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1. Introduction. Let 4 be a set of nonnegative integers. The cardinality of
4 is denoted by |4]. The counting function A(n) of the set A is defined by
An) = [An{1, 2,..., n}|. We denote by hA the set of all sums of h elements of
4, with repetitions allowed. We denote the set of all sums of h distinct elements
of 4 by h* 4.

P. Erd6s and R. Freud [2] conjectured that if 4 satisfies

(1) As{1,2,...,3n} and |4|>n+1

then there is a power of 2 that can be written as a sum of distinct elements of A.
hey also conjectured that if B satisfies

) Be{1,2,...,4n} and |B|>n+1

then there is a square-free number that can be written as a sum of distinct
Clements of B. Recently, G. Freiman [3] solved both problems. His results, .
OWever, are not entirely satisfactory, since they require at least ¢-logn distinct
SUmmands from the set 4 in order to represent the power of 2, and also at least
¢logn distinct summands from the set B in order to represent the square-free
Mumber, while one might like to bound the number of summands by an
bsolute constant independent of n.
In order to obtain such an upper bound, Erdds, Nathanson, and Sarkézy
(4] first studied the infinite analogue of these problems. By deriving and
3pplying some consequences of Kneser’s theorem on the asymptotic density of
sul_'ﬂSets [7], they proved that if the lower asymptotic density of an infinite set
I8 at least 1/3 and if 3.t a for some integer a € A, then there are infinitely many
Powers of 2 that can be written as sums of at most five distinct elements of A.
€Y also proved that if the lower asymptotic density of B is at least 1/4 and if
4 a for some ae B, then there are infinitely many square-free integers that can
Written as sums of at most six distinct elements of B.
‘--_"—-—-—__
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In this paper we return to the more difficult finite case. One of the
problems here is that Kneser’s theorem cannot be used. Instead, we apply
results of Mann [8] and Dyson [1] to prove a theorem of independent interest
on long arithmetic progressions contained in sums of finite sequences. Using
this theorem and its consequences, we prove that if n is large and if A satisfies
(1), then there is a power of 2 that can be written as a sum of at most 30961
distinct elements of A. Using the same method, we can also prove that if
B satisfies (2), then there is a square-free number that can be written as a sum of
at most 21 distinct elements of B. We do not include this result, because
Filaseta [5] has recently found a direct and elementary argument that shows
that 2 summands suffice for n sufficiently large. Nathanson [9] has extended
this to the case of k-free numbers.

2. Long arithmetic progressions. In this section we prove that a bounded
sum of a sufficiently dense finite set of integers will contain a long arithmetic
progression with bounded difference. We use the following result of Dyson ([1],
[6]), which generalizes a famous theorem of Mann [8].

DYSON's THEOREM. Let h and n be positive integers. Let B be a subset of
{0, 1,..., n} with 0eB. Let C = hB. If & is a positive real number such that
B(m) > dm for m=1, 2,..., n, then C(m) > (min(l, hd))m for m=1, 2,..., n.

Turorem 1. Let N and k be positive integers. Let A be a subset of
{1, 2,..., N} such that

3) |A] = N/k+1.
Then there exists an integer d with
L)) 1<d<k-1

such that if h and z are any positive integers satisfying the inequality
) N/h+zd < |A|

then the sumset (2h)A contains an arithmetic progression with z terms and
difference d.

Proof. We denote the elements of the set 4 by a,,..., a,, where |A] =5
and a, < a, <... < a,. Define the integer d by

d =minf{a,,,—al i=1,2,...,s=1}.
It follows from (3) that

s—1
N=za,= Y (a,,—a)+a, =ds—1)+1>d(N/k)+1>dN/k,
i=1

and so 1 < d < k— 1. Thus, d satisfies inequality (4). Moreover, there exists 40
integer a* € A4 such that a* +de A. We shall show that the integer d satisfies the
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Conditions of Theorem 1. Fori=1,2,..., d, let A;={n| diln—1)+ie A}. Then
©) A s {1.2,..,[(N+d—i)d])
and

Y =3 14,
i=1

C :
hoose r so that |4, = max{|4,|| i=1,2,..., d}. It follows from (7) that
8 d
@® 4, > (1/d) ¥ |4 = |Al/d.
i=1

Let h and z be positive integers satisfying (5). Note that Theorem 1 is

trivia] i
a‘:lVl_aI if z = 1, and so we can assume that z > 2. We shall show that there exists
Integer u such that

©)
and
(10

I Su<ut+z—1<(N+d—ryd

Au+m—Aw=mh form=1,2,...,z—1.
Assume that u satisfies (9) and (10). Define the set B by
B={0}u{bl 1<b<z—1 and b+ue4,}.
Then (10) implies that B(m) > m/h for m = 1,..., z—1. Let C = hB. Dyson’s

€orem implies that C(m) =m for m=1,..., z—1, and so

(1) 10,1,..0,2—1} S C=HB.
Next we show that

(11

:13) beB implies db+du+r+a*e2A.
Bequality (10) implies u+ 1€ A,, hence du+re A. Since a*€ A, it follows that

“+r+a*e2A. Thus, (13) holds for b= 0.

Let beB and b > 0. Then b+ue A, hence d(b+u—1)+re i
i — A. S 1
®*yde A, it follows that : ; ; e e
. db+du+r+a* =(db+u—1)+r)+(a*+d)e2A.
This proves (13).
b Define g = h(du+r+a*). Let ne{l,..., z—1}. By (12), n = b,+....+b,,
i re byeBfori=1,..., h. It follows from (13) that db;+du+r+a*e2A, and

5 dn+q=d(b;+... +b)+h(du+r+a*)e2hA.
U, 2hA contains the arithmetic progression dn+q for n=1,..., z—1.

Ass It remains only to prove the existence of an integer u satisfying (9) and (10).
ﬂnnume that u does not exist. We shall then construct a finite sequence of
Negative integers n, <n, <...<n, < (N+d-r)/d such that

An)—An;_)<(n—n;_)h forj=1,...,t.
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Let n,=0. Assume that n,,...,n;_; have been determined. If
n_y+z—1<(N+d-r)/d, then the indirect assumption implies that there
exists an integer me{l,..., z—1} such that

A,(nj_y+m)—A4,(n;_,) < m/h.
Let nj=n;_,+m. '

If n,_,+z—1>(N+d—r)/d, then we end the construction of the finite
sequence, that is, we set t =j—1.

It now follows from (5), (6), and (8) that

14, = ¥ (4,(n)—A,(n;_ ) +(4,(N+d—r)/d)— A,(n))
ji=1

< Y (ny—n;_)h+((N+d—n)d—n)
J=1

<nf/h+z—1 < (N+d—r)/hd+z—1

< N/hd+z = (N/h+zd)/d < |A)/d < |4,).
This contradiction proves the existence of an integer u satisfying (9) and (10),
and completes the proof of Theorem 1.

COROLLARY 1. Let N and k be positive integers. Let A be a subset of
{1,..., N} satisfying (3). Then there exists an integer d satisfying (4) such that
4kA contains an arithmetic progression with difference d and length
[N/2kd] Z [N/2(k—1)k].

Proof. Apply Theorem 1 with h =2k and z = [N/2kd].

To obtain a refinement of Theorem 1 in the case of distinct summands, W
shall need the following three lemmas.

LemMMA 1. Let t be a positive integer and let & be a positive real number
There exists a number N (6, t) such that if N > Ngand A = {1, 2,..., N}, and
we define A;< {1, 2,..., N} by
(14) A, = {a| a+ide A for some d >0 and all |i| <t}
then |A\Aj| < dN.

Proof If |4\4) = 6N and N > N,, then Szemerédi’s theorem [10]
implies that A\A, contains an arithmetic progression of length 2t—1, the
middle term of which would belong to A, which is absurd. Therefor®
|4\4)] < 6N.

LEMMA 2. Let A be a finite or infinite set of integers. Let h > 1. Define Ay bY
(14) with t = h. Then hAj < h* A.

Proof. This is Lemma 2 in [4].

LeMMA 3. Let M, a, d, z, K be positive integers with z> 1 and K > 1. LEI
A be a subset of {0, 1,..., M} such that

(15) 0cAd
and
(16) {a,a+d,...,a+(z-1)d} < A.
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Let u = [KM/d(z— 1)1+ K. Then there exist positive integers r, s such that

(17) sir>K,
(18) {rd,(r+1)d,..., sd} < (ud)A,
(19) s>KM.

; Proo'f. Define u' =[M/d(z—1)]+1. If w <h<wu, then acA < {0,
»+..,M} implies that

h2u =[M/dz—1)]+1 > M/d(z—1) > a/d(z—1),
and so

hd(z—1) > a.
Therefore, -
hda+hd(z—1)d > (h+ 1)da,
and so the following two arithmetic progressions overlap:
(hd){a, a+4d,..., a+(z—1)d} = {hda,..., hda+ hd(z—1)d}
and
((h+1)d){a, a+d,..., a+(z—1)d} = {(h+1)da,...,(h+1)d(a+(z—1)d)}.
It follows from (15) and (16) that

Qo) (ud)A = O (hd){a, a+d,..., a+(z—1)d}

h=u'
= {uda, Wda+d,..., uda+ud(z—1)d}.

::l us denf)te the first and last terms of this arithmetic progression by rd and
» Tespectively. Then (20) implies (18), and (17) also holds, since

s/r = (ua+ud(z—1))/u'a > u/u’
= ((KM/d(z— )]+ K)([M/dz— 1)]+1) > K.
Fil'liiilly, (19) follows from
s = ua+ud(z—1) > ud(z—1) = [KM/d(z—1)4 K]d(z—1) > KM.
This completes the proof of the lemma.

THEOREM 2. Let § be a positive real number, and let k be a positive i
: L : positive integer. |
No(d, k) and A is a subset of {1, 2,..., N} with i

Q) |Al > (1/k+8)N

t . .

p"e’l there exists an integer d satisfying 1 <d < k—1 such that if h and z are
OSitive integers satisfying the inequality

(22)

N>

N/h+zd < (1—8)|Al,

io
Acta Arithmetica LIV, 2



152 M. B. Nathanson and A. Sarkézy

then there exists an arithmetic progression of length z and difference d, each of
whose terms can be written as the sum of exactly 2h distinct elements of A.

Proof. Define A%, by (14) with 2h in place of t. By Lemma 1, for
N sufficiently large we have

(23) |ANA%,| < (6/2K)N.

It follows from (21), (22), and (23) that conditions (3) and (5) in Theorem 1 are
satisfied with A5, in place of A. Thus, (2h)A4%, contains an arithmetic
progression of length z and difference d. By Lemma 2, this progression is
contained in (2h)* A. This completes the proof of the Theorem.

COROLLARY 2. Let 6 > 0, and let k be a positive integer. If N > N (9, k) and
A is a subset of {1, 2,..., N} with |A| = (1/k+0)N then there exists an integer
d satisfying 1 <d < k—1 such that 4kA contains an arithmetic progression of
length [N/2kd] > [N/2k(k—1)] and difference d, each of whose terms can be
written as the sum of exactly 4k distinct elements of A.

Proof. Use h =2k and z = [N/2kd] in inequality (22) of Theorem 2.

THEOREM 3. Let N, k, K be positive integers with K > 1 and

(24) N > 64k*K.
Let A be a subset of {1, 2,..., N} such that
(25) |Al = N/k+1.

Then there exist positive integers d, r, and s such that d <k—1, s/r > K,
s > 4kKN, and each term of the arithmetic progression {rd, (r+1)d,..., sd} can
be written as the sum of at most 4dkK(8k*>+ 1) elements of A.

Proof. By (25), we can use Corollary 1 to obtain an integer d satisfying (4)
such that the sumset 4kA contains an arithmetic progression {a, a+d,...,
a+(z—1)d} of length z = [N/2kd]. Let B = {0} u4kA. Then (15) and (16) hold
with 4kN and B in place of M and A, respectively, and so we can apply Lemma
3 to obtain an arithmetic progression

(26) {rd(r+1)d,..., sd} < udB = ud({0} UdkA)

where s/r > K and s > KM = 4kKN. Since 1/(1—x) < 142x for 0 < x < 1/2,
it follows from (24) that

u = [KM/d(z—1)]+ K
= [4kKN/d(z— 1)1+ K < 4kKN/d([N/2kd]—1)+ K
< 4KKN/Jd((N/2kd)—2)+ K = 8K*K/(1 - (4kd/N))+ K
< 8K2K(1+8kd/N)+ K < Bk + 1)K + 64k* K/N < 8k + K +1.

@7
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Th_en (26) and (27) imply that each term of the progression in (26) can be
Written as the sum of at most 4dku < 4dkK (8k*+1) elements of A. This
Completes the proof of Theorem 3.

THEOREM 4. Let & be a positive real number, and let k and K be integers
greater than 1. If N > No(6, k, K) and if A is a subset of {1, 2,..., N} with

(28) |4] = (1/k+8)N,

then there exist positive integers d, r, and s satisfying d < k—1, sfr > K, and
$> 4kKN such that each term of the arithmetic progression {rd, (r+1)d, ..., sd}
€an be written as the sum of at most 4dkK(8k*+1) distinct elements of A.

Proof. Let t=4dkK(8k*+1), and define the set A, by (14). For
Sufficiently large, Lemma 1 implies that

41| = 4] = |A\4} > (1/k +O)N—(3/2)N =(1/k+06/2)N,

S0 that (25) holds with A in place of A. Applying Theorem 3 for large N, we
Obtain the existence of integers d, r, s such that d < k, s/r > K, s > 4kKN, and
€ach term of the arithmetic progression {rd,(r+1)d,..., sd} can be written as
2 sum of at most ¢ elements of A;. By Lemma 2, each term of this progression
‘an be written as the sum of the same number of distinct elements of 4. This
Completes the proof.

" 3. I:owers of 2. We now apply the results in the preceding section to solve
¢ Erdos-Freud problem on powers of 2.

THEOREM 5. Let n>273% = 3456 If A < {1, 2,..., 3n} and || >n+1,

t, . :
o?e: there is a power of 2 that can be written as the sum of at most 3 504 elements

T Proof. With N=3n, k=3, and K = 2, conditions (24) and (25) of
€orem 3 are satisfied, and so there exist positive integers d, r, and s such that
(r= I or 2, s>2r, and ¢ach term of the arithmetic progression {rd,
e]:- )d, ..., sd} can be written as Fhe sum of at most 4dkK(8k%+1) < 3504
i Ments of A. Since s > 2r, the're exists an integer m with r < 2™ < 5. Then 2™d
a power of 2 that can be written as the sum of at most 3 504 elements of A.

THEOREM 6. For n sufficiently large, if A < {1,2,...,3n} and |A) = n+1,

t .
Ie" there is a power of 2 that can be written as the sum of at most 30961 distinct
Clements of A.

- Proof. _Since |A] > n, there exists a*€ A such that 3} a*. Then (28) holds
hlth A\{a*} in place of 4, and with N = 3n, k = 4, and K = 5. By Theorem 4,
. €re exist integers d, r, and s satisfying d < 3, s > 5r, and s > 240n such that
Ach term of the arithmetic progression {rd, (r+1)d, ..., sd} can be written as

the sum of at most 4dkK (8k*+1) < 30960 distinct elements of A\{a*}.
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If d =1 or 2, then there is an integer m with r < 2™ < s, and so 2™d is
a power of 2 that can be written as the sum of at most 30960 distinct elements
of A.

If d =3, then each term of the arithmetic progression

{rd,(r+1)d,..., sd}+ {a*} = {3r+a*, 3(r+1)+a*,..., 3s+a*}

is a sum of at most 30961 distinct elements of 4. The quotient of the greatest
and least elements of this set is

(3s+a*)/(3r +a*) > (3s+a*)/(3(s/5) +a*) = (15s+ 5a*)/(3s + 5a*)
=4+ (35— 15a*)/(35+ 5a*) > 4+(720n—45n)/(3s + 5a*) > 4.
It follows that there exists an integer m such that
Ir+a* < 2™ < 2™t < 35440,

Since 3.fa*, either 2™ or 2™*! is congruent to a* modulo 3, hence belongs to
the arithmetic progression above, and so can be written as the sum of at most
30961 distinct elements of A. This completes the proof.
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Notions relatives de régulateurs et de hauteurs

par
A.-M. BERGE et J. MARTINET (Talence)

1. Introduction. Soit L/K une extension de corps de nombres. L’étude faite

ans [1] des minorations géométriques de régulateurs suggére la définition
Sulvante du régulateur de L/K :

(1.1) DérNITION. Le régulateur relatif de L/K est: R vk = Qux R/Rg, ou
L;(.(“l’indice de Hasse” de L/K) est I'ordre du sous-groupe de torsion du
Quotient E,/u, Eg, les notations R,,, Hus Ep désignant respectivement le
TCgulateur, le groupe des racines de l'unité et le groupe des unités d'un corps de
lombres M.
Dans le cas d’une extension L/K primitive (c'est-a-dire sans sous-extension

Blermadio: : :
rz::!nﬂnedjalre), on trouve dans [1] une démonstration d’une inégalité de la
e

1 Ngo(d !
Ryx> C—Z[Log—x"—qé—”—x)}c (dyx est le discriminant relatif),
3

0}‘ €y, C,, C, sont des constantes dépendant seulement des signatures de K et
grDCOmmc' copftantc Cy, on peut prendre la différence r,—ry des rangs des
; UPest d’unités t.ie L et de K (on suppose implicitement que la norme du
SCl?mmant relatif est > C,). Cette inégalité est une généralisation du résultat
fai sa‘:lque de Remak. 91 sur les corps pri:nit?fs, résultat que I'on retrouve en
e tK=Qet qui est basé sur une minoration de la norme euclidienne, dans
Teseau des unités de L, en fonction du discriminant. .
Dans le cas d’une extension L/Q imprimitive, la recherche d’une bonne
Dstante C, nécessite en outre un argument de géométrie diophantienne sur la
m’—}'l()l'ation de la hauteur d’un nombre algébrique en fonction de son seul de-
g:':"-Lla hauteur logarithmique est en effet une norme dans le réseau des unités
o - Rappelons 4 ce propos une définition des hauteurs (c’est bien celle que
5 e Lang dans [7], ch. 3, §1, méme si les degrés locaux n’y figurent pas
Xplicitement).
,. (1.2) DErniTION. Soit d un entier > 0 et soit x = (Xgs ... X;) un point de
%Space projectif PY(Q). La hauteur de x est

H(x) = ([] Max|x,],,) /=),
w i
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