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L. Introduction. Let K be a field of characteristic not 2 and with finitely
Many square classes. Let a, denote the number of isometry classes of
n-dimensional anisotropic quadratic forms over K, and a, the number of
1Sometry classes of arbitrary n-dimensional forms. The generating functions of
K are the following power series

Zy(x)=Z(x) = L +d,x+d,x*+ ...,
Zy(x) = Z(x) = 1 +a,x+a,x*+ ...

The purpose of this note is to study the properties of these functions and to see
how they reflect the theory of quadratic forms over K. In particular, we will
find classes of fields for which the following statement holds:

(L1) Let r be the number of orderings of K. Then
Z(x) = plx)(1—x)~""!

.(0!' a suitable polynomial p(x). That is, Z(x) is a rational function with x = 1 as
its only pole.

For example, this statement is true for pythagorean fields. In this case we
have in addition the following functional equation

Z(1/x) = (— 1) Z(x).

These results indicate that Z (x) and Z(x) are interesting invariants of the field
and reflect a substantial part of the theory of quadratic forms over K.
Nevertheless the Witt ring W(K) of K remains a rather inaccessable and
Mysterious combinatorial object about which only little is known.
We will use the standard terminology and some well-known facts from the
theory of quadratic forms. For this we refer to 41
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2. Remarks, comments, examples.

(2.1) Tt is easy to see that it is sufficient to consider one of the functions Z(x),
Z(x). In fact, the obvious equation d, = a,+d,-, yields the equation

Z(x)(1—x?) = Z(x).
Then statement (1.1) gets the following form
Z(x) = (1+x)p(x)(1—x)7".

(2.2) The following statements are equivalent:
(i) Z(x) is a polynomial.
(i) K is not formally real.
(iii) The Witt ring W(K) is finite.

In this case the conjecture is true almost trivially. In particular, Z(x) is
a multiple of (1 4 x) since the number of even-dimensional anisotropic forms is
equal to the number of odd-dimensional ones.

(2.3) If K is real-closed, for example K = R, then

1+
Z() = 142x+2x2 + ... =l—_§.

(2.4) Let K be a local field with residue class field k and assume char (k) # 2.
Then the following equation is an easy consequence of Springer’s well-known
theorem

Z5(x) = (Z ()P

(2.5) 1t is obvious that the functions Z(x) and Z(x) can be defined in the
abstract setting of “quaternionic structures”, “Cordes schemes”, or “abstract
Witt rings” (see [6], [3]). Similar remarks as above can be made. In particular
(2.4) clarifies the behaviour of Z(x) under the “group ring construction”.

(2.6) The formulation used in the introduction seems a particularly nice way
to state (1.1). But note that (1.1) is equivalent to the following statements:

(A) There exists an N such that for n > N the coefficients 4, satisfy the
following recursive relation

. r+1Y r+1\ . S
an_( 1 )a"—l+( 2 )a“‘Z_ vt (=1 gy = 0.

(In fact, this is the nth coefficient of the polynomial p(x).)
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B) T i - -
o n( ; Nflerc exists an N and a polynomial f (t) of degree r such that a, =f(n

2
EJOT) To_ make the Iaft remark more explicit we recall the notion of Eulerian
ynomials: There exist polynomials Ay(x), k=0, 1,2, ... of degree k so that

Ms

A" = A ()1 —x) kL,

n=0

The first are
Ao=1, A(x)=x, Ay(x)=x>+x, Ay(x) = x* +4x% +x,
Ag(x) = x+11x% 4+ 11x3 + x4,
They satisfy the recursion formula
Ar+1(%) = x(Ap(X)(1 = x) +(k+ 1) 4, (x)),

In particular, all A, (x), k > 0 i
T, (%), , are multiples of x. From the recursi
follows easily that the A4,(x) are symmetric: reion formula

XA (1/%) = A (x).

(2.8
CXac):tl Let K be a pyl_hagorean' SAP-field (see Section 4 for the definition) with
5 diy r or’dermgs._ Slnoe_ all signatures of a quadratic form have the parity of
mension, n-dimensional forms can have at most (n+ 1)" different total

8natures. SAP impli . .
o plies that all these can be realized, and pytha
Means g, = (n+1). Therefore pythagorean then

si

269= § weipe =

= |-

o

2 Ax"=x""A(x)(1-x)"""1,
n=0

I .

N Particular, (1.1) is true in this case.

3. L
'ng abstract objects, see (2.5)) with generating functions

Z,(x)= 1+d,x+d,x*+ ...,
Z,(x) = 1+b,x+b,x*+ ...

Let K be
a field representing the product of i
theory e 23 o1 8 product of K,, K, in the sense of the abstract

Z(x) =14 x+éx2+ ...

18 its generatin i
g function, then it follows at once from the i
Product that é, = a,b,. Therefore WS W

Z(x) = 2|{x)'22(x)
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where the dot-product - of two (formal) power series is defined by coefficient-
wise multiplication. Moreover, if the d, satisfy a polynomial law of degree r (in
the sense of (2.6) (B) and the b, one of degree s, then the ¢, satisfy a polynomial
law of degree r+s. Thus (1.1) is true for Z(x) if it is true for Z,(x) and Z,(x).
Changing somewhat the usual definition, let us call a quaternionic
structure (or an abstract Witt ring) of elementary type if it is obtained from
non-real structures and the structure of the real-closed field R by an iteration of
the group ring construction and the product construction. Then we get

(3.1) PROPOSITION. Statement (1.1) is true for Witt rings of elementary type.

Proof. By (2.2) and (2.3) the statement is true for the non-real and
real-closed “building blocks” of the elementary constructions. By (24) it is
preserved by the group ring construction. The same is true for the product by
the above remarks. =

(3.2) COROLLARY. Statement (1.1) is true for pythagorean fields.
Proof It is well known ([1], [2], [5]), but non-trivial, that the

quaternionic structure of a pythagorean field is of elementary type. m
As mentioned in the introduction, more can be said in this case:

(3.3) THEOREM. Assume that K is pythagorean with r orderings. Then the
generating function of K satisfies the following functional equation
Z(1/x) = (= 1Y Z(x).
Proof. In view of the equation
(1—x)
we have to show that the polynomial p(x) = p(x)(1 +x) is symmetric of degree r:
p(x) = x"p(1/x).
To prove this statement we use again the fact that the quaternionic structure of
K is of elementary type. The assertion is true for R. Obviously it is preserved by
group ring extensions. So it remains to show that the assertion is preserved

under the product construction. Assume that the coefficients d, satisfy a poly-
nomial law of degree r:

Z(x) =

a,=f(n), f()eQ[r] of degree r.
We write f(t) in the form

o= Y alt+1).

i=0

By the same computation as in (2.8) we get

r l )
plx) = ag(l—xf+ Y, oA e
i<
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Since Z(x) # 0 if f(t) # 0 it follows that the polynomials

1
(=%, SA@I- " . A

; . ) 1
are linearly independent. Since the ;A ;(x) are symmetric (see (2.7)), it follows
that j(x) is symmetric of degree r—1 if and only if
=0, a_j1=a_3=..=0.

I JREPIN. .
f we now have two polynomials f(¢), §(t) of degrees r and s satisfying this

Condition, then it follows at once that also their product satisfies this
condition. m :

n 4. _SAP-fields. We consider now the very special class of SAP-fields. This
€ans in our case (that is for fields with finitely many square classes) that for

any collection of orderings P, ..., P, of K there exists an a € K such that « is
Positive exactly at the orderings P,, ..., P,.

Si-.l) LEMMA. Let K be an SAP-field with orderings P,, ..., P,. Then there
& ISts a number N with the following property: If dim(g) > N and signg > —1
or all orderings, then ¢ represents 1.

elem:’roof. Let N > Z‘M wheye M is the maximal order of the torsion

e nts of W(K). In a d_lagonallzanqn of ¢ there appears a subform M x {(«)

o o not totally negative. Assume o is positive at P, for iel # @. If a is

thg:twe' at P; there exists a sul?form M x (B> with B positive at P, By SAP

. € exists an element y which is positive exactly where o or f is positive. The
rms (a, B, <y, afy) have equal signatures. Therefore

M x<a, By = M xy, afy).
We continue in this way and find a totally positive subform M x () of ¢. Then
Mx{6)=Mx1l)
and we are finished. w
(42)  ProposiTion. Statement (1.1) is true for SAP-fields.

o ; Proof. We shall prove the equivalent statement (2.6) (B). Let A . be the set
1Sometry classes of n-dimensional forms so that &, = [4,|. Let

06 =(04,...,0) W(K)—Z"
b¢ the total signature map. For pe A, we have

alp)el, = {teR| [t|<n,i=1,...,r}.
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For # = {1, ..., r} we consider all ordered decompositions 2 = (Z, P, N),
with # = ZUPUN, in three disjoint subsets. The number of such 2 is

()

This yields a decomposition of I, in disjoint subcubes I(2)

1(2)={t| ;=0 for ieZ, 1,> 0 for ie P, 1, <0 for ie N}.
Correspondingly, one has

A4,(9) = {ped,) o(p)el (D)},

Since K is SAP all 4,(2) with I,(2) of the same dimension (that is Z of the
same cardinality) are equal. Hence

ar= ¥, (@) = ()2 4@y
1zI=j J

for some 2, with |Z| = j. We distinguish the cases n even and n odd and note

4, ())=0if n is odd and j > 0. For n even we have

4, = d4,(0)+4,1)+ ... +4,().
We now study the growth of 4, for large n. For large even n we have

d,(r) = number of forms of total signature 0
= order of the torsion subgroup of W(K) =:w.

For n even we have
- +1
Gpey =27 4,44(2,)

with 2, = (@, R, 9), that is, 4 (2, ) consists of all forms with totally positive
signature. By (4.1) every such form can be written as (1) Ly, where € A, has
all signatures = 0. This leads to

Grer = G,(0)424,(1)+44,2)+ ... +274,0r).
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(The lower-dimensional cubes in A, appear in 4, in all cubes they bound.)
€ now compute 4, ,. Given 2, there exists a 2-dimensional form ¥ such that

0 for ie Z,
sign,(y) = < 2 for ieP,
—2 for ieN.

ghl.ls X represents the “inner corner” of I, ,(2).) Again by (4.1) we can write
S_er}’ PEA, . 1(D)as ¢ = y Ly with e 4,(2') where @' = @ or 2’ bounds 2.
Imilarly as above we get

Gpyz = 4,(0)434,(1)+94,(2)+ ... +374,(r).

(A j-(.ﬁm.ensional cube bounds 3"~/ higher-dimensional cubes including itself))
Ontinuing in this way we get

Gpym = 4,(0)+(m+1)a,(1)+(m+1)26,2)+ ... +(m+1y4,().
This proves our claim. =

P ——

An An + ""n+2

S. More remarks, comments, examples.

5. o ;
( el} Statement (1.1) claims in particular that the d, grow like a polynomial of
Bree r (see (2.6)). This, in fact, can be shown directly:

There exist constants ¢, C > 0 such that
en’” < d, < Cn'.

tmall;irool'. As remarkqd in (?.8} there are a(.most (n+ 1) possibilities for the

ollowsg:l:mrF of an n-dlmenmpnal form. If w is the number of torsion forms, it

total o at 4, w(r_:+ 1y ‘Whlch gives the upper b_ound. The cokernel of the

l_‘a'l‘_)l-esegll‘-'a.ture map is torsion. Hence there are anisotropic forms ¢, ,..., ¢,
. nting a basis of W(K)/torsion. Let d; = dim(¢,) and N = d,+ ... +d,.
N one has the following different forms of dimension 2nN:

i=

r
L 2mx@; L(nN=Y nd){1,—=1>, 0<n,<n.
1
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Therefore
(n+1) < dyuy < Gaan+1 S oo S doNpe1)-1
and hence
2N)"'m<d, =

(5.2) Only the first coefficients can be determined explicitly

dg =1,

a, = |K'/K™|,

b=,

d, = |K'/K'?|-number of quaternion algebras.

(5.3) The group K'/K'? acts by multiplication on the set A, of isometry classes
of n-dimensional anisotropic forms. The orbits are trivial or contain an even
number of elements. This leads to some parity relations for the a,:
(i) All @zms+; are multiples of 27 = |K'/K"|.
(i) If a, is odd then there exists an n-dimensional anisotropic form with
¢ = ag for all a. In particular, ¢ is universal and of order 2 in the Witt group.
(iii) Only finitely many a, can be odd.

(54) The same idea leads to a characterization of pythagorean fields: K is
pythagorean if and only if all a,, n > 0, are even.

Proof. Consider the action of +1 on W(K). The fixed elements are
precisely the elements of order 2. The field K is pythagorean if and only if the
number of non-trivial anisotropic forms is not zero and then necessarily odd.
This implies easily the assertion. m

(5.5) Recall that the Kaplansky radical of K is the following subgroup of
K'/K™?

{a| (o, B) splits for all B}.

An argument similar to the one above proves the following statement: The
Kaplansky radical is non-trivial if and only if a, is odd. In this case all a,, n # 0,
2 are even. m

(5.6) The above remarks indicate that the generating function contains a lot
of information about K and W(K). For finite fields one has always Z(x)
= (14+x)%. Hence the level and the structure of the Witt group are not
determined by Z(x). On the other hand all known counter examples can be
reduced to this one by elementary constructions. Specifically one may ask
whether the quaternionic structure of a pythagorean field is determined by
Z(x). (Note that the number of orderings is determined by (5.1).)
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h!ole added in proof (February 1989). Conjecture (1.1) has been proved by M. Kula, Katowice.
his forthcoming paper.
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