A,a/rd may be written in the form b/r with
(b, r) = 1, since

Ld,r,a).

(Aya, rd) = d(%1 a, r) =d

from (7.22). Lemma 16, with 4,« in place of «, is applicable since (b, r) = 1 and



244 R. C. Baker

(7.26) a—% <r 'H#Q73X~' < 1/(24rHP)
r

b
Alﬂ—;‘ = Al

from (7.6). Thus

= 2 _]HPZ‘FJ
(127) ¥ |F(yoh, 3 B < P’{_—'—L+ HP+r} « —/

h<sH 1+Nl,r—-3 d-———E"
rd

Here we require the observations that
Q31, =P3Y %), =NY"? HP+r<HP<r 'HP?,

(HP+nrrQ?

A,a—;” < HPH""* < HP?.

Choose c, s so that |4, a—c/s| < s7'H¥*Q73,(c,s)=1,s<Q*°H ¥ If

b/r = c/s, then by the definition of £ (d, r, a), we have s > H>*, If b/r # ¢/s,
then

1

— <
rs

b ¢

g(H:lMs—l‘i_H?Mr-l)Q—J < L_'_H'.'Mr—lQ—J
r s

2sr

from (7.26), whence s > 3Q3H 7% > H3* once more. Now we may apply
Lemma 17 with 1, in place of &, obtaining

Y |Gu(A,ah®, Oyh)* < Y2H34P.

h<H
Therefore, by (7.27) and Cauchy’s inequality,

Y 'HBP1+6 -1/2
5 [F Ry, 3; h) Gy (Ayoh?, O7h)| < ot

B [1+NY 2 |a—a/rd]]'"*
It follows that
(7.28) § Y |F(Ah, y; h)G,(Aah®, Oyh)| S (o) do

gald Rz ks H
YH'HSPI +Jr— 1/2 S(G)

rsx;m!' a<rd £(d,r.a) [l +NY~3 |“““"’/rd|]l"2
(1.22)

By -Lemma 18, for (a, rd) =1 we have
S(a)
#@ra(l+NYla—a/rd))'?

< da.

do

4,239 (n)° W2R*
< (rd* Z3Z% 243
( ’ ‘-?(Ilj:r.a) (1+NY 3|0l—a/rd|)’312
Wi g oy
(1+NY ™3 |a—a/rd))'?

+r3d3(1 +NY~?

512
:f) }dfx.

a—_—.—.
T
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The integral here is
< LAINTYY3WAR* Y (N min(1, (rH~3/4)11/2)
+;{2 WZ "b(r}ZerZN-' 1 Y3 (T_ lx— lH?,M-)HZ_!_rBdSN— 1 YS (r'- lx-lHTM-)sz'
Hence the left-hand side of (7.28) is
< YZ3ZIPUPUHUBLINTIYIWARY Y rY3()°
rEX-1H
xmin (1, (bkH™3/4)1172)

+d3lzw2.N-ly3x—1!2H?!B z rZw(r)z_l_dltN—ly:i(X—1H114)912}-

r<X-1H4
From [8], (6.24)(6.26) we have
(7.29) Y q'?*%y(q)® < 2°"7%  when 6 < 7/6,
4>
(7.30) 2 4"y (g° < A°"7°  when 0> 7/6,
gsa .
G Y (@ <p.
qsp

Thus the left-hand side of (7.28) is
(132) < YZ3ZZP'+*H3{3,2,A3 N~ Y3W?R* (H4)~ "6
+li;"2 WZN—I st—s.fz HSS,‘B +3.1' N- 1 YSx—W.ZHGB!S}
<& 1?71’23 1;2!3 ’1; 2}3x—9}2N4541345+4&.
The third term is dominant here, as one easily verifies by an appeal to (7.6),
(L12)«1.14), (1.6). :

Let #(d, r, a) denote N, (d, r, a) when Md~* < r < H** and (7.22) holds;
and denote N, (d, r, a)\R, (d, r, a) when r < Md ™! and (7.22) holds. For fixed d,

(7.33) NE@\R D= |) 2, r,a).

T2
Le; acR(d, r, a). The inequality (7.27) holds, because (7.26) is evidently
Satisfied with (b, r) = 1. Moreover, by Lemma 17 applied to 4,a in place of a,
' PHY?~ 1P
(1+NY ™3 |a—a/rd))'”*

Therefore, by Cauchy’s inequality,

Y. |Gy (Ayoh®, Oyh)* <
h<H

YHPl +&r~ 2/3
. 3
bY |F (R,0h, y; B) G, (4,0h°, Byh)| < (1+NY > la—a/rd)?*>




246 R. C. Baker

Hence
(7.34) j Y |F(Alrxh, y; h) G, (A, ah?, 0yh)| S (o) dox
9,(d\w, (@) h<H
YHP*4S(a)r=23
< — o,
r s%s»;na;-d a(d,r.a) (1 +NY 3 |a—a/ ”ﬂ)z” ?
By Lemma 18, '

() do
adra(l1+NY 3 la— a/rd))*?

A 12 w (l‘)6 W2R4
26 72 72 273
% (rd) A ﬂ(d.‘:r.a} {(l +NY™ " |a Bk a/rdl)zoﬂ

Ar2d g (1) W
(14+NY 73 |a—a/rd))*?

+r3'd:‘(l+NY’3

a 713
——] do.
) 1
The integral here is
<A, 3N Y* W2R? Y (r)® min(1, (rdM~*)'73)
+d2 Az WZ N~ 1 Yarz 'p (r)z (r—lHBM)US +r3d3N—l YS (!"_ IHSM)IWB'
Therefore the left-hand side of (7.34) is
(7.35) < YZ3Z3HP'*'¥
x {dA,A3N"* Y2W2R* Y r'2y(r)°min (1, (rd/M)'"P)
r<HY4
+d3‘12 w2 N__l YZ'! Hlm Z rzl"(ﬂz +d4 N—l Y3 Hum}
r<HY4
< YZ3ZIHP'***{d"PA,A3N! Y2 W2R*M ™43
+d3112W2N_1 Y3H114+d4N—1 YSHISM}.
The second and third summands in the last expression are easily seen t0
contribute

(7.36) & A3 )23 JATIRBY 912 4541345 +45
by an appeal to (7.6), (1.12}1.14), (1.6). The first summand contributes
(7.37) & A132/69 111314133 ~213 \490/345+40 ) —4/3

<3 235 -2/3 147123 9/2 \j454/345+45

by the definitions of M, L in (5.2), (2.5).
We combine the estimates (7.32), (7.36) and (7.37) and sum over all divisors
d of 4,. In view of (7.24) we have

[ T |F(yah,y; h)Gy(hyah®, 0yh)|S@)dar < 2172315 2R3 22X ~OINS4345 452,
an, h<H
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In conjunction with (7.17) this establishes (7.14), and the proof of Lemma 19 is
complete.

8. The estimation of T,. Let

8.1) 2,®=Y | 2 e(3Bhy?)|>. -
h<H 2?!p+:j;2:‘i‘§d4§{p—hp’
By (6.5), (6.6) and Cauchy’s inequality,
(8.2) |2, @)|* < 4HQ,(4,0p?).
LemMA 20. Suppose that aeR, that p satisfies (1.10), and that
(8.3) Ia% 424;HP’ (@, g =1.
Then
(8.4) Q\(a}cgp-’(gu_—“_lﬂgz +HQ+q).
? 1+HQ?|x—a/q|
Proof. This is a variant of Lemma 16. We have
Q<P Y min(P,]|a])"".
JE€12HPp~?

The proof now goes through as before with P replaced by Pp~!, so that (8.3)
Pla}'s:, the role of the inequality (7.1). Since Pp~' < Q from (1.10), (5.1), we
Obtain the bound (8.4) in place of (7.2). This completes the proof of Lemma 20.

LeEmMMA 21. We have
(8.5) z T, (p) < {2;41;34512— 134033723

.4
(1.10)

X" 912'11-7,‘2313— 2/3 ’14— 2!3} N454,f345 + 56‘

Proof. Let xen and suppose p satisfies (1.10). Choose u = u(p), v = v(p)
80 that

(8.6)

A0 2~—Esv“HP‘2, @, 0)=1, v<PH

Let & () be the set of p satisfying (1.10) for which
v=uv(p)> H*Y 2.
We observe that

®.7) HP~? < p/(24 HP)
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from (7.6), (1.10). Thus we may apply Lemma 20 with A,ap? in place of a. In
view of (7.6), this gives
HQZ 2rr—1 2+dpr—1
Combining (8.2), (8.8), (6.9), (6.18) we have

(8 9) j‘ z - (a] S{ﬁ)da < '{1—4713451; .l,'3lé.’3’14—. 2."3N454f345+2“_
= “p
n pes(a) :

Now let aen and consider a prime p with
(8.10) Y<p<2Y p=2(mod3), p¢L (0.
Then v = v(p), u = u(p) satisfy

@8.11)

J.lapz—-:-sv"HP_z, @, v)=1, v<HY 2

Choose b = b(a), r =r(x) so that

Alrx—ESr"(SHz}‘l, (b,")=1, r<8H~
r

u__ b
vp?® r

< rHP 2 +vp*(8H?) ™' < 8HP 2 +4vY?(8H?) ™' <1
from (7.6), (8.11). Thus

Then

|ur — bvp?| = rop®

(8.12) LA

vp*
whence
(8.13) r=ot with t|p®.
Moreover, applying Lemma 20 as before,

-1 T
(8.14) Q, (A ap?) < P“[ = Hsz I ;ﬁzwu /U|_+HQ+u]
v 'HQ?

<P

1+ HQ? |A,ap* —ufv|
by (8.11), (7.6). Combining (8.14), (8.2) we have

P*HQ
(v(1 + HQ? |2 2p* —u/v])*"*

Ep (Alapz) ‘é
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In view of (8.12), (8.13) we have

P*HQ
{r(1+HP? |1,a—b/r)}"2

X {Y+ Yy &2+ 2 t”’}

©.101p)=p (8.10): %(p) =p2

@15) ¥ E,(A4p?) <

o)

P®HQY
{r(1+NY 3 |a—b/ri,|)}/*

For the second bound in (8.15) we observe that if t(p) > 1, then p|r.
Let n, denote the set of « in n with the property that

a—r(:}l D > H2Q*P~2,

It is clear from (8.15), (69), (6.18) that
(B.16) | ¥ E,(4,0p)S(@)du < AT V4505 1IN TINS5 428,

"2 8ho)

Let #(d,r, a), #(d, r, a) be defined as in the proof of Lemma 19 for all
d[,. For aen\n, we evidently have (7.18) since

r(i +0°
from (7.6), (7.13), (1.12), (1.6). Arguing just as in that proof, it follows that

(

r(a)(l +NY™3

@:—2‘) < H*Q?P 2 < X"'H4

Zd,r,a)u( | 24,r, a)]}.

djas -1f7/4:q r<H3%a
7.22) (7.22)
Moreover, HQ < H"8P'~% from (7.6). Thus (8.15) yields
24 78 pl+s
®18) ¥ E(i,p?) < L2 A

©%o) {rA+NY 2 la—a/rd)}'? ~ {r(1+NY "> |a—a/rd|)}'"?
On any of the intervals #(d, r, a), Z(d, r,a) in (8.16). Hence
®l9) ¥ Y | T 5@*ewp)S@u

r<X-1HY/4 g<rd ¥(d,r,a) g
(7.22) (8.10)

H8pitiys ()

< — :
.-sx-zti‘f;g as<rd L(d.r,a) {r(l +NY? |u—a/rd|)} 1/2

On the set #(d, r, a) we have

r< H3,f4’ < r—lH3,-‘4N—1'lr3,

3
rd

3 ~ Acta Arithmetica LIIL3
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a 1/6
{r(l +NY™3 ac———D} <HY™ <Y
rd
and (8.18) yields

(8.20) Y OY [ Y E(hap)S)da
r<H34 a<rdRdra) p
(7.22) (8.10)

T ¥ YHP'*?
< -" = - 2
PSHYS asrd Rdra) {r(l+ NY 3 |ja—a/rd|)}

122)

whence

We have already obtained the bound (‘?.36) for the expressions on the
right-hand sides of (8.19) and (8.20), in the course of the proof of Lemma 19.
Therefore the bound (8.5) follows on combining (8.9), (8.16), (8.17), (8.19) and
(8.20). This completes the proof of Lemma 21.

Lemma 12 now follows on combining (6.10), (6.9), (6.18), (6.20), (7.13),
(7.14) and (8.5). As explained in Section 5, with the completion of this step we
have finished the proof of Theorem 2.
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Linear forms in two logarithms
and Schneider’s method, II

by

MAURICE MIGNOTTE (Strasbourg) and MiCHEL WALDSCHMIDT (Paris)

Introduction. We consider an homogenous linear combination of two
logarithms of algebraic numbers with integer coefficients

b,loga,—b,log a,.

We refine the lower bound which was obtained in our previous paper [7] by
using the assumption that b,, b, are rational integers. Our result will be very
Sharp as far as the dependence on the heights of &, and «, is concerned. We pay
also a special attention to the absolute constant, which is important in
Numerical applications (e.g. [4] and also [3]).

1. A lower bound for linear forms in two logarithms. Our main result is
Th?orem 5.11 in Section 5. The hypotheses are a bit technical, and we give here
a simpler statement. However for concrete applications where the value of the
Constant is important, our estimates of Sections 5 and 6 below will give better
Numerical values than Corollary 1.1.

Here we consider the absolute logarithmic height h(x) of algebraic
Dumbers. Namely, if « is algebraic of degree d over @, with conjugates
g,a, ..., 6,0, and minimal polynomial

d
Xt . tey=co [[(X—00) (co>0)
i=1
then

d
h(e) =d™'(Logco+ Y, Logmax(1, |o,al)).

i=1

The measure of o is defined by
d
M (o) = |egl [T max {1,]oal} = exp {d"h(2)}.
i=1
Let «,, o, be two non-zero algebraic numbers of exact degrees D,, D,. Let

D denote the degree over Q of the field Q(«,, ;). Forj =1, 2, let log «; be any
Non-zero determination of the logarithm of a;.
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