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rae 9,(t) — axobuesbl T3Ta-QYHKUMH; @2,(n) — CyMMa CHHIYJNSPHOTO psazna
Xapau, oTBeyaroLero cyMme 2k KBapaToB LENBIX YUCEN; aff — NOCTOSAHHBIE,
2k—1

nofnobpaHHble  Haanexaumm  obpasom; [ = [T] IMpupasHuBas

K03(PUUMERTEI NPH ™™ B 06eMX 4YacTHX 3TOr0 TOXKAECTBA, MOJyYyaeM
hopMynel nns r,.(n), BHITUCAHHEIE BBILLIE.

Mur npeanonaraem, 4To GYHKUMOHANBHBIM 3KBHBaJIeHTOM GopMyn s
apupmernveckor ynkuuu r(n, F,) 6yner ToxIecTsBo

]
(*) 9z, F) = E(t, F)+ Y, a8(t, Fuesen %5372,

] k
rae I= Y [a:l, ol — moCTOSHHBIE, KOTOpHIE CHEAYeT NMOAOHpaTh Ha.-
m=1]

nexamuMm obpaszom. DTo pmeACTBHTENbHO Tak npu 2 < k <17, wubo
Joka3aHHble Bble ToxaecTsa (1.11), (4.4), (4.6), (4.8), (4.14), (4.20), (4.26), (5.8),
(5.9), (5.10), (5.16), (5.17), u (5.18) ABAAIOTCH YACTHBIMH CAYHAAMH TOXICCTBA
(). A B HacTosue# paboTte nokasawo, uro Gopmynst gna r(n, F,) cneayror n3
YNOMSHYTBIX TOX/AECTB NPUPABHUBAHUEM B UX 00eux yacTax ko3hUuueHTOB
npu z". JKenarenpbHO J0Ka3aTh, YTO TOXIECTBO (%) MMEET MECTO NpH BCex
k = 2 vnH ONpOBEPrHYTh 3TO IIPEATNOJIONKEHHE,
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Selberg zeta functions with virtual characters
and the class number

by

JEFFREY STOPPLE (Santa Barbara, Cal)

L. Introduction. In [3], Hecke investigated the action of the modular group
Orrgsace? of ‘holomorphic fqrms for principal congruence subgroups I'(g). For
lalion(') wq1ght 2,_he obtained the complete decomposition of the represen-

i into irrcdumbk? components. He also proved the curious fact that the

| erence of the multiplicities of two particular representations was equal the
:t:f;el;umbe‘r of the i.rnaginary quadratic field Q(\/—_q). Later Feldman [1]

i arbl'trary We!g!lt, Salt(? [7] studied Hilbert modular forms, and
numbe“:ﬂrl(), in [2] considered Siegel modular forms. Each found similar class

ormulas.
‘r‘ecto’l;h: group SL(2, Z) also acts by linear fract.ional transformation in the
represempa?e o_f Magss cusp forms for I'(g). Since I'(g) acts trivially the
will provauon is equivalent to one of thf: factc_;r group. SL(2, F,). This paper
o €a forr_m}la analogous to Hecke's relating multiplicities of representa-
the and n in these spaces to the class number and fundamental unit of
ol:jl (;:]fuadratlc field Q(\/i). (The representations n* and 7~ are defined
no ne;.v course, Maass cusp forms are themselves very intractible objects, so
v results on class numbers are to be expected.
i :;scgnvemfnce we lmll su_xdy Fhe zeros of the quotient of Selberg zeta
above fo (s, n*)/Z(s, n”), which is equivalent to the problem described
T Maass cusp forms.
. € need some deﬁnitions._ Let g be a prime, g = 1(4). We can define
aracter y on the upper triangular subgroup of SL(2, F) by

tlo o]- )

the Legendre symbol. We can form the corresponding induced
repr x . v v
Presentation of SL(2, F » Which has two irreducible components:

ind(y) 2n*en".

ing

for (4



38 J. Stopple

Let v be a virtual character of the group defined by

Y(g) = tracen* (g)—trace n™ (g).

From tables [11] we see that

X 1 x
- if geSL(2, F.) is conjugate to a matrix i[ :I
Vo) = ,‘/‘_’(q) s 01

0 otherwise.

2. The functional equation. The Selberg zeta function is defined by

Z(s, @ =[] [] det(I—e(P)N(P)™* 7).

(P} k=0

Here ¢ is any finite dimensional representation of SL(2, Z), {P} is a primitive
hyperbolic conjugacy class in SL(2, Z), and N(P) is ¢*, where ¢ is the larger

eigenvalue of P. The logarithmic derivative of Z(s, ) is given by the trace.

formula. There is also a functional equation involving contributions from the
central, elliptic and parabolic classes, as well as from the continuous spectrum
of the trace formula. More details on this function can be found in [4] and [9].
In particular, if ¢ is a representation of SL (2, F,), it is known (see [5], [10])
that the multiplicity of a zero s, of Z(s, ¢) is equal to the multiplicity of ¢ for
the action of SL(2, Z) in the vector space of Maass cusp forms for eigenvalue
so(l1 —s,) and level g.

We will prove a theorem about the difference of the multiplicities of the
two representations 7+ and n~ by considering the quotient of Selberg zeta
functions

Z(s, ")

2860 = Gy

From [10] we know that =* and n~ are both (g+ 1)/2 dimensional, and each
gives a single continuous spectrum as representations of SL(2, Z); ie.,
¢+ = €.~ = 1 in the notation of [10]. The corresponding scattering matrices
are

*
L{2-2s,|-

4 T\¥ "1 r(1-s) ( ’(q))

o6 = +(2)" A\
1(2(3)

Thus Z(s, n*) and Z(s, n~) have the same contributions in their functional
equation from the central term and the continuous spectrum term. The elliptic
terms are also equal, as |trace(y)| < 2=trace(y) # +2(q) so y(y) =0 for
v elliptic in SL(2, Z).
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All that remains is the parabolic classes contribution to the discrete

- 1 o
Spectrum. Suppose 7+ [0 l:l has eigenvalues {..., e*™* ...} and n_[:) }] has

eigenvalues {..., e2"* ..}, Then

Z(l—s, ) = Z(s, y) exp{(1-2s)( ¥ log|l—e*™|— ¥ log|1—e2™ai |)}.

:} #0 aj #0

. 11
From [10] we know the eigenvalues of ni[o ]] are all nontrivial g roots

of 1chrresponding to squares and nonsquares respectively in F¥. Since
Il —e2miaie) = 2 gin(na/q) we see that

Z(1—s, ) = Z(s, )exp {(1 —29'y (g) log i na/q|}.

By the Dirichlet class number formula,
z“ —8, U’) = Z(S, ‘!’)EZMZS-“
Where h is the narrow class number, and ¢ the fundamental positive norm unit

in Q(,/qg).

3. The trace formula. We now consider the logarithmic derivative

Gu) zZ, & Y(PYlogNP 1
Z(S, d’) %tgl NP.&;z_NP—k,fz NPs-l,rz-

Define a map ¢ from matrices P to quadratic forms by

abl |b d-a —
Peadl™|v a0

Where v=ged(b, d—a, c). Conversely a form [a, f,y] with discriminant

D = 244y is mapped to
t—up
) —  u
_ t+ fu
2

;hel_'e ?—u*D =4 is the fundamental solution of Pell’s equation. Note that
P is the larger root of x2—tx+1, and thus depends only on the discriminant.
Sarnak [8] shows that ¢ is a 2-1 map (since @(P)= @(—P')) and

% commutes with the action of the modular group giving a 2-1 correspondence

tween. primitive hyperbolic conjugacy classes {P} and equivalence classes of
Quadratic forms.
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Suppose P corresponds to [a, B, y] with discriminant D and t>—Du? = 4
fundamental solution. From the definition of i in Section 1 it is easy to see that

kuo
Y(PY = (q)‘/‘}' o

0 if  qiD.

Thus we have (3.1) reduces to

32 2/74Y ¥ Z(%E)(NP terms)
D 1

classes k=
qiD  fa.6.7]
with disc.D

-2/7T ¥ (E)(NP terms) Y (E)
qf-'Dk=l q classes \4

[2.8.7]

a\ . Giise : 2 ;
Now (—) is multiplicative on classes of forms since the composition law is
q

[o, B, #]o[d, B, *] = [a', B, ].

If D = qd* then we have gd* = f*mod4a so (g) = (g) =1 for all classes

(recall g = 1(4)). Similarly if D = gnd? with n square free, we see the character
is non-trivial. Thus by orthogonality the inner sum is 0 unless D = gd>.

Let ¢, = (t+u./qd*)/2 be the unit Q(\/c}] corresponding to the Pell
solution t*—u*qd* = 4, and let h(gd?) be the class number of forms. We now
have (3.2) equals

&)
(3.3) 4,/q i h(gd*)loge, f 5 1/ pr-29),
d=1 k=1

d — €4

From Lang [6] we know y
hd py1
“ = mzer1 '\

loge, = [0*:Z[e,]*] loge,
where h and ¢ are the narrow class number, and fundamental positive norm

and

unit in Q(./q). Thus
kv (1 —2s)
S ()

7 o« p\1
3' o = = ) T &—ek
(3.4) Z(s' ¥) 4hlog£\/adz dn(l ( )p)k—l 85_8"_" .

=1 pld q
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We want to group all terms of the form tk=¢forn=1,2,...,s0 write
(%) g OOV tru/ed®  t4u /o8
2 & e 2 2
(ie. we keep track of the dependence on n and d). Then

k
; S P
some integer+[ 3 ‘)Iﬁ_iuﬁd-'qii‘“ﬂ]\/a
{**) 85 e Jo:dl

2k
Since ¢, = 12(g) equating (+) and (x+) gives

(3)-(5)

Also i—egk = ﬂn]\/:} so we get (3.4) equals
(3.5) 4hloge 3 { (M)i (]_(E)l)}gnu—m
o8 ngl d|§n} q Jf (n)l,;; q)p l

One can expand the product term and use facts about the Mébius function to
S¢¢ that the term in braces is equal to 1. Thus

z X 81-25
—Z—(S, llfr) = 4h IOgE E gl —2s) _ 4h1088(m)
n=1

and we have proved the following
THEOREM. For Y as in Section 1,
Z(s, ) = (1—g' "2,

o (The fa{;:t that _Z{s, n*)_ and Z(s, n~) both tend to 1 as s — oo gives the
fstant of integration.) This theorem actually implies the functional equation
We proved in Section 2.
- lr?tice that Z(s, ) has zeros at s = } + kmi/log ¢ for k € Z with multiplicity
- 1t 1s already known that Z(s, n*) and Z(s, n~) each have zeros at these
[:)OIIIIS, corresponding to the cusp forms constructed by Maass. These cusp
ms have Mellin transforms as Hecke L-functions attached to grossencharac-

t . h
ers for the real quadratic field. Since these cusp forms transform under I',(q)

: *
according to the character (C_J) the Frobenius reciprocity theorem implies they

transform l{nder SL(2, Z) according to either n* or n~.
According to Langland’s philosophy, the sum of the multiplicities of the

4 s for Z(s,n*) and Z(s, n7) at these points should be the number of
unctions attached to two dimensional representations (of Weil groups) with

" *
conductor g and determinant character (E) The fact that the difference of the

Zero
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multiplicities of the zeros equals 2h is the exact analog for Maass wave forms of
the theorem of Hecke for holomorphic forms mentioned in the introduction.
This follows from the result about zeros of Selberg zeta functions mentioned at
the beginning of Section 2.

The theorem also gives the surprising result that all other zeros of Z(s, =)
and Z(s, ) are equal and occur with the same multiplicity. The author has no
explanations for this.
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Galois groups of trinomials
by

STEPHEN D. CoHEN (Glasgow)

1. Introduction. Let f(X) denote a trinomial of the form
(1) f(X) = X"+aX"+b,

where g an.(i b are rational integers. We always assume that f is irreducible
:‘Lel' Q_ \_vhlch implies that G(f)(= Gy(f)), the Galois group of f over @, is
v ransitive subgrpup of the full symmetric group §, acting on the zeros of f.
anol.}s authors, including Uchida [12], Yamamoto [13], Ohta [9] and Nart
and Y!la [8] have shown that, when r = 1, then, under certain specific simple
conditions, G(f) = S, itself. (See also Yamamura [14].)
Recently, H. Osada [10], [10a], in extending these results, has shown that

for arbitrary r, necessarily with n, r co-prime, ie.

() (n,n=1,

a similar conclusion can be drawn under conditions which we summarise.
Let d = (a, b) and put a = da,, b = db,. Assume that

(3)

(a,n) =1,
(4) d =c¢" for some integer c,
(5) d is a unitary divisor of b, ie. (d, by) = 1,
(6) (r(n—r), by) =1.

Then G(f) = S, in either of the following two situations.
L. by = b} for some integer b, (e.g. r=1) or r = 2.

. IL. For some prime p, p|| b, (i.e. p|by but p? ¥bg) and the integer |Dy(f)| is
non-square, where ’ '

Do(f) = by "+ (= 1)~ P (n—ry " ayd"
1§ related to the discriminant D(f) of f by
D(f) = (=1~ "2bg™ "™ Do(f).

(The restriction of » to certain values in [10] was dispensed with in [10a].)
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