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Jumps of entropy in one dimension
by

Michal Misiurewicz (Warszawa)

Abstract, For continuocus piecewise monotone maps of an interval we estimate possible
jumps (discontinuities) of topological entropy under perturbatipns which preserve the number
of picces of monotonicity. We prove that for unimodal maps the topological entropy as
a function of a map is continuons at all maps for which it is positive.

0. Introduction. This paper deals with the continuity properties of the topological
entropy as a function of a map. For the discussion of this problem in the case of
continuous maps of arbitrary compact spaces, we send the reader to the book [4],
and in the case of smooth maps to the paper [11]. Here we shall concentrate on the
case of continuous maps of the interval (it does not make any difference if we replace
the interval by the circle, so these results apply also to the case of the maps of the
circle).

It was proved in [10] and [8] that in this case the topological entropy is lower
semi-continuous. Hence, what remains to investigate, is the problem how far it is
from the upper semi-continuity. Clearly, one can modify any map by creating an
invariant subinterval with arbitrarily large entropy, and this modification can be
made small in the C°-topology. However, the natural demand that we do not
enlarge the number of turning points, excludes most of these examples.

In such a way we are left with the following problem: how high can the entropy
jump up if we start with the plecewise monotone map and make arbitrarily small C°
perturbations which do not enlarge the number of turning points? The answer
(Theorem 1) is the following:

We look at all periodic orbits. On-each of them we count the number of turning
points and divide by the period. Then we take the maximum of these numbers over all
periodic orbits and multiply by log2. This is the maximal level to-which the entropy
can jump. If it is already above this level, then it is continuous at this map.

p is not piecewise strictly monotone,

Some problems ‘are created if the ma t i
' ning intervals instead of turning

i.e. if it can have “flat” pieces, and in particular tur
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points. Since the exact formulation of Theorem 1 needs some preliminary defini-
tions, we leave it until the end of Section 1. i

We can draw some conclusions from Theorem 1. In the case of the unimodal
maps, it turns out that the entropy is continuous at all maps for which it is positive
(Theorem 2). Then we can deduce some properties of the behaviour of the kneading
invariant as a function of a map. '

The research which resulted in this paper started in order to answer some
questions raised by Ch. Gillot in his talk given during the Semester on Dynamical
Systems at the Stefan Banach Centre (Warsaw, 1986). Section 4 (Corollary 1) answers
the question asked by W. Szczechla.

1. Notations and definitions. We adopt some notions from [I10]. Let f: I~ J
be a continuous map of a closed interval into itself. A cover & of I is called f-mono
if it is finite, its elements are intervals (possibly degenerated to points) and fis mono-
tone on each element 4 € 7. If such & exists then f is called piecewise monotone.

~We denote i

e(f) = n*min{Carde!: & is an f"-mono cover}.
Theorem 1 of [10] says that

1
.M h(f) = lim };log el f)
and
)] ()< élogc,,(.f) for any n.

It also follows from [10] (see (1.4) and Corollary 1 of [10]) that
‘G3) If o is an f-mono cover then A(f) = h(f, o).
Another result useful to us is Lemma 5 of [10]:

“) If 6,,7,20 for n=0,1,2,... then

n-1
. 1 : : X 1 1
lim sup - log 0)Tp— ;< Max (hm sup -logo,, lim sup - logz, ) .
n+ec R n-w N o B
1=0 :

Denote by % (f) the space of all continuous piecewise monotone maps g: I - I
for which ¢;(g) < ¢;(f). We endow this space with the C° topology. . '
Let f be continuous piecewise monotone. Let #(f) be the class of all maximal
closed intervals (possibly degenerated to points) on which f is constant.
Let J = [a,b] € 4(f). By the maximality of J,-there are 3 possibilities :

1. a is the left endpoint of I
2. There exists &> 0 such that f(x)<f(d) for all xe (a—e, a).
3. There exists ¢>0 such that £(x)> f(a) for all xe (a—¢, a).
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We set
[ 0 in the first case,
I(J) =4—1 in the second case,

l+1

Analogously, we define r(J) depending on what happens to the right of b ‘(wc replace a

in the third case .

by b and (a—e, a) by (b, b+¢)). Then we set

T(N)={Jeb(f): IN+r(N =2}, S(fNHH= U J.

JeT()

In other words, T'(f) is the set of the turning intervals (points) of £, and S(f) ia;
“the union of all of them. Clearly,

er(f) = Card(T(f)+1.
Now we define

a(f) = limsuph(g),
oaln

B(f) = max {1—) log2: there exists a periodic orbit of f
q

of period ¢ with p elements in S( f)}

'(if there is no such orbit, we set f(f) = 0).

Remark 0. There are two different definitions of imsup: one can take into account
the value of the function at the limit point or not. Since h(-) is lower semi-continuous,
the definition of o(f) does not depend on which definition we use.

The main result of the paper is:

THEOREM 1. If f: I — I is a continuous piecewise monotone map then o(f)

= max(h(f), B(f))-

2. Inequality. In this section we prove the inequality
&) a(f)<max(h(f), B(f)) -

We take a continuous piecewise monotone map f: I — I'and fix it for the rest
of this section

Lemma 1. Let ¢ be a map from T(f) to the family of all open (in I) subinter-
vals of I such that, for each Je T(f), J< {(J). Then there exists a neighbourhood V
of f in U(f) such that for every ge V and Je T(f) there exists Ke T (g) such that
Ke{(). ~ |
Proof. If we take 3 point§ in C(Jj: x to the left of J, y inJ, z to the right of J,

then either f(x) <f(y) and f(z) <f(3) or f()>f(¥) and f@ >f(.y). Fgr some
neighbourhood ¥, of £, if g € ¥; then the above inequalities hold with f replaced
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by g. Therefore if ge ¥, then there is KeT(g) with Kc(x,z) = {(J). We set
V=0 V,. ®H

JeT(f)

Remark 1. If-in the above situation {{(J)}ser(s) are pairwise disjoint, then,
since g € U{[f), there is exactly one KeT(g) in each {(J) and there are no more
elements of T(g).

We define a partition &/ of I by taking all elements of T(f) and all connected
components of INS(f). Notice that the elements of T(f) are closed and the ele-
ments of &#/N\T(f) are open (in 7). Clearly, the cover & is f-mono. For

n=1
F = UosJys e Jymy), Where Jo, Ty, o Juoy € o, we denote A(#) = () (7).
Then we set Z = {#: A(¥) # O}. i=0

LemMa 2. For each nz | there exists a neighbourhood V, of f in U(f) and
amap ¢ from & to the family of all open (in I) subintervals of I such that if we denote
n—1

DLH) = N g (&) for & = (Jo, Jys s Juy) then for all g eV, we have:
i=0

(8) if Je T(J) then £(J) can be divided into two subintervals on which g is mono-
tone,

(0)-if Je &I\T(f) then g is monotone on £(J),

(©) {D(F): £FeZ} is a cover of L

Proof. We fix n> 1. For each J e T(f) we take an open interval ¢(J) con-
taining J in such a way that for J, # J, the intervals ¢(J,) and ¢ (J,) are disjoint.
For each Je #\T(f), we set p(J) = J. Then {p(J): Je &} is an open cover
of I -1

For ¢ = (J5, /i, ... Jy-1) € Z set B(#F) = \ f e (J)). Since for all Je o

i=0

we have J = ¢ (J) and {4(#): # € Z} is a partition of /, we obtain that {B(#): FeZ}
is an open cover of 1. Therefore we can find a compact cover {C(,#): £ € Z} of I'such
that C(#)c B(#) for all FeZ.
For each Je.of we define y/(J) as the uniod of the sets f(C(#)) over all
F = (o, Jy, ..., J,—y) € Z for which J; = J (and over all i = 0,1, ..., n—1). Then
¥ (J) is a compact subset of ¢ (J). Now we choose an open interval ¢(J) such that
IGEHGERGETIOR
g =, Jy, o Jypo)eZand 0<i<n—~1 thenf‘(C(j)) is a compact subset
of £(J). Therefore, if g is sufficiently close to f then also g'(C(#)) = &(J). Hence,
if g is sufficiently close to f then C(#) < D,(#) for all ,# € Z and consequently (c)
holds. ‘
For each Je T(f) we can take an open interval {(J) containing J and disjoint
from ¢(X) for all Ke #/\{J}. By Lemma 1 and Remark 1, there exists a neighbour-
hood ¥, of fin % (f) such that if 4 € V, then for each J e T(f) there is only one

element of T(g) inside {(J) and these are all elements of T(g). Therefore (a) and (b)
hold. M o .
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Using the above lemma, we can easily prove (5). Let F =g dys sdy_)eZ
and g € V,. Denote by k(#) the number of i ¢ {0,1, ..., n—1} for which JieT(f).
Then by Lemma 2(a) and (b), D,(#) can be divided into 2*” intervals on which g” is
monotone. In view of Lemma 2(c), it follows that

©® G < 3 29,

FfeZ

For JeT(f) and 0</<<n—1 we set

Y, = {f = (o, ], ...

Notice that if Je T(f) then f'(J) consists of one point for all i> 1, and hence if
o Jis s Ju1)€Z and J; = J then Jyq, ..., J,_, are uniquely determined. Con-
-1

sequently Card(Y(J, 1)) < Card(«/"), where o' = \/ () (we count non-empty
i=0
sets only). Clearly, if #e Y(J,[) then k() = s(n—1,J), where

sI-)€Z: ;¢ T(f) for i<l and J; = J}.

s(m,J) = Card{i; 0<i<m—1 and f/(J) < S(/)},
and if '

n=1

FeX=22U U YWD

I=0JeT(N

then k(J) = 0. Then, looking at the decomposition of Z:

n=1
Zz=xuU U
1=0 Je T({)

Y(,h,

we get
. n—1
) Y 2 < Card(#")+ ¥ Card(oh) Y 270707,
FeZ =0 JeT(f)

From (2), (6) and (7), we get

n—1 .
® suph(g) < 1log (Card (™) + Z Card(«#") z 2ok n) .

oe¥n " =0 JETh)
Clearly,
a(f)< 1imsup(squh(g)) :
nsw  geln

From this, (8) and (4), we get

) 1 . 1 s, 1)
® a(f)< max (lim sup logCard(«/"), hmi“P ; log Z 207
n> o ” P

4 — Fundamenta Mathematicae 132.3
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Since & is an f-mono partition, we have in view of (3)

. 1 ‘ .
(10) lim - logCard{&™) = A(f, &) = h([f).
n=o N
Clearly,
(11 limsup ilog Z 2™ = max <kmsup—.s(n J)) 0g2.
noo R JeT(f) no o
JeT(f)

If Je T(f) then:
if for some i> 0, f'(J) = {x} with x belonging to a periodic orbit of period g
with p elements in S(f"), then

hm s(n,J) ="~

neoll

‘-Q

1
otherwise lim -s(n,J) = 0.

nswo N

From this, (9), (10) and (11) there follows (5).

3. Construction of jumps of entropy. In view of (5) and Remark 0, to complete
the proof of Theorem 1, it is sufficient to prove

(12 a(f)=B(f).

We may assume that f is not constant (globally).

Let (g, Xy, .-, X,1) be a periodic-orbit of f of period g such that /' (x;) = x;,4
fori=0,1,...,g~1 (in the whole section the addition of the subindices is'modg)
and x; # x; for i # j. Assume that p of the points xo, X, ..., X,; belong to S(f).
We shall show that .

(13)  arbitrarily close to f there are maps in U(f) with™ entropy at least g log 2.

If J is an interval, then we will denote the set of 1ts endpomts by aJ. We Wﬂl
also use the notation introduced in Section 1.

If >0 is sufficiently small then there exist open @n I) mtervals Dy,
i=0,1,..,9—1, such that

@) x;e D,
@) D;nD; =@ for i #j,

(i) the intersection D;nS(f) is empty if x ¢ S(f) and is contamed i Jif
x;eJeT(f), :

() if x;e7 for some Je % (f) with Jndl # @ then J< D;,

() if yedDNaI then | f(3)~x;44] = &

icm
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o y ‘ . g—1 .
We define a continuous 1nap g: I I by setting g = f outside U D‘ then
]’
defining g at some points inside U D; and extending g linearly (speakmg more
. i=0

precisely, affinely) in the remaining gaps. These points in D; are x; (not always),

x;46 (if they belong to I), and occasionally the endpoints of 7. We define § in such
a way that

(vi) 0<d<se,
(vii) 6 <|x;—y| for all 7 and ye & for which x; % y,
(viii) [x;—8,x;+81nI< D, for all i. -

We denote ) .
= x;—0 if x; is not the left-hand endpoint of I,
! X if x; is the left-hand endpoint of I,

o = x;+6-  if x; is not the right-hand endpoint of I,
. X; if x; is the right-hand endpomt of 1.

If f is non-decreasing on D, then we set
gOi) = Xiy,  g0F) = xihs.
Analogously, if f is non-increasing on D, then we set
gOx) = xh1, g0) = xihs -
Additionally, if x;eJe 4(f), Jnél = {j;} and x; # y then we set
. g(x7) if y is the lefi-hand endpoint of T,
‘ 9 = {é () if y is the right-hand endpoint of 1. -
In the remaining cases, x; €Je T(f). Then we set
L [ B IDED =2,
96 = {xjﬂ i 1) 4+r(T) = =2,
‘ . + : =
gG) = gGif) = {fl . fﬁj;i:ﬁji ey
It is easy ‘to see that g €@ (f) and ~ -
suplg(M)—f ()l <e+26<3e.
For all i we have ! ' '

a(lx , XD =, [ree 1 Xix 1l

PO S
and if x, € S(f) then g is 2-to-1 on [x], x{']. Therefore hﬁg)?;&-lpg?_. This pro-
ves (13). et e
4
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Since our periodic orbit was chosen arbitrarily, (12) follows. Hence, the proof of
Theorem 1 is complete, B

Remark 2. Clearly. as in [10], everything done above can be done also in the case
of the circle instead of the interval.

4. Dependence of () upon f. Since Theorem 1 shows that the behaviour of
the entropy depends on f(f), it may be interesting to investigate the behaviour
of B itself.

PrOPOSITION 1. (a) If B(f) >0 then there is a neighbourhood U of fin U(f)
such that for every ge U, B{g) < B(f).

) If B(F) = O then for every e>0 there is a nezghbourhood UoffinU(f)
such that for every ge U, B(g) <e.

Proof. For a periodic orbit Q of g e % () let us denote by By the number of
elements of Q belonging to S(g) divided by the period (i.e. cardinality) of Q. Since
the image of each K € T(g) consists of one point, if x, y€ Q and x # y then x and y
cannot belong to the same Ke T(g). Consequently,

Card(T(g))

Po< Grato)

Since g & %(f), Card(T(g))< Card(T(f)). Therefore

Card(T(/))

“ Card(Q)

Bo<
Fix n>1. We can choose a map { as in Lemma 1 with {{(J)},cr(s, pairwise

disjoint and such that for each 0<i<n and Ke T(f), either f'(K) = S(f) or

&) U {W) =& (remember that each f(K) consists of one point).
TeT(f) i
Let ¥ be the neighbourhood of f from Lemma 1 and g € V. By Remark 1, there

is a bijection Y: T(f) - T(g) such that ¥ (J) <= {(J) for each Je T'(f). By the
continuity argument, there is a neighbourhood U, of fin #(f) such that if g e Uy,
0<i<n and KeT(f) then either

3

or

{6

Fi&) = M for some MeT(f) and g'(y (K)) = L(M) |

g E)NS@) =
Let Q be a periodic orbit of g..There are 3 cases possible:
1 QnS(g) = v
2. 0nS(g) # @ and Card(Q) >,
3. OnS(g) # @ and Card(Q)<n.
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In the first case, Bo = 0. In the second case, by (14),
Card(T(f))

n

Bo<

The third case is the most complicated one. Let us take x € O S(g). Denote
= Card(Q). For some K& T( f ) we have x e J(K). For each 0 < i< m we have
elthe1 (15) or (16). However, g (1,1/(1()) = {g'(x)}, and thus (16) is equivalent to

an g'(x) ¢ S(g) -

Since g"(x) = x € S(g), we have (15) for i = m. Since
g (K) = {g"()} = {x} = L&)

and {{(/)}seresy are pairwise disjoint, we obtain in.this case M = K. Therefore
f™(K)< K and consequently ther exists y e K such that f™(3) =y. If O<i<m
and fi(») ¢ S(f) then (15) does not occur and consequently (17) does. Hence,
Ba<B(S).

In all threée cases we get

ﬁesmax</3<f> CerdlTlf )))

Since this applies to all periodic orbits of g, we obtain for all ge U,

Card(T()\
Bo(g) < max <ﬁ(f), _ﬁr__iﬂ.)_)) )

Card(1(f)

and U= U,; to prove (b) we take
B(S)

To prove (a), we take n>

>Mmd U=U, B

COROLLARY 1. B(-) as a function on %(f) is upper semi-continuous.

s, Unlmodal maps. Let us look closer at the case when T(f) consists of one
element, We shall call such maps weakly unimodal (cf [9]). Recall that fis unimodal
if it is weakly unimodal and there are no proper intervals on which fis constant,
Notice that essentially the whole kneading theory (see e.g. [71, [31), as long as it does
not use any smoothness, works as well for weakly unimodal maps. Of course we
have to replace the turning point by S(f). When we will use the kneading theory,‘
we will keep to the notations of [3].

THEOREM 2. The topalogwal entropy, as a function on the set of all weakly uni-
modal maps, is contimious at all points at which it is positive.
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Proof. By [10], the topological entropy is lower semi-continuous. Hence, by
Theorem 1, it is enough to prove that if f is weakly unimodal and A(f)> 0 then
()= B(f). Tt is known (see [3], 5], [6D) that if

log2 < /1(f)< - 10g2

2n+1

then there exists an interval J, containing S(f), such that the interiors of the intervals

T D)D), s fU71(J) are pairwise disjoint, J¥"(J)=J and h(f)

= %Iz( F2'1;). Moreover, f*"|; is also weakly unimodal, and therefore (since its
entropy is positive) it has no fixed point in S(f?7,). Consequently, each periodic
orbit containing an elemen_t of S(f) has.period k2" for some k> 1. From this it
follows that

ﬁ(f)\—l—log log2<h(f). 'l -

Jon o +1

Remark 3. In one-parameter families of piecewise smooth (even piecewise
linear) unimodal maps, the jumps of entropy from O to some positive value often
do occur. One can easily see that if for example the one-sided derivatives of f at the
critical point are 1 from the left-and-—o from thc rlght then

hmh( [z logype

where £,(x)
polynomial x™*!—2x"+1 (this is due to the appearence of a certain periodic point
in the piecewise linear situation; the polynomial-can be easily computed by the
methods of [1]). If « = co then we obtam hmh( fu) = log2 (this time we obtain

a-full 2-horseshoe). Similar conSIdelatmns can be apphed to some iterates of fand
slightly different families.

For example, we can consider two famlhcs of piecewise hnear maps:

L f:0) = 0, ,3) = 1, £i(1) = 2; linear in between,
2. :00) = 2, H,3)y= 1, fi(1) = 0; linear in between.:

. The second family has been, studied by Brodiscou, Gillot and Gillot (see [2]).
For the first family we look at the second iterafe and discover the jump of the entfopy .
from 0 to {logy, at 2 = 4. For the second family we look at the fourth iterate and
discover the jump of the entropy from 0 to +logy, at A =3

- The next result is a kind of an intermediate value theorem for kneading inva-
riants. For the smooth unimodal maps a theorem of this type has been proved
already by Milnor and Thurston [7]. Here we deal with continuous maps, so necessa-
tily our result has fo be weaker. We shall formulate this fesult for weakly unimodal
maps; however as ‘we mentioned already, the kneading theory works in this case
as well. The kneading invariant of f will be denoted by K(f)..

= £ ) +p, E() is the integer part‘ of e, ai]idi'y,,, i the largest zeto of the’
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For any 1< u<2 we consider the unimodal map gut [0 11> [0, 1] with the
constant slope u:

B 1
gﬂ(x)-—i‘f[l;l ‘;-l

We have h(g,) = logu (see [10]).

THEOREM 3. Let (f,) be a continuous one-parameter f&znily of weakly wnimodal
maps. Assume that 0<h(f,,) <logu <h(f,,), and that h(:£)> 0 for all & between Ay
and }y. Then there exists Lo between Ay and 2y such that K(f,,) = K(g,).

Proof. It is well known that if K(g,) is infinite then it is the only possible
kneading sequence of a (weakly) unimodal map with the entropy logsu (it has been
essentially proved in [5]). Therefore, in this case, the existence of 1, with
K(f,) = K(g,) follows immediately from Theorem -2.

Consider now the case of K(g,) finite. Then we can find g, and g, such that
K(g,,) and K(g,,) are infinite,

h(fi) <logp, <logu <logp, <h(fs,)

and for all $& iy, 1] if 9 # p then K(g,) is longer than K(g,). By Theorem 2,
there exist A, and A, between A, and 2, such that

{h(f3p)s h(f1.0} = {loguy, logu,}

and K(f;) is longer than K(g,) for all A between A3 and A,, unless K(f3) = K(g,)-

Assume that K(f3) < K(g,) and K(f3) is longer than K(g,). If we take a neigh-
bourhood U of S(f3) then for all 3 sufficiently close to A we have S(f;) = U. Hence,
in this situation if § is sufficiently close to A then K( f3) < K(g,). The same is true if
we replace “ < ” by “ > ”. Hence, if we assume that K( f}) # K(g,) for all 2 between 15
and 1, then the interval with these endpoints can be divided into iwo open disjoint
sets — a contradiction. This ends the proof in the case of K(g,) finite. M
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The Lipschitz condition for the conjugacies
of Feigenbaum-like mappings

by

Waldemar Paluba (Warszawa)

Abstract, For a map f in the stable manifold W*(g) of the Feigenbaum function ¢ the conju-
gacies i, h~1: hio fo il = g are Lipschitz continuous maps at points of the Cantor set attractors.
Moreover, i and A-* occur to be Lipschitz continuous on the whole interval [—1,1]if and only if
the products of derivatives of f as taken over periodic orbits are all equal.

§ 0. Introduction. In this paper, we study some properties of mappings topo-
logically conjugate to Feigenbaum’s fixed point, i.e. a concave analytic solution
g: [~1,1] - [-1, 1] of the functional equation Ty = g with Tf(x) defined as
in Section 1.

We are interested in even analytic functions f conjugate to g and such that for
inductively defined 7" = T(T""'f) we have T"f > g with exponential rate.

For f chosen like above a conjugacy /: geh = hof is uniquely given by the
kneading invariant. Furthermore, there exists an f-invariant Cantor set attractor,
such that lim,, ., dist( f"(x), J(f)) = 0 for every x which is not eventually periodic.

We show (§ 1) that / considered as a mapping with the domain restricted to J(£)
is a Lipschitz continuous function. Using this, we also prove (§ 2) that there exists
a constant " such that /1 fulfils the Lipschitz condition with this constant at arbi-
trarily chosen point x e J( ) with respect to any point y e [—1, 1}, when regarded A
as a function from [~1, 1] into itself, This leads us to deal with general question
when A: [—1,1] - [~1, 1] can be Lipschitz continuous on the whole interval.
The answer as mentioned in the abstract is given in § 3.

The results of this paper are an expanded version of §§ 1, 2 of my Masters Thesis
written in 1985 under the supervision of professor Michat Misiurewicz; I would like

to thank him for calling my interest to the problem and encouragement.

After this paper was written 1 have learnt that D. Sullivan obtained the result
covering the statement of Theorem 1. ’

Finally, in § 3 there is stated the question of analyticity of A, which seems to be
an interesting direction of further work, by similarity to the known results for expand-
ing mappings of the circle (cf. [7], [8]).
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