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Simplexwise linear and piecewise linear
near self-homeomorphisms of sorfaces

by

Ethan D. Bloch * (Annandale-on-Hudson)

Abstract. Let K< R? be a triangulated 2-disk; a map f: K — R®is called simplexwise linear
(SL) if f|o is an affine linear map for every (closed) simplex ¢ in K. Let L(K) = {SL homeomor-
phisms K — K fixing 0K pointwise}, and let L(K) denoteits closure in the space of all SL maps
K - R, Some criteria are given for determining when an SL. map X — K fixing 8K pointwise is
in L(K), strengthening previous results. Similar criteria are given for determining when a PL map
of a compact, oriented surface to itself is a near-homeomorphism.

1. Introduction. Let K < R? be a triangulated 2-disk. We will use K to denote
both the simplicial complex and its underlying topological space. A map f: K — RrR?
is called simplexwise linear (abbreviated SL) if f| o is an affine linear map for every
(closed) simplex ¢ in K. Note that an SL map is determined by what it does to the
vertices. Let L(K) = {SL homeomorphisms 'K — K fixing 6K pointwise}. If K
has k interior vertices, then L(K) can be identified with an open subset of R*:if Kis
convex, it is proved in [BCH] that L(X) is in fact homeomorphic to an open ball.
In the proof of this fact, as well as in subsequent work (see [B1], [B2], [B3]), it
became necessary to use the closure L(K) of L(K), and to characterize those SL
maps K — K fixing K which are in L(X) and L(K). Our main result is Theorem 1.2,
stated below, which gives some characterizations of elements in L(K) (strengthening
Theorem 1.2 of [B1]). Because Theoiem 1.2 has an analog for PL maps of compact,
oriented surfaces, we first state and sketch the proof of this analog, both as motiva- -
tion, and because part of its proof is used in the proof of Theorem 1.2; also, it does
not appear to be in print, in spite of its straightforward proof.

First some conventions and a definition. Throughout this paper all manifolds
will be PL, compact and oriented, all subsets of manifolds will be PL, and all maps
between manifolds will be PL and orientation preserving.
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DerINITION. Let /2 M™ — N™ be a map of n-manifolds, let D= M” be an
n-ball, and let x € int D be any point. We define s(f, x, D) to be either an integer
or oo as follows. If f(x)ef(8D), then let s(f, x, D) = co. If f(x)¢f(@D), but
f(x) € @N, then let s(f, x, D) = 0. If f(x) ¢ f(8D)U N, choose an n-ball 0 = N*
such that f(x)eintQ and Qnf(@D) = @. Let I; = D/0D and X, = Q/dQ be
the n-spheres obtained by collapsing the indicated boundaries to points; clearly f
induces a continuous map f*: £, — X,. Finally, let s(f, x, D) = degf*. It can
be seen from standard results about the degree of a map that the definition of
s(f, x, D) is independent of the choice of n-ball Q. We say that the map f has
the simple surrounding property (abbreviated SSP) if for all n-balls D = M", and
all xelntD, s(f,x,D)=1 or oo; if f(x)edN, it is further required that
s(f, x, D) = co. Similarly, f has —SSP if for all n-balls D= M", and all
xeIntD, s(f,x, D)= —1 or oo, and the added requirement whenever f(x) € dN.

It is well known that various conditions on a map : M" - N" of manifolds
will imply that fis a near-homeomorphism (i.e. it is the the limit of homeomor-
phisms); the usual condition is that the sets f~'(x) are well behaved. (See [C],
{SI, [A] or [QD). In particular, for PL maps of surfaces the condition is that
the sets f~!(x) are 1-connected. However, if one starts with a self-map of
a manifold, then it is conceivable that weaker conditions on the map suffice to
imply that the map is a near-homeomorphism. The following theorem indicates
that this is indeed the case for PL self-maps of compact, orientable surfaces.

ToeoREM 1.1. Let M be a compact, orientable surface, and let f: M — M be
a PL map, with f(0M) = 0M. The following are equivalent:

(1) f is a near-homeomorphism;
(2) f is surjective and has SSP or -SSP;
() f is surjective and f~'f(x) is connected for all x e M.

Remark. The example in § 2 of this paper shows that the surjectivity condition
in (2) of the theorem is necessary.

Our main result is the following theorem, an analog of Theorem 1.1 for SL
maps of 2-disks. The problem, as always when dealing with SL maps, is going from
being approximated by topological or PL homeomorphisms, to being approxi-
mated by SL homeomorphisms. The main tool for doing this is Theorem 1.2 of [B1].

ToEOREM 1.2. Let K= R® be a strictly convex triangulated 2-disk, and let
f: K~ K be an SL map fixing 8K pointwise. The Jollowing are equivalent.

(1) feL(X);

(2) f has SSP;

(3 s(f,0,D) =1 or o for all disks D<K such that 0DNK® = @, and all
vertices veintD;

@) f7'f(v) is connected for all interior vertices v of K.
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We then obtain

COROLLARY 1.3. Let K< R® be a strictly convex triangulated 2-disk, and let
f: K> K be an SL map fixing 0K pointwise. Then fe L(K) iff f*f (v) = {v} for
all interior vertices v of K.

Remarks. (1) Both Theorem 1.2 and Corollary 1.3 are false if one considers SL
maps f: K — R* fixing 8K pointwise. Consider for example K having one interior
vertex v, and f(v) is outside of K.

(2 It is not clear whether Condition (3) of Theorem 1.2 can be replaced by
the condition: s(f,v,L)=1 or oo for all disks L <X such that L is a sub-
complex of K, and all vertices v e IntL.

(3) Both Theorem 1.2 and Corollary 1.3 are false in all dimensions higher than 2.
In dimension 3 a counterexample is constructed as follows. Let 4 = R® be a 3-simplex
with vertices {a, b, p, g} such that the line segments ab and pq are perpendicular,
both parallel to the yz coordinate plain, and with 4, b having negative x-coordinates,
and p, g having positive x-coordinates. Let K = R® be a strictly convex triangulated
3-ball containing 4 in its interior, and no other interior vertices. Let f: K — K be
the SL map fixing 0K pointwise, which projects 4 orthogonally into the yz plane.
Then f~1f(v) = {r} for all interior vertices of K3, and yet f is not a homeomor-
phism; if Kis chosen carefully, f will be a near homeomorphism, with only 4 collapsed.
Clearly there are similar examples in all dimensions greater than 3.

‘We do not give any information here about the interest in SL maps, and known
results, since such information can be found in [BCH], [CHHS], [BS], [B1], [B2], [B3].
This paper is organized as follows: § 2 has preliminaries about SSP, § 3 has the
proof of Theorem 1.1, § 4 has some lemmas about SL maps, and § 5 has the proofs
of Theorem 1.2 and Corollary 1.3.

2. Simple surrounding property. This section dicusses some basic properties
of SSP. Throughout this section, assume that M and N are compact, orientable PL
n-manifolds, and all maps M — N are PL, with f(0M) c dN.

Lemma 2.1. Let M, N and maps f,g: M — N be as above. Then

(i) let D= M be an n-ball, and xeInt D be any point. If f(x) ¢ f(8D)UON
then s(f, x, D) = degyy[f/UL, for any sufficiently small neighborhood U of
ST (x)nint D, (where the local degree of f| U over f (x) is as defined in [D] VIII § 4).

(ii) Suppose x € M is such that f (x) ¢ 0N, and f~*f (x) has two distinct com-
ponents Ky and K,. Suppose further that there exist disjoint n-balls D, and D, con-
taining K, and K, in their respective interiors, and an n-ball D containing D, U D,,
and with Dnf7f(x) = Ky UK,. If xeK; for i=1,2, then s(f,x,, D)
= 5(f, x2, D) = s(f, %y, D) +s(f, %2, D;). (Note that none of these numbers
is .)

Proof. (i) f(x)¢/(éD) implies that f~f(x)nintD is compact. f(x)¢ N
implies that for any sufficiently small neighborhood U of fif(x)nintD,

5 — Fundamenta Mathematicae 132.2
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f{U)naN = &; therefore f| U is a map into IntN, and so local degree (as in [D]j
is well defined. The proof is now straightforward.
(i) This follows from (i), and Theorem VIII 4.7 of [D]. H

Lemma 2.2. Letf: M — N have SSP or -SSP. Then deg f = +1iff fis sw_'iective..

Proof. This is straightforward, using the fact that f is PL, and the relation
between local and global degrees (as discussed in [D, VIII § 4]).

Lemma 2.3. Let f: M — M be as above, and suppose M = &. If f is a near;
homeomorphism, then f has SSP or -SSP.

Proof. Suppose {f,} is a sequence of homeomorphisms of M converging to f.
Let x and D be such that s(f, x, D) ¢ co. By compactness, there is an n-ball
Q<M such that f(x)eintQ, Qn f(0D) = @, and @ f,(0D) = @ for all suffi-
ciently large m. Let X; and X, be as in the definition of s(f, x,. D). It is easy to see
that the induced maps {f5: Z; —» Z,} converge to f*: ¥, — X,. Since deg fo=1
for all m, ‘or degff = —1 for all m, it follows that degf* =1 or —1. The result
now follows easily. B

Remark. The hypothesis M = & in the above is not necessary, but is used
to simplify the proof.

An example which shows the necessity of assuming surjectivity in parts (2) of
Theorem 1.1 is as follows. For any n3>2, let M = §*~! x 8%, and let f: S 1x
X8t = 8" % S be given by f(S™! x {¥) = (=, ), for some point *e S""1,
Suppose D= 8""'x S' is an n-ball, and (x,y)eIntD. D cannot contain all of
8"t x{y}, since S 15 {3} cannot be contracted to a point in $"~!x S, There-
fore $"7 ' x {3} " 8D # @, and s f (x, y) & f(8D). It follows that s( f, (x, ), D) =co
for all (x, y) and D, so that f has SSP and -SSP as desired. On the other hand, fis
not a near-homeomorphism, having degree 0.

QuestioN. Could condition (2) of Theorem 1.1 be replaced by the condition:
f has SSP or -SSP but not both (.e. s(f,xD) = +1 for some x and D)?

3. Proof of Theorem 1.1

. LemMa 3.1. Let M be a closed, orientable surface, and let f: M — M be a PL
map, with degf = +1.

oI X er is such that f~! f(x) has a non-simply connected component K,
then there is a disk-D < M such that .D < K, but 4D does not bound a disk in K.

(i).Ir x.e M is such that £~ £ (x) has distinet components Ky, ..., K,, then there
are closed disks D, .., D, in M such that K;cintD; and 0D, 0D; = @& for all i, j.

‘ Proof. (i) fis PL, and hence K is a subcomplex of some triangulation of M.
»It is tl.xerefore seen that X contains a simple closed curve C which is not null-homo-:
topic in K By.a (fovering Space argument, degf = +1 implies that f: m,(M) —
- (M) is surjective; the Hopfian property of surface groups then Vimplies t}llat Selis
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injective (see [MKS] § 6.5). Since f(X) is a point, it follows that the map =,(K) —
— 7,(M) induced by inclusion must be trivial. Thus C is null-homotopic in M.
By a theorem of [L], C bounds a diskD in M.

(ii) This is straightforward, using regular neighborhoods of the K;, and the
theorem of [L] referred to above. B

Proof of Theorem 1.1. There are two cases.
Case 1. M = @.

(1)=(2). Surjectivity is clear, and SSP or -SSP follows from Lemma 2.3.

(2)= (3). Assume fhas SSP; the other case is similar. By Lemma 2.2, degf = 1.
We need to show that £~ f(x) is connected for all x; suppose otherwise for some
point ye M. Let K, and K, be two distinct components of f~!f(y). By
Lemma 3.1(ii) there exist disks D,, D, = M such that K; cintD; for i = 1, 2, and
aD,naD, = @. First, suppose D, and D, can be chosen to be disjoint. Then by
choosing innermost components of £~ (), we may assume that D;n f~1f (») = K;
for i = 1, 2. By connecting D, and D, with an appropriately chosen thin strip, one
obtains a disk D satisfying the hypothesis of Lemma 2.1(ii). Let y; € K; be any
point for i = 1,2, and soc Lemma 2.1(ii) implies that s(f, ¥y, Dy) = s(f, 1, D)+
+5(f, ¥2, D). It follows that not all three of s(f, y;, D), s(f, ¥1> D1), s(f, Y2, D2)
are equal to 1. None of these numbers is co, however, and a contradiction to SSP
is obtained.

Next, assume that D, and D, can not be chosen to be disjoint. Two things follow:
(1) M is pot the 2-sphere S2, and (2) one of the K; is not simply connected; (the
first fact holds because the complement of a PL disk in S? is a PL disk, and the
second fact holds by considering regular neighborhoods of the K;, which would be
disks if the K; were simply connected). Assume K, is not simply connected. Let .D
be a disk as given by Lemma 3.1(i). Note that f|{D factors through maps
D - D/dD ~ S* - M, since f(dD) is a point. Since M is not S?, m,(M) =1,
and so f|D is null homotopic reldD. Choose any point ze DNf~1f(y); then
degre,y[ f|int D] = 0. Since f(2) ¢ (D), it follows from the remark after the defini-
tion of SSP that s(f, x, D) = 0. This contradicts the fact that f has SSP.

(3)=>(1). It is easy to check that deg f = X 1. It is known that fis a PL near-
homeomorphism iff f~1f(x) is contractible for all x € M (see [S]; in the PL case
cellular implies contractible). Hence, it suffices to prove that f~!f(x) is simply con-
nected for all x e M. Suppose otherwise, so that there is some ze M such that
f7'f(z) is not simply connected. Some component K of f~*f(z) must be non-
-simply connected. Let D be as in Lemma 3.1(i). Suppose M is not S2. Then as in
the proof of (2)=(3), f|D: D — M is null homotopic reldD. Therefore f is
homotopic to the map g: M — M given by

_Jf®
g(x) - {f(z)

if xe M\intD ,
if xeD.

5
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It follows that deg g = degf = +1; in particular g is surjective. Consequently,
M\{f (@)} c g(M\D) = f(M\D). It now follows that 9D separates f~*f(x) for
some xe€intD, a contradiction.

Now suppose M ~ S2. If f| D: D — M is null homotopic reldD, the proof is
just like the previous case, so assume otherwise. Consider the disk B = M\intD,
(so 8B = 8D). If B<f~'f(2), then by connectivity B < K, contradicting the hy-
pothesis on D. Hence B¢ f~ £ (2). If f| B: B » M is null homotopic rel 9B, we are
once again just as in the previous case, so assume otherwise. It follows that both
of f|D and f|B are surjective. Since 6D = 0B separates M, this contradicts the
assumption that f~1f(x) is connected for all x e M.

Case 2. 0M # @. Let K and L be triangulations of M such that f: K — L is
simplicial. Suppose K= () Cyand L = |) D; where the C; and D, are trian-

i=1,p j=1,r
gulated circles. Let K’ and L' be the abstract triangulations X' = KU {J (g, * c)
i=1i,p
andL'=Lu |J (& + D)), where + denotes join, and the a; and b, are distinct points.

Jj=1,r

Then K’ and L’ are both triangulations of the surface M’ obtained by coning on
each of the components of 3M. Moreover, the extension f': K’ — L’ of ffK-L,
obtained by defining f (a;) = &, iff f (C;) = D, is 2 simplicial map representing a PL
map f': M’ — M'. To reduce this case to the previous one, it remains to note that
straightforward arguments show that each of conditions (1), (2) and (3) holds for Siff
it holds for /. H

4. Simplexwise linear maps. In this section we prove some lemmas concerning SL
maps. The analysis is very similar to Sections 2 and 3 of [B1], although the present
situation is much simpler; we will use definitions and results from these sections
of [B1] without restating them. Throughout the rest of the paper, we assume that
K< R? is a triangulated 2-disk, and all maps are SL. Let K’ denote the set of all
(closed) i-simplices of K, and let int K° and 3K° denote the interior and boundary
vertices of K respectively. '

Lemma 4.1. Let K be strictly convex, and let f: K — K be an SL map fixing 0K
pointwise. Suppose f~1f(v) is connected for every vertex ve K. Then

(@ S~ (%) is simply connected for all x ¢ K.

(il) Let D < K be a disk, and suppose f (D) is a point or a line segment; then
F (D)= f(@D).

Proof. () Suppose C =K is a simple closed curve (not necessarily a subcomplex),
such that £ (C) is a point. Then any 1-simplex which intersects C in at least two
points, or any 2-simplex which intersects C in at least three non-colinear points
is also mapped to a point. If the disk bounded by C contains no vertices in its

interior, then it follows that the whole disk must be mapped to a point. The
result row follows easily.
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(i) S (8 D) is convex; hence, if all vertices in intD are mapped into £(3D), then
f(D) = f(8D). Therefore, if we suppose f (D)< f(9D), then f () ¢ £ (0D) for some
vertex v € int D. It is easy to see that this implies that #~'f (v) has points both inside
and outside of D, a contradiction to the connectivity of i . W

DernaTiON. Let SC(K) = {f: K — K|fis SL, fixes 9K pointwise, and every
2-simplex & € K is either not collapsed or of type SC}. See [B1] p. 704 for definitions.

Throughout the rest of this section, assume fe SC(K) is given. Let 5 e K2 be
of type SC. Define A (5) as on p. 706 of [B1]. We then obtain the following analog
of Lemma 3.1 of [BI].

LemMa 4.2. Suppose fe SC(K), and f~2f (v) is connected for every vertex ve K,
Then :

() Let xe K; if f T f (x) 0 K® = @, then f =1 £ (x) is the union of arcs and points,
with each point in the boundary of two 2-simplices of K which are not collapsed by f,
and each endpoint of every arc is in the boundary of one such 2-simplex; if f~f (€9 ]a)
NK° # @, then f~'f(x) is either a point or a compact, connected simplicial tree
(not a subcomplex of K), with each endpoint of the tree in the boundary of a 2-simplex
of K which is not collapsed by f (unless the endpoint is in 0K).

(i) A@) is a 1-connected subcomplex of K.

Proof. (i) This is straightforward, using the facts that fis affine linear on each
simplex of X, and no 1-simplices are collapsed (since fe SC(K)).

(ii) First, let n and v be 2-simplices in 4(6) such that # relv (in the notation
of p. 706 of [B1]), so that (i) nf(v) is a line segment; we claim that there is a finite
sequence of two simplices # = &, 2,, ..., &, = vin A(5) such thatg;ns;, , is a 1-sim-~
plex. It is easy to see that there are at least two vertices v, we nuv such that f(v),
FWyeft)nf (), and f(v) # f(w). By (), f~'f (v) and f~1f (w) are disjoint con-
nected trees which intersect both 5 and v. Parts of these trees, together with appro-
priate subsets of dn and v, bound a disk D in K. See Figure 1. Clearly f(8D) is
a line segment contained in f(A(5). Lemma 4.1(ii) implies that £ (D) =f(4(3));
hence every 2-simplex of X that intersects int D is in A(5). The claim now follows.

To prove A(8) is connected, note that by definition, if ¢, = are 2-simplices in
A(5), then there is a finite sequence of two simplices ¢ = B;, B2, ..., B = tin A(5)
such that 8; rel ;.. It follows from the above claim that there is a path in A(5)
from any point in f; to any point in B;,,; thus there is a path in A(5) from any
point in ¢ to any point in .

The simple connectivity of (45) follows easily from Lemma 4.1(G). M

It follows from the above lemma that A(5) = A4(8), in the notation of [B1] § 3.
The analog in our situation of Lemma 3.3 of [B] is

LeEmMA 4.3. Suppose fe SC(K), and f~1f(v) is connected for every vertex
v€K. Then
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(i) All f-segment complexes are simple (in the terminology of [B1], § 3), with
each E; a single vertex, and | S; injective, for i = 1,2. In par ticular, f-segment com-
plexes are 2-disks.

@) If 5 € K is of type SC, and x € A(8), then f~*f (x)nA(8) is an arc with
one endpoint in each of Sy, S,, (unless x = E; or E,, in which case f fx)n

nA@) = {x})-

Proof. (i) Let A(5) be an f-segment complex. Lemma 4.2 (ii) implies that 4(3)
is a 2-disk. Let e;, e, be the endpoints of f(4(5)) (which is a line segment). We
can write 84(5) as 84(5) = E;uS,;v...UE,US, for some n>2, as in the proof
of Lemma 3.3 of [B1]. Since fe SC(K), each E; is a single vertex. First, we show
1S, is injective for each i; suppose otherwise for some S;. Suppose WLOG that
J(S) is in the x-axis, with e; < e,. Let v be the first vertex of S;, as-.S; is traversed
from E, to E;.,,, such that f|star(v, S;) is not injective. Let w be the first vertex
of §; after v (still going toward E;,,), such that f'|star(w, S} is not injective. Then
there exist points x, y € S; such that x is between E; and v, y is between w and E;, 4,
and F(3) = (@), f(x) = f(w). See Figure 2. By hypothesis ™! (v) and f~1f(w)
are connected ; hence, there exists paths 4 and Cin f™*£(v) and f ~*f (w), respectively,

_ connecting y to v and x to w, respectively. Because fe SC(K), these two paths in-
tersect 8/ (6) in finitely many points each (intersecting each 1-simplex at most once),
and they do not intersect' S; between v and w. Also, 4 C = @. Because of the
order in which the points x, v, w, y lie in S;, it is seen that at least one of 4 or Cis
not entirely contained in A(5); assume that C is not entirely contained in A(5).
C has a subarc C’ such that CnA(8) = {r, ¢}, for some points r, s € d4(5). C’, to-
gether with one of the arcs in 84(5) from r to ¢, bounds a disk Q such that
int@nA(S) = B; (if » = ¢, consider {r} to be a degenerate arc). £(3Q) < f(4(5))
by definition of C. It follows from Lemma 4.1(ii) that £(Q) < f (4(5)). This implies
that any 2-simplices of K intersecting int Q@ must be in A(5), by the definition of
611(6), contradicting the fact that int Qn.A(5) = @. Hence f|S,; is injective.
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Tt follows from the above that the E; are mapped alternatively to e, and e,.
Since each f~1f(E)) is connected, n<2, and the proof is complete.

(i) This follows easily from Lemma 4.2(i). M

S
- f_, x v
S
& &
flAls))
Fig. 2

The next Lemma is proved similarly to Lemma 4.3.

Lemma 4.4. Let D < R? be a triangulated 2- disk such that 8D has three vertices
{a,b,c}. Let h: D — R be an SL map such that '

(1) h(a) = h(B) # h(o);

(2) k(D) = h(0D);

(3) A~ h(x) is simply connected for all xe D;

(4 h is injective on every 1-simplex of D other than {a,b).

Then for all x € D, k™' h(x) is an arc with on end in each of {a, c) and (b, c) (unless
x = ¢, in which case h™1h(c) = {c}).

5. Proof of Theorem 1.2. We start by setting up some notation. As before,
assume K< R? is a tringulated 2-disk.

DerINITION. Let R(K) be the space of maps as on p. 702 of [B1], with the added’
requirement that all maps are K — K fixing 6K pointwise.

Remark. Theorem 1.2 of [B1] holds with L(K), L(K) replacing E(K), E(K)
respectivelly, and with the present R(K) replacing the R(K) in [BI1].

DEFINITION. Let ¥V, ¥y, Vg, E, E;, Eg, F denote the number of vertices, interior ~
vertices, boundary vertices, edges, interior edges, boundary edges, and faces of K.
If « denotes an angle of some 2-simplex # of K, and f|# is injective, let f'(x) denote
the signed radian measure of the corresponding angle of f () (the sign depends on
whether f|5 is orientation preserving or reversing).

Proof of Theorem 1.2. (1)=>(2). This follows from Lemma 2.3, the coning
argument in the last case in the proof of Theorem 1.1, and the fact that deg f = 1.
(2)=(3). This is trivial.
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(3)=>(4). By using the coning argument in the last case in the proof of The-
orem 1.1, this is proved just like the implication (2) =(3) in the proof of Theorem 1.1,
noting that the disks D;, D,, D can be budged so that their boundaries do not

intersect K°.
@=(1). Let ¢(f) = # {5 K? det(f[6) = 0} and

r(f) = 4 {6e K?| det(f|8) <0},

where det(f]) is defined in [B1] p. 702; note that fe R(K) iff r(f) = O by the
L(K) analog of Lemma 1.1(ii) of [BI]. Using Lemma 4.1(i), it follows from the
L(K) analog of Theorem 1.2 (5) of [B1] that to prove our theorem it suffices to
prove that fe R(K) i.e. r(f) = 0. This is proved by induction on ¢(f).

¢(f) = 0. This part of the proof involves a polyhedral Gauss—Bonnet type
argument. If v € intK°, then the curvature di, of f(K) at v is di, = 2n— 2, .| f(o);
if v e AK®, then'the curvature db, of f(K) at v is db, = n— X, f(@)|. The signed
curvatures are si, = 2n—2,.,/ (&) and sb, = n—2, ., f () respectivelly. The total
curvature of f(K) is d = Z,ci1uxdi,+2,e0xdb,, and the total signed curvature is
8 = ZyeimxSiatZycoxsh,. Note that Ep = Vp, and 3F = 2E;+Ey. The Gauss—
Bonnet Theorem is

d= Eueintxdia’{'zvedebv

= Zoeimx(zn"zoe alf(“)‘)'i‘zu-ox(ﬂbzv- al f(‘x)l)

= 2Vt nVp—Zed (0

= 2nVi+nVy—nF = n(2Vy+2Vy— V—3F+2F)

= n(2V—V3~2E— E3+2F) = n(2V—-2E+2F) = 2x..

For any v e intK®, let deg, f denote the local degree of f at v. Since c(f) = 0,
it is seen that deg, f = (1/27) 2, ¢.f (%), and s0 si, = 2n— X, .. f(«) = 2n(1 —deg, f).
By considering exterior angles, it is seen that X, ,csh, = 2n. Consider the quantity
s—d. Clearly the only non-zero contributions to s—d come from 2-simplices & such
that f4 is orientation reversing; consequently, it is easy to see that s—d = 2zr(f).
On the other hand, the Gauss—Bonnet Theorem just proved, and the observations
just made about degree, imply that
an(f) =s5—d= EveintKSiv_i'ZvEBRSbv“z”
= usinlxzn(l - deg,,f)+2n—27c = 2ﬂzaeintx(l - nguf) .

H-encc r(f) = Zpesmr(l—deg, /). Now, the hypothesis that c(f ) = 0, together
with the fact that £~ f(v) is connected for every veintK®, implies that in fact

ST () = {v}. Hence, since deg f = 1, it follows that deg,f=1 for all v eint K°.
The equation for r(f) then shows that r(f )} =0, as desired.

Indut,:tive step. Suppose that ¢(f) > 0, and that the result holds for all triangu-
lated 2-disks K’ and all g: K’ — K’ with ¢(g) < ¢(f). There are now two cases.
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Case 1. There is a 1-simplex {a, b) in K such that f({a, b)) is a point. By hypoth-
esis on f, {a, b) is not in 8K. Let ¢ and d be the two vertices of K such that {a, c,
b, c) and {a, d), (b, d) are 1-simplices in K (although the triangles with vertices
{a,b, ¢} and {a, b, d} might not be 2-simplices in K), and every other such vertices
are contained in the interiors of the triangles {a, b, ¢} and {a, b, d}. Moreover, by
choosing an innermost {a, b), we may assume that f is injective on all 1-simplices
inside {a, b, c} and {a, b, d}. We now construct an abstract triangulation K’ of
a 2-disk by deleting all the vertices in the interiors of the triangles {a, b, ¢} and
{a, b, d}, and then forming the quotient space obtained by identifying vertices a
and b, and extending this identification linearly over the triangles {a, b, ¢} and
{a, b, d}. Note that 9K’ is simplicially isomorphic to K in the obvious way. K’ can
thus be embedded in R* with 8K’ identified with 0K, using Theorem 2.2 of [BS].
f induces an SL map f’: K’ —» K’ fixing 0K".

We want to check that f* satisfies the inductive hypothesis. Clearly c(f) < e(f),
so it only needs to be seen that f~*f(v) is connected for all interior vertices v of X”'.
This is evident, however, since the transition from K to K’ at changes the sets
f~1f (v) by at most collapsing some arcs or disks to points, (using Lemma 4.4 with
f(o) # f(a) = f(b) or £(d) # f(a) = f(b); that this lemma applies follows from
Lemma 4.1). Such collapsing can not change the connectivity of the f~1f(v). By
induction r(f") = 0. However, Lemma 4.1(ii) implies that r(f) = r(f"), and this
case is complete.

Cuse 2. There is no 1-simplex {a, b) in K such that f({a, b)) is a point. In
other words, feSC(K). Since ¢(f)>0, there is some &e K> of type SC. By
Lemma 4.3(i), A(5) is a 2-disk. Construct an abstract triangulation K’ of a 2-disk
by collapsing A (5) to an arc, which is done by identifying each set f ~1f (x) nA(5) .
to a point, x € A(5). By Lemma 4.3(ii) this procedure simply collapses arcs to points.
Triangulate K’ by giving it all the vertices of K—int4(5), and adding any 1-simplices
as necessary. As in the previous case, K’ can be embedded in R? with 0K’ identified
with 9K, and f induces an SL map f': K’ — K’ fixing 8K’ (noting that f(4()) is
a line segment). The rest of the proof for this case is just like the previous one. W

Proof of Corollary 1.3. () If fis a homeomorphsmien trivially
f71f (@) = {v}. Now assume fis not a homeomorphism; either fe L(K) or it is not.
In the latter case, it follows from Theorem 1.2 that there is a interior vertex w e K°
such that f~1f(w) is not connected; in particular, £~*f (w)  {w}. Now suppose
that fe —L(—K). Then f'e R(K), siuce—L_(—K_) < R(K) (seen similarly to the remark follow-
ing Lemma 1.1 of [B1]). Thus det(f]6) >0 for all o€ K? (using the notation of
p. 702 in [B1]). Since f is not a homeomorphism, it follows from the L(K) analog
of Lemma 1.1() of [B1] that det(f|8) = O for some § & K?2. By noting the three
generic ways in which f can map & (in Section 2 of [B1}), it is seen that for at least
one of the vertices w of 8, f~1f(w) s {w}. Since K is strictly convex, one such
vertex in § must be in the interior of K. M
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Abstract. It is known from P. Daniels [Da] that normal locally compact zero-dimensional
metacompact spaces are subparacompact. It is also known an example of locally compact meta-
compact space which is not subparacompact, see [Bu, 4.2]. In this paper, we shall give some charac-
terizations of subparacompactness in locally Lindeldf (or locally w,-spread) spaces. As a corollary,
it will be shown that locally w,-spread (or normal locally Lindeldf) submetacompact spaces are
subparacompact.

1. Introduction. In this paper, all spaces are assumed to be regular T;. P. Daniels
proved that normal locally compact zero-dimensional metacompact spaces are sub-
paracompact, see [Da]. It is also known an example of locally compact metacompact
space which is not subparacompact, see [Bu, 4.2]. In this paper, we shall characterize
subparacompactness of locally Lindelof (or locally o, -spread) spaces. As a corollary,
it will be shown that locally w,-spread (or normal locally Lindel6f) submetacompact
spaces are subparacompact. )

In the rest of this section, we remind some basic definitions and introduce some
notations. '

For a regular uncountable cardiral x, a subset of x is said to be closed unbound-

_ed (abbreviated as cub) if it is closed and unbounded in its order topology, and a sub-

set of % is said to be stationary if it intersects with every cub set of ». For a set X
and cardinal x, we shall use the next notations, [XT*= {Yc X: |Y] = x},
[X1¥* = {Y= X: | Y| <}, and similarly [X 1% For a collection % of subsets of
a set X and xe X, (%), denotes the collection {Ce®: x& C}.

For a pairwise disjoint family & = {F,: « € 4} of subsets of a space, an expan-
sion % = {U,: o € A} of F is a family of subsets such that F,c U, foreverya e 4
and U,n Fy = 0 for every a, f & 4 with « # B. An open expansion is an expansion
whose elements are open. A. (open) separation is a pairwise disjoint (open) expansion.
A subspace Y of a space is discrete if there is an open expansion of {{y}: ye Y}
A disjoint family & of a space is said to be separated if it has an open separation.
A subspace ¥ of a space is said to be separated if {{»}: ye Y} has an open sepa-
ration. -
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