ACTA ARITHMETICA
LIIT (1989)

Irrationality results for theta functions
by Gel’fond-Schneider’s method

by
PETER BUNDSCHUH (KoIn) and MICHEL WALDSCHMIDT (Paris)

0. Introduction. Let t be a fixed complex number with positive imaginary

Part, and let g denote the number ¢ of absolute value less than one. Then the
Series

Z qnl ez:'ﬂlu
neZ

defines an entire function of u, denoted by 0(u) or 0(u,q), satisfying the
functional equation

0 (u+ A+ ut) = 0(u)exp(—2inuu —intu?)
for all A, ueZ; in particular
©.1) Ou+1)=0@) and Ou+1)=g ‘e 2™ ().

Therefore 6 is a special theta function with respect to the lattice Z +1Z. This
fheta function (as well as three closely related ones) was introduced by Jacobi
i:ﬂ 1829 in his famous Fundamenta Nova Theoriae Functionum Ellipticarum
8]. '
Seemingly the first non-trivial investigation of arithmetic properties of
“’l'eta functions goes back to Bernstein and Szasz [1]. Using a criterion of
Eisenstein concerning irregular continued fractions, they showed in 1915: for
Ron-zero rational numbers v and g = r/s with r, se Z and |s| > max (2, |r{?), the
nght half
2 g
nz0
of the theta series 0((logv)/2ir,q) is irrational.
Some few years later Tschakaloff [14 I] studied arithmetically the
fOIlowing entire function
02 T() = T(za)= X a2z
nz0
Satisfying the functional equation

(0.3) T(az) = 1+ azT (2),
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where ae C is fixed with |a] > 1. Applying essentially the Padé approximation

method used by Hermite for his classical transcendence proof of the number e,

he could show the irrationality of T (¢, a) for non-zero rational ¢ and a = s/r

with r,s€Z and |s| > |[r|3+V5/2, Because of T(vg,q" %)= ), q" v", this last
nz0

result implied a slight improvement on that of Bernstein and Szasz.

In his paper, Tschakaloff pointed out that his theorem remains true if the
rational field is replaced by any imaginary quadratic number field with unique
factorization. About 50 years later one of us [4] showed the unique fac-
torization property to be unnecessary. The proof in [4] used the method of
Newton interpolation series, and had the further advantage to lead im-
mediately to quantitative refinements of these irrationality type results, which
have been axiomatized in [3] and [16] by the same method. Especially in [16]
the values of entire transcendental functions satisfying Poincaré’s functional
equation

F(az) = P(2) F(2)+Q(2)

are investigated, where P and Q are polynomials with coefficients in some fixed
imaginary quadratic number field. It is just this kind of functional equation
generalizing (0.3) which plays an important réle in our present work.

For the sake of completeness we should include here the remark that some
of the irrationality theorems indicated until now have been generalized to
results on linear independence over Q or over imaginary quadratic number
fields; see [14 117, [10], [13], [11], [12], [2].

Three years ago, in the survey paper [5], one of us announced the
following theorem concerning the Tschakaloff function T from (0.2): if a > 1
and d are positive integers, then the set of rational numbers & witha™* < |£| < 1
such that T(E, a) is algebraic of degree not greater than d has less than 16d*
elements. :

Whereas a less precise bound was obtained by Senkon [9] using again
Newton’s interpolation series, we applied Schneider’s method from transcen-
dence theory for the first time to the topic under consideration. This idea led us
to a proof of the following much more general result, which depends on
a generalization of the first main result (Theorem 2.1) of [7]. We denote by
h the absolute logarithmic height (see § 1 below).

THEOREM 0.4. Let K be a number field of degree 6 embedded in C, let aeK,
with |a| > 1 and let P and Q be polynomials in K [X], with deg P = A. Let F be
a transcendental entire function satisfying the functional equation

F(az) = P(2)F (2)+Q (2).

Then for each positive integer d, the set of algebraic numbers [ with
la]=* < || < 1 such that F({) is algebraic with

[K(¢F©):K] <d
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is finite with at most

(0.5) 7004d%5h (a)/log|a|

elements,

When applying this result to the above function T in the special case
K = Q, we get the bound 7004> instead of 1642 as quoted earlier. We did not
ll'ly to get a sharp absolute constant, and the value 700 can be decreased
Without much effort.

In Section 1 we introduce some notations and state a few preliminary
Tesults; in Section 2, we apply Gel'fond-Schneider’s method and give a refine-
ment of Theorem 2.1 in [7]. In Section 3, we study the functional equation
F (qz) = P(2) F(2)+Q(z) and deduce Theorem 0.4 (more generally we include
derivatives). In Section 4, we perform the change of variables z = e*™ and give
Irrationality results on values of theta functions.

. 1. Preliminaries. When 8,, ..., B,, are algebraic numbers in a number
leld K, we define the absolute logarithmic height of the (m+ 1)-tuple
(1, By, ..., B,) by

h(L, Byr v B) =

[K:Q]zl(’gmax{l'lﬂllw ey Iﬂmlv}’

Where v runs over the set of places of K, with the usual normalisation:

[Tled, =1

v

for all xeK, a« #0.

For m = 1, we write h(p) instead of h(1, ).

“{hen P is a polynomial in one or several variables with complex
Coefficients, we denote by L(P) (= length of P) the sum of the absolute values of
the coefficients of P.

We shall use the following simple lemma (compare with [7], Lemme 0.1):

; LEM‘MA 1.0. Let P be a polynomial with coefficients in Z in the km
ndeterminates Xl <i<m,1<j<k). Assume that for eachj, 1 <j <k, Pis
of degree at most L; with respect to the m variables X, ..., X,,;. Let B;
I<igm, 1< j< k) be algebraic numbers; we write B for the mk-tuple
{’ij}lﬁl{m.lsja;r Then

k
h(P(B) <logL(P)+ ¥, LA(1,By)5 .-, Bu)-

1
Le We shall use a version of Siegel’s lemma which is both a refinement of
mme 1.1 in [7] and a special case of Lemma 1 in [6]:

g LeMMa 1.1. Let m, k, T, L be positive integers, a,, (1 <p<m,1<j<k,
St T) be algebraic numbers, and P,, (1 <A< L, 1 < p < m) be polyno-
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mials, with integer coefficients in the mkT variables X ;.. We write A,, for the
value of P,, at the point (%,;); <u<m1<j<k 1<c<T> and we define
L
= 2 L(P,) (I<u<m),
For 1<p<m and 1<j<k, we write 0, for the (T+1)-tuple

(15 o555 -+ j,.) For 1<pu<m,let K, be a numberfeld containing the kT
numbers aﬂ,(l <j<k,1<t1<T),and let d, be the degree of K, over Q. Let m'

be the number of those fields K, which are totally complex. Define D = Z
=1
and assume L> D. *

Then there exist rational integers x,, ..., x;, not all zero, satisfying

L
Y x,4,=0 (1<u<m)
i=1
and
m x 1AL~ D)
max |x,| < [(2"" “T1 (4% 1 e""’*‘*"“’)) ]
1<ASL u=1  j=1

The bracket denotes the integral part. Notice that the right-hand side is
always at least 1 (even if all the 4,, vanish!).

Lemma 1.1 of [7] corresponds to the special case where each P,, is
a monomial (depending on A) in k variables.

Proof of Lemma 1.1. We use Lemma 1 of [6]. If G, denotes the set of
embeddings of K, into C, we have for all (u, ) with 1 < pu<m and ceKy;

Z lo(4,)] < 4, H max {1, [0 (@), -+ lo @]},

hence

[T 5 Il < afr-ep] $ Lah0,)].

a6y A=1

Lemma 1.1 follows.
We need also to estimate derivatives; for functions of one complex variable
z, we write D = d/dz, so that Df=f" is the derivative of f.

Lemma 1.2. Let f,, ..., f, be functions of one complex variable, which are
analytic in some domain of C. For t, A, ..., A, non-negative integers, the function

—D'(f" iy
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; rr 1
IS a polynomial in the k(t+1) functions —D'j} O<t<t, 1<j<gk); for
1 SJ <k, this polynomial is homogeneous of degree A; in the t+1 variables

D‘ f; 0<t<1), and its length is at most

(t+1)11+...+).
Proof. For t and 4 non-negative integers, we define a polynomial 4,, in
Z[X,, ..., X] by

AI‘Q(XO""’XI)=0 fOl' f>0,
and

AIJ(XO!"'1X|)= Z nxn

n+t...ta=ti=

for A>0 and t > 0.

In the summation, (ty, ..., 7;) runs over the A-tuples of non-negative integers of
Sum ¢, If 2> 0, then this polynomial is homogeneous of degree A, with
Non-negative coeflicients; therefore its length is

LA)=A,1,...,)= ¥ 1= (‘ﬁ:') <(t+1p71.

t4+A—

i=1

If we define, for A =0, ( ) fo be O for t >0 and 1 for t =1, then

+4-1
L(Au)_(’ y ) for all 20 and ¢ > 0.
From Leibniz rule of derivatives we have
l r 1 ' ] 1
EDIU-A) - Arl(f’f ’ Ef ’ "-vED'f)‘
Next, for non-negative integers ¢, 4,, .. l,‘, we define a polynomial

Bul ., With non-negative coefficients in Z in the k(t+1) variables
X, 0<t<t, 1<j<k) by

k
Bllb--lk(xol' ey Xy) = Z n Ar,x,(xo,h “bey Xu)-

ut...tn=tj=1
If¢t>0 and A= A, =0, then this polynomial is the zero polynomial

Otherwwe for 1 < ; é k, this polynomial is homogeneous in X,...,X,; of
degree 4; the length of this polynomial is

L(Bm..‘.ak) = Bu,____g*(l....,l} =

E H (1:4|+thlI )é(!+l}"+"‘+"".

u+...tu=tj=1
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because
(‘f“’")s._(sﬂ)*r‘ for A;> 1
31
and
Y ooI<@e+k
nt...t=t
Finally,

1
S S

is the value of the polynomial B,, , where the variables X ; are replaced by
(1/2)DY, 0 <t <t, L <j<h).

2. Gel’fond-Schneider’s method. In this section we state and prove
a variant of Theorem 2.1 in [7] concerning Schneider’s method.
Let k > 2 be an integer, d, u, X,, ..., X;, r, R, T be functions on the
positive integers with positive real values. For each positive integer N, we
define

o {RNPHF(N)T(N+1)
PNy =log {R (NYr (M) +r(N+ 1))}‘

We assume that there exists a positive integer N, such that for N > N, the
following properties hold:

(21) r(N+1)<R(N), and the function R is non-decreasing. We set
R, = limsup R(N), with 0 < R, < 0.
N—=wm
(22) The function pg/d is non-decreasing and tends to infinity when N tends
to infinity.

(23) For 1 <j <k, the function up/X; is non-decreasing and X; > d.

(24) We assume
limsup u(N) = oo,

N=w
) d(N)log T (N) .
limsup—————=0 (1<j<¥k)
Noo X 0)
and
limsup—Tﬂ_—l—log(l/r(N)) <0.

N-w H(N)@(N)
(2.5) The function N = u(N+1) @ (N +1)/u(N) ¢ (N) is bounded from above;
we set

B = limsup u(N +1) o (N +1)/u(N) ¢ (N).

N—+w
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We choose two positive numbers 4, and A4, satisfying

2.6 4 1.8
) 1>k(1+2B+A2+A2 !

THEOREM 2.7. Let K be a number field of degree 6, and f,, ..., f, be
Mmeromorphic functions in the disk {|z| < R,} of the complex plane. We assume
that fis ---» Ji are algebraically independent over Q. For 1 <j <k, let g; be an
analytic function in the disk {|z| < Ry} such that g,f; is also analytic in the disk
{l2l < Ry}; we assume

(2.8) log max {|g | xewys 19,/ rwy} < X;(N).

For each N > N,, let I'y be a non-empty finite subset of the disk {|z| < r(N)}; for
each N > N, and each yeTly, let T(y,N) be a positive integer, with T(y, N)
< T(N) and

Y. T(,N) = u(N).
yel'n
We assume that for all N > N, all yeT'y, and all integers j, t with 1 <j <k,
0<i< T(y,N), we have .
g;(0) #0 and Df;(y)eQ;
We denote by «o;(y,N) the (T (y, N)+1)-tuple

1

1
(1 Sy L5005 D 0D ToN=1)!

DR~ ‘L(?))-

We assume, for all N, v, j as above,

29 loglg; )] = —X,(N),

2.10) d(N) k(e (v, N)) < X;(N)

and

2.11) [K (2, (7, N), ..., (v, N)): @] < d(N).

Then there exists N, = N, such that, for all N> N,,

@12) SHINY~ o (N < cd(N) [] X, (V)
j=1
wilh = Ail(Az'l' l).

Remark. The optimal choice of A4, is the positive root of the quadratic
®quation '

(2B+1)x*—(B+1)k—1)x—(B+ 1)k =0;

°n the other hand, if B = 1, one may choose A, =2 and 4, = 4k+¢ (with
€ > 0 sufficiently small), and one gets the conclusion (2.12) with ¢ = 3(4 k)*+1.
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Theorem 2.1 in [7] corresponds to the special case where f;,..., f, are
analytic rather than meromorphic (and g; = 1), with no derivatives (which
means T(N) = T(y, N) = 1; this is Schneider’s method), and the constant ¢ in
(2.12) was unspecified (only it does not depend on N). For our application here
it is essential to know that ¢ depends only on k and B. In most (all ?)
applications, B = 1.

Our Theorem 2.7 contains most of the results which have been derived so
far using Gel'fond’s or Schneider’s method. However an important exception
worth mentioning is [15].

Proof. Let & be the set of the integer§ N = N, such that

k
(2.13) Su(NY~to(N) = cd(N) [T X;(N);

i=1
we assume that & is infinite, and we will deduce a contradiction.
Define

A= min liminf(N)@(N)/X,(N).

1sjsk Nef

We first prove, by induction on k, that there is no loss of generality to assume
A>A,.
If k=1, the assumption (2.13) reads
d@(N)=cd(N)X,(N) for Neé&,
with ¢ = 4,(4,+1), and we have

#(N) @ (N)/X (N) = cu(N)d(N)/6 = A, (A, + 1) p(N)d(N)/5;
by (2.4) we have u(N)=> 1, and by (2.11) we have d(N) > &; therefore

p(N)o(N)/X,(N)> A,(4,+1) for Ned,

and consequently 4 > A4,.

Let k > 2 be such that (2.13) holds for N €&, while (induction hypothesis)
for all sufficiently large integer N, (2.12) holds with k replaced by k—1. Then
for Ne & sufficiently large,

1 ,u(N}fp(N) d(N)X,(N)....X,_(N)
A4, X.(N) Su(Ny~ q:(N)"‘

From the induction hypothesis, for sufficiently large N, the right-hand side is
> 1; because of (2.3) the left-hand side is a non-decreasing function of N; hence

LN o (N)
B )

Therefore we will assume A > A4,.

2 A7 (4, +1)

> All
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According to (2.6), we can choose & > 0 sufficiently small, so that, if we set

1 1 1 k 1
R AT A

and

Ly LT

As A, A,
We have
(2.14) i+BA+8<1.

5

Now we take a sufficiently large integer N, > N,, and we take Ne &, N > N,.

First step. We define
=u(N)o(N)/4,X;(N) (1<j<Kk).

Since N is sufficiently large and A, < 4, we have LJr
Part [L;] of L; satisfies

Li<[L]+1<L

and therefore the number

1; hence the integral

+1<2L;,

k
L=35]](LI+1)
i=1
satisfies
k k
5nLj<L'€2"5nLj.
j=1 i=1
We will use the upper bounds

(2.15) d(N)jZ Lyh(e;(y,N)) < Z L;X,(N)< —n(N)co(N),
=1

and
(216)  (4,+1)log L+——1log2+8h(&)+(L, +...+L,)log T (N)

k43 uN) o (N)
4, dN)

d(N)

the later comes from the observation that

,u(N)fP(N)) & e

logLJs.log(A i) MO
1

T A (A, +1)  d(N)

6 .
Acta Arithmetica LIIL3
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which follows from (2.2) and (2.3) for sufficiently large N, while

e pN)e(N)
A (A, +1)  d(N)

also because p@/d tends to infinity with N by (2.2); hence
ek+1)  pN)o(N).

logd+klog2 <

lgl< 4,70 d™)
moreover
1 e p(N)o(N)
mlogz+5h(§)<z Td(N)
and
N
(Ly+...+L)log T (N) 428:'&5:;;](@

because of (2.4). This completes the proof of (2.16).
We choose a generator ¢ from K over @, and we construct a non-zero
polynomial

. 5-1 k
P(X,,....X}) =§:_ZOPJ..'§‘ qu’
i= 1=

in K[X,,..., X,], of degree at most L;in X, 1 <j < k, such that the function
F = P(f,,..., /) vanishes on each y e I'y with multiplicity > T (y, N). We have
written 4 for (4;,..., 4) with 0< A, < L; (1 <j< k).

The system of linear equations we have to solve is

5-1 k
2 Zo Pué Il By 0) =0 (ely),
A i= i=1

where B,, , is a polynomial (given by Lemma 1.2) in k(t+1) variables, and

0,, is the k(t+1)-tuple of components (1/2)Dfi(y) O<t<t 1<js k).
We use Lemma 1.1 where the D appearing there is not greater than

d(N) i(N). Since N e &, the inequality (2.13) with ¢ = A% (A,+1) ensures that

d(N)u(N) < L/(A,+1); thus
pN) 1
L—D ~ A,d(N)

Therefore, using Lemmas 1.0, 1.1 and 1.2 together with (2.15) and (2.16), we get
a solution (py) in Z with

log max |p,]
A

< I"f(N;{log2+d(N)(l°8L+‘sh(é)+(Ll+"'+L")]°g T(N)+ i LJXJ(N)}
= Jj=1
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and
51
(2.17) log P Q_I-M)
220l < 3 amy

Second step. We introduce the analytic function

k
o= F] .
j=1

Let M .be an integer, M > N, such that F vanishes at each yer,, with
multiplicity > T(y, M). We prove:

1
(2.18) 10g |, 44 1) < "(I—A—)u(M)fp(M)-
4
Indeed, from the maximum principle applied to the analytic function
R(M 2 _ 5\ Tin.M)
6@ II ( (M) zw)
yerae \R (M)z—7)

on the disks {|z] <r(M+1)} and {|z] < R(M)}, we deduce from (2.1):
IOSld’Ir(MH) < log |¢|n{u}_ﬂ(M)¢’(M)-
From (2.8) and (2.17) we obtain

1 N)e(N
1og |®|rany < A—a'%+§logmax {1,1¢} + i LX;(M).
i=1

Now our assumption (2.3) yiélds

1

(2.19 ;
) LiX;(M) < A,

(M) p(M).
Our claim (2.18) follows at once.

Third step. Let M > N be an integer such that
1

(2.20) log |®}, ) < _A—P{M}¢(M)-
5

We prove that F vanishes at each ye€ 'y, with multiplicity = T (y, M).

Otherwise, there is a yel, and a teZ, 0<t< T(y,M), such that

D'F (y) + 0. We choose firstly such a y, and next a t minimal for this property;
therefore ’

k
D'®(y)=D'F(y) [] g;(»™1 #0.

J=1
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By Liouville inequality, Lemmas 1.0 and 1.2, using (2.2), (2.10), (2.17) and
(2.19), we have

—log

l 1
;—!D F(?)\

k
Z d(M)L;h(x;(y, M))

ji=1

< Ai,u(w) @(N)+d(M) 8 h(&)+ (L, +...+ L) log T(M)+
3 _ .

1k
< (1_‘1_3+X;+ 28) w(M) e (M).

Next we use (2.9):

1 2k
log —:—!D‘d’(?) = —(—+—-—+2£)p(M]go(M).

4; 4,

From Cauchy’s inequalities and (24) we deduce: -

1
l0g ||y, > tlogr (M) +log |1 D' &(3)

1
2> —g—#(M)‘P(M),
. As

which gives a contradiction with (2.20).
Conclusion. By (2.5), for sufficiently large N, and for each M > N, we have
(M +1)o(M+1) < (B+8&) u(M) o (M).

From (2.4) we know that u(M) in unbounded. Consider the inequalities (2.14),

(2.18) and (2.20); we claim that the function F is the zero function in the disk

{lz| < R,}. This is plain if limsupr (M) > 0, while if » (M)—0, this follows from
M-x

the assumption limsup (M) = o, together with the fact that F vanishes at
. M-x

each point yerI',, with multiplicity > T(y, M). Therefore we get a contradic-
tion with our assumption that the functions fj,...,f;, are algebraically
independent. This proves Theorem 2.7.

3. The functional equation F(az) = P(z)F(2)+Q(2).

(a) Formal case. Let 4, 4’ be two integers with 4 > Oand 4' = —1; we

consider the ring & of polynomials with coefficients in Z and A+4'+5

unknowns; it will be convenient to write these unknowns as follows:

X,Y,a,ay,...,84, b9, ..., by
We define

i=0

y. | r.
P(X)=Y a,_,X' and QX)=Y b,_;X".
. . j=0
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Let E be the set {X, aX, a®X, ...}, and F be _ o
F(X)=Y and seveds a map from E into &/ satisfying

F(az) = P(z2) F(3)+Q(z) for all zeE.
LemMMA 3.1. For each n> 0 and each zeE, we have
F(a"z) = P,(2) F(2)+Q,(2)
where P,(X) and Q,(X) are the elements of o which are defined by P, = 1
Qo =0, and, for n>1, : ,
. n—1 :
P,(X) = [] P(a’X)
v=0
and
n—1
Qn{x)= Z Q(avx)Pu—v—l(a‘“‘-lX)‘
v=0

Proof. Easy induction.

LEMMA 3.2. With the hypotheses of Lemma 3.1, for each n>1, the
Polynomial P, satisfies ;

degy P, =nd and deg,P,= (:)A,

ﬂ - = - -
Where-(z) is the binomial coefficient n(n—1)/2 (with (;) =10); further P, is

}'Omgeneous in ay, ..., a, of degree n, and does not depend on b, ..., b,;
urthermore the coefficients of P, are non-negative integers of sum L(P,) given by:

L(P)=(4+1).
If A= —1, then Q, =0 for all n>0. If &' >0, then
, o = 0. =0, or each n>0t
Polynomial Q, satisfies * " "
degyQ, =(n—1)4+4" and deg,Q, < (:)A +(n—-1)4';

Moreover, Q, is of degree n—1ina,, ..., a 4> and is homogeneous of degree 1 in

0s--., by, and finally the coefficients of Q, are non-negative int
L(Qu) o Q, g integers of sum

n—1
L@)=(4'+1) Y (4+1).
v=0

Proof. C_ons*idered as a polynomial either in X, a or a,, the polynomial
» has for leading term (=term of highest degree) a a®""~ 2 X _Considered
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as a polynomial in X, @, has for leading term a§~ 'boa®"" ™2 X"~ 14, Since

(n_v_])+(n—v—l)(v+l) _ (;)__(v-;l) the degree of Q, in a is not greater
2

than
1
e {07 e0es}
o<ven-1 L\2 2
The coefficients being non-negative, their sum is the value of the polynomial

where all the indeterminates are replaced by 1.

LemMA 3.3. With the hypotheses of Lemma 3.1, for each n > 1, F(a" X) is
an element of < satisfying

deg, F(@"X) = 1,
deg, F(a" X) = (n—1) A+max {4;4'},

deg, F (a" X) < (;)A +(n—1)max{4’, 0},
deg, F(@'X)=n (0<i<Ad),
deg, F(@X)=1 (0<j<4).
Moreover, the coefficients of F(a"X) are non-negative integers of sum
A+1y"(A+nd +n+1).
Proof This follows from Lemmas 3.1 and 3.2.

(b) Complex case. We now consider a complex number a, with [a] > 1,

two polynomials P and Q in C [X], of degrees 4 and 4’, and an entire function

F in C which satisfies the functional equation
F(az) = P(2) F(2)+Q(z) for all zeC.

LEMMA 3.4. There exists a positive number ¢, > 0 such that, for all R 22,

A
log|F' IRRZI =T I{l(:th)2+c1logR

log R
Proof Let teC satisfy |t| = R and |F (t)] = |F|g. We define n = [Iog Ial]
(integral part), so that |a" < R <|a|"*'. Let z=t-a”". We have
F(t)=P,(2) F(2)+Q,(2).

Since F is bounded on 1 < |z] < |a|, we deduce from Lemma 3.2:

log|F(t) < (:) Aloglal+c,n

for some constant ¢, > 0 independent of n and R; Lemma 3.4 then follows from
the inequalities
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logR og R)?
n<—2 and n?loglal < dogR) :
loglal

Remarks. 1. Combined with Cauchy’s inequalities, Lemma 3.4 shows
that for 4 = 0, the function F is a polynomial. Notice that, conversely, if F and
P are any polynomials, then F(az)—P(z)F(z) is also a polynomial, and
therefore F satisfies a functional equation of the form F (az) = P(2) F () + Q (2).

2. Let P, Q and a be given. Considering Taylor expansions at the origin, it
is easy to solve the functional equation F(az) = P(z) F (z)+ Q(z). The result is
as follows:

if, for all pe Z, u > 0, we have P (0) # a*, then there exists a unique power
series F (z) satisfying this functional equation. Moreover F has its coefficients in
the field Q(a,ay, ..., a,; by, ..., b,), and defines an entire function in C;

if there exists an integer u > 0 such that P(0) = a*, then the set of entire
functions G satisfying G(az) = G(2) P(z) is a C-vector space of dimension 1,
Which contains non-zero elements whose Taylor expansions at the origin have
Coefficients in the field Q(a,a,, ..., a,). If the given functional equation has
a solution F,, then the general solution is F,+ G, and in this case there are

Solutions F whose Taylor expansions at the origin have coefficients in the field
17 5O W S——

(c) Arithmetic case. Let K be a number field of degree é over Q; we fix an
embedding of K into C. Let ae K, |a| > 1, and let P and Q be two elements of
K[X] with P of degree 4.

LeMMA 3.5. Let F be an entire function satisfying the functional equation
F(az) = F(z) P(2)+Q(2).

Let { be an algebraic number such that F () is algebraic. Then there exists
4 constant ¢y > 0 such that for all ne Z, either n < 0 and P__(a"{) = 0, or else
e number F(a"{) belongs to the field K (L, F(0) and satisfies

2
h(F (a"{)) < Ah(a)+ca(|n|+l)

Proof. For n>0, this follows readily from Lemmas 1.0 and 3.3. Let
M= —m be a negative integer. We write

cmyy_ FX)  Q.(@"X)
Fa X =5 @ % Pyax)

But

Om(@™™X) "' ity oy P »—1(0_"'”“)(}
s S m vX
P,(a™"X) .Z'oQ( ) P,(a""X)
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and
e h +v+1
—mtv+l y
Pm—v—l(a_m+v+l X) — al;lo P(a ) = 1
-m - m—1 ] .
Pm(a X} l—l P(a—m+kxl n P(a—m-l-ix)
k=0 k=0
Therefore

FX) "5 Q@""X)
Pm(a MX) v=0 l:[P(a—m+kX)

- k=0

F(@a™X)=

From the relation
P, "X) =mr:];P(a"’“+“X)
one deduces that
F@a™g)= %(a“, Ggs.-s gy boy..vsbas s F(D),

where U,, and V,, are polynomials with rational integer coefficients, of degree
< (':)A ina”! and < c,m in the other variables, and of length < exp(csm).

One gets the conclusion of Lemma 3.5 using a version of Lemma 1.0 for
rational functions in place of polynomials.

Remarks. From Lemma 3.1, one deduces that in the annulus
lal~* < |z| < 1, there are at most 4 points « (counting multiplicities) which are
zero of one of the polynomials P,(a™"X), neN.

We will use Lemma 3.5 only with n > 0; but using the case n < 0, it is easy
to improve the constant 700 to 100 in (0.5).

(d) Derivatives. By taking derivatives one deduces from the functional
equation

F(az) = P())F(2)+Q(2)

and from Lemma 3.1, that for each t, n non-negative integers,

(3.6) a"‘lD’F(a"z) = ) —-I—Dtl P,,(z)LD“F(zHlD‘Q"(z).
t! Ty +r2=1 1! 1"2! E!

LEMMA 3.7. With the assumptions of Lemma 3.5, let t > 1 be an integer
such that the t numbers F({), F' (), ..., D' ' F({) are algebraic. Then there
exists a constant cg > 0 such that, for all neZ, with n >0, the t numbers
DF (a"l) belong to the field
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K. FQ©), F©,...., D"'FQ),
and satisfy

2

L p-1 F(a"C)) < %A h(@)+cg(n+1).

(=1
Proof. Lemma 3.7 follows readily from (3.6) and Lemma 3.5.

h(l,F(a"c),F'(a"C).....

(e) Irrationality of the values of the function F and of its derivatives. The
following result extends Theorem 0.4 to values of derivatives of F.

THEOREM 3.8. Let K be a number field of degree  embedded in C; let ac K,
With |a| > 1, and let P and Q be polynomials in K [X], with deg P'= A. Let F be
a transcendental entire function satisfying the functional equation

F(az) = P(2) F(2)+Q(2).

Let d, s, ty, ..., t; be positive integers; assume that there exist s distinct algebraic
Numbers {,, ..., {, in the annulus |a]™' < |{| <1 such that

D_F(L,) is algebraic for 0 <t <t,, 1 <0 <s,

With

[K (Ca, F(), F'(Cp)y-vs D's™ 1! F(Ca)): K] <d for 1<0a<s.
Then

(3.9 Y t, < 70044d*5h(a)/loglal.
a=1 -

We will prove Theorem 3.8 with the bound (3.9) replaced by the sharper
One

(3.10) 94Ad inf {max{déh(a);o}max{ddh(a); ¢*/logal}/(e—log |al)?}.
¢>loglal

We get the conclusion of Theorem 3.8 by taking ¢ = 3ddh(a), because
0h(a) = logla] hence 2déh(a) < o—loglal, and @? > 3ddh(a)loglal, while
94(27/4) < 635.

Let g satisfy ¢ > log|al. We choose a sufficiently large constant ¢, and we
Use Theorem 2.7 with

k=2, fi@)=z, f,(@=F@), g,@=g,0=1, dN)=4dJ,

r(N)y=lal®, R(N)=4[e®™ (1+lal)+(e*" (1 +]al)*—4|a]>*1)'/?],
80 that

¢(N)=(¢—logla) N, Ry=o0, and r(N)<R(N)< e,
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ry={(a" 1<o<s, 0<n<N}, p(Ny=N3Y t,,
a=1

X, (N) = N max {ddh(a); 0} +c,
X, (N) = $ AN? max {d5h (a); 0*/log |al} +¢,N.

We have B=1, and we choose A4, =3/2, A, =8.67; hence c < 188. The
assumption (2.8) follows from Lemma 3.4, while (2.10) and (2.11) follow from
Lemmas 3.5 and 3.7.

Finally (3.10) is‘a consequence of (2.12).

4. Theta function (additive point of view). Let K be a number field of
degree 6 embedded in C, T be a complex number with positive imaginary part
such that g = ¢é™ e K, P and Q two polynomials in K [X] where P is of degree
4, and f be an entire function in C satisfying

fu+l)=fw and flu+t)=Ple”™)f(W)+Q(*™).

" The fact that f'is periodic of period 1 is equivalent to the fact that there exists
a function F, analytic in C*, such that F (e~ 2imt) — f(u). We perform the change
of variables z = e"2™ and we apply Theorem 04.

COROLLARY 4.1. We assume that F is analytic at O and that the two
functions e*™ and f(u) are algebraically independent over Q. Let d be a positive
integer; let u,, ..., u, be complex numbers, which are pairwise distinct modulo
Z+Zr, such that for 1 < g <s, the two numbers exp (2inu,) and f(u,) are
algebraic, with

[K (exp (2inu,), f(u,)):K] <d.
Then

§< 129 A4d*$ h(g)/Im .

Of course one may include values of derivatives (with respect to the
differential operator (1/2in)d/du) by using Theorem 3.8 in place of Theorem 0.4.
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