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Inaccessibility, essential maps, and shape theory
by

B. L. Brechner (Gainesville, FL), J. C. Mayer * (Birmingham, AL)
and E. D. Tymchatyn (Saskatoon, SK)

Abstract. The accessibility of a point p of a compactum X C E" from a complementary domain
U C E"— X can be characterized in terms of the homotopy classes of certain maps. Let n;, be the
projection from p of E"—{p} radially ontoan S"~* with p as center. Let ¢ ¢ U. Then p is accessible
from U iff 75| X—{p} = myl X—{p}. In particular, if U is the unbounded complementary domain
of X, then p is accessible from U iff 7wp| X¥—{p} is inessential. As an application, suppose X isa cellular
plane continuum with an inaccessible point p (for example the pseudo-arc). Then X has trivial shape,
but X—{p} admits an essential map to S*.

Nevertheless, X—{p} is shape incomparable to S* in the weak and strong shape theories of
Borsuk and the shape theory of Fox. Tt also follows that in the strong shape theory of Borsuk and
in the shape theory of Fox, X—{p} does not have trivial shape.

1. Introduction. We obtain a characterization, in terms of the homotopy classes
of certain maps, of the accessibility of a point p of a compactum X in E" from a com-
plementary domain U< E"— X (n3>2). Theorem 3.1 essentially says the following:
Let U be a complementary domain of X in E” and let ¢ be a point in U. Let 7, denote
the projection from p of E"—{p} radially onto an S"~* with p as center. Then p is
accessible from U iff n,,'[X —~{p}=n|X—{p}. As a special case, Theorem 3.2 says
that if U is the unbounded complementary domain of X in E”, then p is accessible
from U iff n,|X—{p} is inessential.

David Bellamy has asked us in conversation, the following two questions:
(1) Does the pseudo-arc minus a point admit an essential map to § 19 (2) Is there
a space with trivial shape which admits an essential map to S'? An affirmative
answer to (1) follows from the above results on accessibility.

Tt seemed likely that the pseudo-arc minus an (end) point had trivial shape, since
it is the intersection of a tower of open 2-balls. However, in Section 5, where we
consider several different extensions of shape theory to noncompact metric spaces,
we show that the pseudo-arc minus a point does not have the shape of a point in any
version. we consider.

The answer to the second question may depend upon the version of shape theory
one considers; in the version of shape theory due to Fox, that X has trivial shape is
equivalent to there being no essential map from X to any ANR.

In Section 4, we determine sufficient conditions for a continuum X minus a point

* Research supported in part by NSERC Grant A5616 and by a research grant from the
University of Saskatchewan President’s Fund. .
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p to admit an essential map to §1, regardless of the embeddability of X in E?,
or the accessibility of pomt D.

In Section 5, we obtain for each integer 7> 1, an example of a cellular con-
tinuum X, in E"*! such that for a certain point p, € X,, X, — {p,} admits an essential
map to S”, has nontrivial shape, and, for n = 1, is shape incomparable to any com-
pact, noncontractible ANR, e.g. S, We also review the definitions and elemen-
tary properties of several versions of shape theory, including Borsuk’s strong and
weak shape theories and Fox’s shape theory, ail of which agree on compact metric
spaces. Of course, X,—{p,} is not compact, which leads to some counter-intuitive
results. We confine our attention to metric spaces throughout.

Understanding the construction of the pseudo-arc is not required for this. paper,
however, the interested reader is refered to [B] or [Mo].

We wish to thank David Bellamy, David Wilson, and Juan Toledo for helpful
conversations. We also wish to thank the referee for extensive remarks which led
to improvements in the paper, in particular, shortening the proof of Theorem 3.1,
simplifying the arguments jn Sections 5.4-5.4.4, and clarifying the proof of
Lemma 5.4.6.

2. Preliminary definitions and theorems. A compactum is a compact (subset of a)
metric space, and a continuum is a connected compactum. A domain is a connected
open set in E® (S™). The double arrow in f: X —» Y means that fis an onto map.
All maps are continuous. By f~ q we mean that the map f'is homotopic to the map g.
By f~0 we mean that the map fis homotopic to a constant map. A map f: X — S",
n> 1, is called inessential iff f~ 0; otherwise fis called essential. Unless stated other-
wise, assume n>2.

Let Y< E" (S™). By CI(Y), Bd(Y), and Int(Y) we mean the closure, boundary,
and interior of ¥, respectively, as a subset of E" (S™). If C1(Y) < E” is compact,
we mean by Ext(Y) the unbounded complementary domain of CI(Y) in E".

Let X be a compactum in E" (S™), and let p be a point in X. We say p is
accessible iff. there is an arc 4 < E” such that An X = {p}. Otherwise p is called
inaccessible. If X separates E* (S™), we say that p is accessible from a complementary
domain U of X in E” (S™) provided that 4 = Uu {p}. If X separates E" into exactly
two complementary domains, we denote the unbounded domain by Ext(X) and the
bounded domain by Int(X). Though we use “Ext” and “Int” in two distinct ways,
context will make clear which is intended. -

DEFINITION OF THE MAP 7, (see p. 97 of [H-WT). Let $"~! be the (n— 1)-sphere
in E" of radius 1 centered at the origin 0. For each point p € E, we define a map
7yt E"—{p} - S** as follows: for each point x e E"—{p}, 7,(x) is the projection
of the point X—5, in vector terminology, radially from 0 onto $"~1; that is:

X—-p
(%) = e,
BN [l
2.1. TeeorReM (Theorem VI. 10 in [H=W1). If X is a compactum in E”, then
points p and q in E"— X are separated by X iff n,| X4 m,|X.
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2.2. CoROLLARY. If X is a compactum in E", and point P ltes in the unbounded
complementary domain of X in E", then 7, |X~0

Proof. Let B be a closed polyhedral ball in E" containjﬂg X in Int(B) and let
g€ E"—B. Clearly, n,|B~0. Since X< B, |X~0 Since both p and g lie in the
same complementary domain of X, m,|X ~ ]

2.3. TueoreM (Theorem IV. 5.1 of [W]). If Xis a compactum in E", U is a com-
plementary domain of X, and there is a nondegenerate closed, connected subset
L < CL(U) meeting X only in p, then p is accessible from U.

24, LemMA. Let X be a compactum and U and V domains such: that
XcUc Ve E'. Suppose qoe V—-CI(U), pe U-X, and q, € U— X, with an arc
= (g0, 11 = V—X. Then X separates q, from p in V iff X separates g, from p
in U.
2.5. THEOREM. Let X be a compactum in E", U a complementary domain of X,
and {p} a component of X. Suppose that no closed subset of X missing p separates p
from a point of U. Then p is accessible from U.

Proof. Let g, e U. We show that there is an arc 4 from g, to p so that
A—{p} < U. Since p is a component of X, there is a separation X = (¥nU,)u
u(XNnV,) of X by open sets U, and V; in E"” whose boundaries miss X, with pe U,
and diam(U,) <%. Since E" is locally connected, the components of U, are open.
Hence we may suppose that U, is connected, and also that go ¢ Uy. Let X; = Uin X
and ¥, = V;nX. Note that U, is a domain and diam(U,)<%.

Since ¥, is a closed subset of X, ¥, does not separate g, from p'in E”. Let 4, be
an arc from g, to p in E"— Y. Give 4 its natural order with initial point g,. Observe
that 4) meets Bd(U,). Let g7 be the first point of Ao in Bd(U;). For sufficiently
small ¢, there is an g-ball W about g so that Wn X = @. Let ¢, be a point of
W U, and let Ay be an arc from ¢} to g, in W. Let 4, be anarcin 4o u 4q from g,
to g,. Then AgnX = 0.

Now X, is a compactum in U, ¢, € Uy — Xy, {p} is a component of X, s0 by
Lemma 2.4, no closed subset of X, separates p from g, in U,. Thus we can apply
the above argument with X in place of X, g, in place of g,, and U, in place of E".
We can find a domain U, = U, and an open set ¥V, < U,, withp € Us, diam(U,) < 1/4,
VonU, = @, and X, c U, UV,. Let X, = X; U, and ¥, = X;nV,. As above,
we can find an arc 4, < U, from g, to a point g, € Us, so that 4, misses X.

Proceeding in this way, we can construct a sequence ¢ of a.rcs A;= U, from q;

to g, 50 that A4; misses X, diam(4;) < 1/2', and p € im 4,. Then U A0 {p} contains
an arc 4 from ¢, to p so that A—{p}cU. H

2.6. COROLIARY. Let U be a domain in E", BA(U) compact, and { p} a camponent
of BA(U). Then p is accessible from U.

Proof. Since U is a component of E"—Bd(U), no closed subset Kc Bd(U)
missing p separates-p from some g U.  H
1.
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- 2.7. TueoreM (a version of the Borsuk Homotopy Extension Theorem;
see p. 86 of [H-WY). Let C be a closed subset of a normal space S. Let f~g: C - Y,
where Y is an ANR (absolute neighborhood retract). Suppose that F is an extension
of fto S and that G is an extension of g to S. Then there is a neighborhood U of C in §
such that F|U~ G|U.

3. Accessibility and homotopic maps. In this section we characterize, for a point p
of a compactum X in E”, the accessibility of p from a complementary domain U of
X. Our main theorem of this section is Theorem 3.1 which asserts that p is accessible
from U iff for any point g e U, n,|X—{p} ~ n,|X—{p}.

We note that accessibility of a point p € X may depend on the embedding of X
in E". As a Corollary of the characterization, we answer Question (1) of the Intro-
duction by showing that the pseudo arc minus a (any) point admits an essential
map to S*. )

We also construct an example of a nonseparating continuum M in E® with
an accessible point p, so that m,|M~—{p} is necessarily inessential, but p is not
accessible by a polygonal arc.

3.1. THEOREM. Let X be a compactum in E", U a complementary domain of X,
q a point in U, and p a point in X. Then p is accessible from U iff 7| X—{p}
Nﬁq]X —{P}

Proof. Suppose that p is accessible from U. Then there is an arc 4 from g to p
such that 4—{p} = U. We parameterize 4 by a map f: [0, 1] + 4 such that £ (0) = q
‘and f(1) = p. Then we define a homotopy {f}o<:<1 between m|X—{p} and

| X—{p} by

Jo=ms| X—{p}.

Conversely, suppose that 7,|X—{p} ~ = | X—{p}. By Theorem 2.7 applied to
the closed subset X—{p} of the space E”~{p, ¢}, there is a bounded neighborhood Vo
of X—{p} in E"—{p, g} such that 7| Vo > | Vo. By way of notatlon, if Yis a set
in E"—{p}, let Y denote the closure of ¥ in E"— {p}.

Since ¢ ¢ X, we may apply normality and conclude that there is a neighborhood ¥
of X—{p} in E"—{p} such that

(1) X={p}cVc Ve,

() ge E"~C1(P),

3) Bd(_V)an {p}, and

@ n,|Ven,]|V.

From (1) and (2) it also follows that there is a complementary domain W of CI(V)
in E" such that

() gewe UcE"-X, and

(6 Ba(W)=Bd(V) = QU(V) = Vo {p}.

Now p¢ W. If p ¢ Bd(W), then D lies in a complementary domain W, of the
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compactum’ Bd(W), with W, distinct from W. Hence by Theorem 2.1, 7,|Bd (W)
4 m,|Bd(W). Noting (6), this contradicts (4). Therefore, we have

(7 p e BA(W).

‘We now have CI(W), a closed, connected subset of CI(U), meeting x oniy in p
It follows from Theorem 2.3 that p is accessible from U, N

3.2. COROLLARY. Let X be a compactum in E”, p a point of X, and U the unbounded
complementary domain of X. Then p is accessible from U iff | X—{p} is inessential,

Proof. Apply Theorem 3.1 and Corollary 2.2, &

3.3. CorOLLARY. Let p be a point of a compactum X. If there is an embedding
of X in E" in such a way that p is inaccessible from the unbounded complementary
domain of X, then there is an essential map of X—{p} onto S"*.

3.4. Remark. It is by applying Corollary 3.3 that examples of continua-min us
a-point can be produced which admit essential maps to a sphere.

For example, let P denote the pseudo-arc ([Mo], [B]) and let p be any point
in P. By the indecomposability of P, there are inaccessible points in any planar em-
bedding of P. By the homogeneity of P [B], there is an embedding of P in E? with p
inaccessible. Hence, P— {p} admits an essential map to §*, answering Question (1) of
the Introduction in the affirmative.

The sin1/x continuum C = CL({(x, y) € E*|sin(1/x) = y& x € (0, 1]}) minus any
point in the limit segment (the interval from (0, 1) to (0, —1) on the y-axis) admits
an essential map to S'; see the embedding described in Section 5.3.

In [B-M] two of the authors show that there is an embedding of the Knaster
U-continnum (bucket handle) in the plane with its (unique) endpoint inaccessible.
Hence, the Knaster U-continuum minus its endpoint admits an essential map to S*.

In [M1] (or [M2]) one of the authors shows that given an indecomposable
chainable continuum X and a point p in X, there is an embedding of X in E? with p
inaccessible. The techniques used to prove that theorem can be extended to prave

the following:

3.4.1. THEOREM. If X is a chainable compactum containing a continuum of
convergence X,, then there is a point p€ X, and an embedding e: X — E? such
that e(p) is inaccessible. Moreover, p may be taken to be any point in X,, except for
at most two (a pair of opposite endpoints of Xj).

It follows from Theorem 3.4.1 that every chainable continuum except the arc
admits an essential map to S* upon the removal of some point. In Section 4, we show
that, for maps to §*, inaccessibility, and even embeddability in E?, are not necessary,
however,

3.5. COROLLARY. Let X be a compactum in E" such that dim(X)<n—2. Then
every point of X is accessible in every embedding of X in E.
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Proof. Suppose that X lies in E” so that p € Xis inaccessible from the unbounded
complementary domain U of X. Then n,|X—{p} is an essential map onto S"~* by
Corollary 3.2. But dim(X—{p}) <n—1, so | X{p} must be inessential by Theorem
VI. 6 of [H-W], a contradiction, &

3.6. Remark. Theorem VI. 13 of [H-W] asserts that a compact subset C of E”
separates E" iff there is an essential map of C onto S”~*. Remark 3.4 and the examples
in Section 5.3 show that the hypothesis of compact is required for the “if” part
of the theorem.: ‘

3.7. ExampiE. In E3, let §2 be the unit sphere, and let p be the origin. Let A4
be a Fox-Artin arc [F-A, p. 983] from some point g in.S 2 to p, with p as the “bad”
point. We can fatten A4 into a tapering solid cone T, by fattening less and less as we
approach p. Thus T 'is a closed ball, shaped like a solid cone, knotted in Fox—Artin
fashion, with p the apex of T. Let D be the closed disk containing g in S? wherein T
intersects S, and let Int(D) denote the open disk D—Bd(D) in S See Figure 1.

Fig. 1

Let C = (S?wBd(T))~Int(D). Then C is homeomorphic to-$2, though not
ambiently so, since C contains a wild arc lying in Bd (7). Note that C u(Ext(C)u oo)
is homeomorphic to B%, However, CuInt(C) = M is nor homeomorphic to B3,
for if it were, then C'would be collared on each side, and would therefore be ambiently
homeomorphic to a standard S? [Bro]. ’

Now p is accessible from both Ext(C) and Int(C); however, p is accessible
from Ext(C) only by a nonpolygonal arc following the “Fox-Artin channel” of
Int(T). Nevertheless, both 7,|M—{p} and =,|C—{p} are inessential.

4. Mappings to S'. One might suspect that in Theorem 3.1 the condition that X
b.e embcddab@elin 'E":is much too strong. At least for the case of mappings to the
circle, we are able to eliminate the condition of embeddability in the plane.

4.1. THEOREM: LetX bea compactum which is not locally connected at point pe X.
Suppose that U is a closed neighborhood of p in X, {K}} is a sequence of distinct com-
ponents of U, .each K; isolated in the sequence, {U} is a sequence of open sets such
that U; < Int(U) and im(U) = {p}, and { fi} is a sequence of mappings fit K-> St
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such that f{K;—U;) = 1, and f; is essential modulo the boundary of U. Then there
exists an essential mapping f: X—{p} - S*.,

Proof. Extend f; to a map g;: (X—UpuKk; — S* by
1, if x¢ U;,
g;(x) = { F) i
J 3

if xeK;.
Since S* is an ANR, there exists a neighborhood ¥; of K;u(X—U,) such that g;
extends to a mapping 4;: V; — S*. Let W, be an open and closed neighborhood
of K; in U such that W; = ¥;—{p}. We may suppose that W;n W, = @ for k +# j.
If some f; is essential, let f be the extension of 4; to X—{p} which is constant
off W;. We may suppose, therefore, that each f; is inessential. Define f: X—{p} —» S*
by

1, if x¢ U W,
Jj=1

(hj(x))J’

Since the sets {W}} are pairwise disjoint, f is well-defined. Since Lim(U}) = {p}

fx) =
ifxeWw;.

and fis constant on X—( U U;u{p}), f is continuous. Note that (#,(x))’ denotes
j=1

the jth power of 4;(x) as an element of the multiplicative group St

Since f; is essential modulo the boundary of U, it follows that if ¢,: K;— R
were a lifting of g; (i.e. g,(x) = exp(2nig(x)), for each xe (X—U)ULK; and ¢; is
continuous), then diam(q,(K;nBd(V)))>1. Then y;: K; — R defined by y,(x)
= j(@,() would be a lifting of (), and diam(y,(Bd(U)n K;)) > j. Since Bd(U)
is compact, and any lifting ¢: X—{p} = R of f would have diam((p(Bd(U)))
> diam (l//j(Bd (M KJ)) > j, for each positive integer j, it follows that no such lifting
of f exists. Hence, f is essential. = H

4.2. Remark. Theorem 3.1 guarantees that an essential map of X—{p} < E?
onto S! exists provided that p is inaccessible from some complementary domain of X
in E2. The essential map of Theorem 4.1 does not depend upon the embeddability
of X in E* with p inaccessible, but rather upon the structure of X near p.

Thus, for example, the wedge X of two sin1/x continua at a point p of the limit
segment has no embedding in E* with p inaccessible, but Theorem 4.1 guarantees
an essential map of X—{p} onto S, since it is easy to find the components K; and
maps f; required in the hypothesis.

Of course, Theorem 4.1 also applies to continua that are not embeddable in E?
at all. For example, let X be a ray spiralling clockwise to a simple triod with
a “sticker” attached to the junction point of the triod. Let p be any point of the triod.

The reader should note that the non-local-connectivity of X at p is a necessary,
but not sufficient, condition for satisfying the hypothesis of Theorem 4.1. For
example, consider the comb spaceX = (({0} U {1/a}i=1) x [0, 1)U ([0, 1]x{0}) in E2,
Let p be the point (0, 1) on the limit segment {0} x [0, 1] of X.
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5. Connections with shape theory. Using the results of either Section 3 or Sec-
tion 4, there are one-dimensional nonseparating plane continua, which, upon the
removal of a point, admit essential maps to S*. Examples include the sinl/x con-
tinuum and the pseudo-arc. In Section 5.3, we construct, for each n > 1, an n-dimen-

“sional continuum X, = E"*!, which is the intersection of a nested sequence of
(n+1)-balls, so that for a certain point p, € X, (at which X, is not locally connected),
X,—{p,} admits an essential map to S".

One might suppose that if X, —{p,} admits an essential map to S”, then X, —{p,}
shape dominates S™. In Section 5.4, we show that X; —{p,} is shape incomparable
to S!, and we conjecture that for n>1, X,—{p,} is shape incomparable
to S™.

5.1. Shape theories for metric spaces. Shape theory, developed by Borsuk [Bol}
for compact metric spaces (compacta), has several inequivalent extensions to wider
classes of topological spaces, including, but not limited to, metric spaces, which
nevertheless agree on compacta. Among these, the extensions due to Fox [F] and
Mardesi¢ and Segal [M-S], for arbitrary topological spaces, agree on metric spaces,
Borsuk extended his theory to metric spaces in [Bo3]. Therefore, we shall confine
our attention to the weak and strong shape theories of Borsuk, as presented in [Bo4],
and the shape theory of Fox.

Godlewski and Nowak [G-N] show the interrelationship between the strong
shape theory of Borsuk and that of Fox. In the process, they implicitly suggest a de-
finition of shape intermediate to the strong shape theory of Borsuk and the shape
T.EICOI'Y of Fox. We make their definition explicit below.

- B

5.1.1. Fundamental sequences and homotopies. Let X and ¥ be closed subsets
of AR (absolute retract) spaces P and Q, respectively. Let {f:: P - Q} be a sequence
of maps. Consider the following conditions:

. F: For every neighborhood ¥ of Y (in Q), there is a neighborhood U of X
(in P), such that f,|Ux~f;,,|U in ¥, for almost all %.

FC: For every compact 4 < X, there is a compact B < ¥, such that for every
neighborhood ¥ of B (in Q), there is a neighborhood U of 4 (in P), such that
SJdU=fi(]U in 7, for almost all k-

The triple f= {f;: P> Q, X, Y} is called a G (weak) [strong] fundamental se-
quence iff f satisfies conditionfs] F (FC) [F and FC]. We abbreviate “G (weak)
[s‘trong] fundamental sequence” by G-sequence (W-sequence) [S-sequence). In the
@scmsion to follow, we shall speak of R-sequence, where R is any one of G, W, or S.

Let f={fit P> Q,X, Y} and g= {g,: P> Q, X, Y} be R-sequences.
Consider the following conditions: :

H: For every neighborhood ¥ of Y (in Q), there is a neighborhood U of X
(in P), such that f;|U~g,|U in ¥, for almost all k. ‘

icm
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HC: For every compact 4 < X, there is a compact B < ¥, such that for évery
neighborhood ¥ of B (in Q), there is a neighborhood U of 4 (in P), such that
flU=g U in ¥, for almost all k.

We say that f and g are G (weakly) [strongly] homotopic, abbreviated G-homotopic
(W-homotopic) [S-homotopic], denoted f~g(f=~g)[fx~g], iff fand g satisfy con-
dition[s] H (HC) [H and HC]. ¢ s

* Note that two S-sequences can be W- or G-homotopic. An S-sequence is clearly
both a W-sequence and a G-sequence, though not conversely, as examples in [Bo4}
show. Similarly, two R-sequences which are S-homotopic are both - and G-homo-~
topic. For compacta, the three types of sequence are equivalent, as are the three
notions of homotopy. Cornpositi‘on of R-sequences is defined in the natural way,
and can be shown to be an R-sequence.

The S-sequence iy = {fi: P> P, X, X}, where f; = ip: P -» P, the identity
map on P, for all k, is called the identity sequence. For point y € ¥, the S'-sequence
y ={fit P- Q, X, Y}, where f, is the constant map to the point y, for all %,
is called a constant sequence. If we do not specify the point y € ¥, we denote a con-
stant sequence by 0. Note that it is not clear whether an R-sequence of constant
maps is R-homotopic to a constant sequence, unless space Y is connected.

If the R-sequence f is R-homotopic to some constant sequence, then we say
that f is a trivial R-sequence. It is not generally true that two trivial R-sequences
from X to Y are R-homotopic, for suppose that Y has two components.

The following elementary properties of R-sequences and R-homotopies may
be easily established:

(1) R-homotopy is reflexive, symmetric, and transitive.

() If f, g, h, and j are R-sequences, f =9, h = j» and the compositions f_h and g/
are defined, then fbigj. :

I f= {f,‘.: P Q, X, Y} is an R-sequence, then Iyf= fiy = f.

(4) If f is an R-sequence and Of is defined, then Of = 0.

(5) If fis an R-sequence, f0 is defined, and Y is connected, then f0 & 0.

5.1.2. Mutations and homotopies. (As presented in [G-N], but due to Fox [FL)
Let X and ¥ be closed subsets of ANR (absolute neighborhood retract) spaces P
and Q, respectively. The family U(X, P) of all neighborhoods of Xin P is called the
complete neighborhood system of X in P. Define V(¥, Q) similarly. Let U(X, P)
and V(Y, Q) be the complete neighborhood systems for X in P and Y in Q, respec-
tively. A mutation f: U(X,P)—V(Y, Q) is a collection of maps f: U=V,
Ue U(X, P), Ve V(Y, Q), satisfying the conditions: :

Mi: If fef, f U=V, U'cU, UeUX,P), V=V, V' e V(Y, Q), and
f': U’ = V' is defined by f'(x) = f(x), then f” ef

M2: Every Ve V(¥, Q) is the range of some fe 7. (Note that ¥ need not be
the image of f)


Artur


10 B.L. Brechner, J. C. Mayer; and E. D, Tymchatyn

M3: If f;,f, €f and f,,fo: U— V, then there is a U’ e U(X, P) such that
U’'<cU and filU ~£|U" (in V). Two mutations f,g: U(X,P)— V(Y, Q) are
homotopic, abbreviated F-homotopic, denoted f o g, iff f and g satisfy the condition.

HM: For every fe fand g € g such that f, g: U— V, thereis a U'e U(X, P)
such that U’ < U and f|U’ ~g|U’ (in V).

Condition HM is equivalent to the condition that fuU g be a mutation. Composition
of mutations is defined in the natural way.
Godlewski and Nowak [G-N] show that given a G-sequence

f={f:P>0Q, X, Y},

the collection of maps f: U(X, P) — V(¥, Q) defined by f~f|U in ¥ for almost
all k, is a mutation, and say that f is associated to f. They show that this association
preserves homotopy and composition. That is, f ~g iff f =~ g, for f associated to f
and g associated to g.

The mutation #: U(X, P) —» U(X, P) consisting of all inclusions iy: U — V,
where U, Ve U(X, P) and Uc V, is called the identity mutation. It is associated
to the identity sequence iy. A mutation j: U(X, P)—~ V(Y, Q) consisting of all
constant maps g: U — V such that g(x) = y, for all xe U, for a fixed ye ¥, is
called a constant mutation. It is associated to the constant sequence y. We may denote
a constant mutation without specifying the point y by 0.°'A mutation which is
F-homotopic to a constant mutation is called a trivial mutation. Two trivial muta-
tions are not necessarily F-homotopic if Y is not connected.

Now let R denote any member of {G, F, W, S}, and let “F-sequence” mean
“mutation.” With appropriate alterations in notation, properties 5.1.1 (1)-(5) apply
to mutations and F-homotopies.

5.1.3. ‘Shape domination and shape equivalence. Let X and ¥ be closed subsets
of AR (ANR) spaces P and Q, respectively. We say that X R-shape dominates Y,
denoted XR> Y, iff there arte two R-sequences f={f:P>0Q, X, Y} and

g={g: Q—-P, Y, X} (mutations f: U(X,P)— V(¥, Q) and g: V(Y, Q) —»
- U(X, P)) such that fg %szy (fg = 7). If.also, fg Rzix (Ef%‘ﬁ), we say that X and ¥
are R-shape equiyalent, denoted X = Y. Thus we obtain R-shape theory for metric

spaces. When we are referring to compacta, where the theories all agree, or when
a statement is true in all four theories, we may drop the prefixed letter.

W-shape and S-shape are, tespectively, the weak and strong shape theories
of Borsuk [Bo4]. G-shape is the theory implicit in [G-N], and furnishes therein the
bridge to F-shape, which is the shape theory of Fox [F], restricted to'metric spaces.

By the Kuratowski-Wojdystawski Theorem [Bo2, p. 79], any metric space can
be embedded in some normed linear space as a closed subset of its convex hull. Since
a convex subset of a normed linear space is an AR, it follows that the above definitions
apply to all metric spaces. Theorem III. 3.3.4 of [Bo4] and Theorem 3.2 of [F] show
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that the choice of AR’s (ANR’s) and closed embeddings does not alter. the relation-
ship (if any) of shape domination or equivalence between X and ¥; hence, the
definitions of shape domination and equivalence are unambiguous.

5,1.4. Some relationships among shape theories. As before, let R denote any
one of G, W, S, or F. Let 1 denote a one-point space, 4 denote an arc, C denote
the sinl/x continuum, and W denote the Warsaw circle (obtained from C by iden-
tifying the points (0, —1) and (1, sin1).) The following elementary properties are
common to all four theories (X and Y are metric spaces):

X = Y implies X% Y and Y% X.

@ X%L
() X = Liff iy 20 @0).
(4) iy ~0 implies X-;j 1.
(5)1—7;/1? C.

1
© s* = w.

If X = 1, we say that X has trivial R-shape. By (4), contractibility of X implies
R - - 0 - o
that X has trivial shape; however, the converse is not true, as Cis not contxac'tlble.
The following relationships among the four shape theories can be established
from the preceding definitions and remarks:

OP4 % Y implies X % Y, ,
®) X ? Y implies X % ¥, and
(9) X> Y implies X> Y; therefore
G F
impli > d
(10) X}S Y implies X§ Y, an
an X% Y implies X% Y and X? Y.

TY-(11) As (D-(11), with “=" replacing “>7. o

’(l'h)e converse of Property (1) is false. Let X be a sequence of concentric circles
in E? of decreasing diameter converging to 2 limit circle. Let Y be a sequence oyf
concentric circles in E? converging to a point. Then X % Y and Y% X, but X f L

(This example appears.in a preprint of Borsuk’s “I.Jecturc§ on the Theory of Shape”
given at the University of California, Riverside in Apl'll. 1974.) ’ .
Properties (7), (77, (8), and (8") are obvious. Properties (9) and (9", an -c?n-
sequently (10) and (10"), are established in [C_i—N] tl.lrough the process Qf as;c;mtmi
a G-sequence with a mutation, as described in Section 5.1.2,. Godlewski an, ewat
also provide an example which they use to show that (9), (9, (lf)), and (100 are 11)110
reversible. Borsuk uses the same example to show that (7) and (7') are not reversible.

The example follows.
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Let N be the space of natural numbers and let /¥ be the Warsaw circle _(as defined
above). It follows from Sum Theorems 4.1 and 4.2 of [G-N] and the topological
equivalence of the direct sum of N copies of 8! (respectively, W) and S'x N
(respectively, Wx N), that SixN% WxN and S*xN = WxN. It follows from

Product Theorems 7.1 and 7.4 of [Bo4], that S*x N > WxNand S'x N = WxN.
However, it can be shown ([G-N, p. 391]; [Bo4, p. 108]) that Six N % Wx N and
S1x N # WxN. Thus also, S‘xN?é WxN and S'xN a: WxAN.

G .

52. Shape and contractibility. Property 5.1.4(4) is a special case of the fact
that homotopy equivalence, and thus deformation, preserves R-shape [Bo4; F].
While contractibility implies R-shape equivalence to a point, the converse is false,
as Bxample 5.1.4(5) shows. However, the triviality of the identity sequence (muta-
tion) can be interpreted as a weakened form of contractibility.

5.2.1. Neighborhood contractibility. Let X be embedded as a closed subset of
an ANR space P. Consider the following two conditions:

NC: For every neighborhood ¥V of X, there is a neighborhood U of X, such
that U is contractible in V.

NCC: For every compactum 4 < X, there is a compactum (in fact, continuum)
Bc X, such that for every neighborhood ¥ of B, there is a neighborhood U of 4,
such that U is contractible in V.

We say that X is [stromgly] neighborhood contractible (on compact subsets) iff X
satisfies condition[s] NC (NCC) [NC and NCC]. ’

Via the Borsuk Homotopy Extension Theorem, NC is equivalent to the state-
ment that the inclusion map iy: X — P is homotopic to a constant in every neigh-
borbood ¥ of X. Similarly, NCC is equivalent to the statement that for every com-
pactum 4 < X, there is a continuum B, with 4 « B < X, such that the inclusion
map i,: A — P is homotopic to a constant in every neighborhood V of B. If
NC (NCC) holds for X closed in an ANR space P, then NC (NCC) holds for X
closed in any ANR space Q. Hence, via the Kuratowski-Wojdystawski Theorem,
NC (NCC) is a topological property of a space.

For brevity, let “X is NC (NCC) [SNC]” denote that X is [strongly]
neighborhood contractible (on compact subsets.) It can be shown that

() X is NC iff iy =0 iff X = 1.

@ Xis NCiﬁ’ﬁ%Giﬁ‘X?}

B)Xis NCCiﬁ‘ixi_Qiﬁ'X;L

(4 Xis SNC iff X is NC and NCC iﬁ'l‘xé"—l iff X? 1.
Thus we have for hﬁvial shape (unlike shape in general) that

o) X?liﬁ‘XilandX—;l.
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Let X be a space. We say that X is continuum-wise connected iff given any two
points p and g in X, there is a, continuum X, < X, such that P, g€ X,. It follows
directly from the definitions that

(6) X is NC implies X is connected.

(7) X is NCC implies X is continuum-wise connected.

5.2.2. Essential maps and trivial shape. Let X be a closed subset of an ANR
space P. We have observed that X is NC iff the inclusion map iy: X ~» P is such that
iy~ 0 in every neighborhood V of X in P. Suppose that f: X - Q is an essential
map of X to an ANR space Q. Then 04 f= fi,. Hence iy & 0. On the other hand,
if no essential map from X to any ANR exists, then the inclusion map is homotopic
to a constant. Thus we have that the following are equivalent:

(1) X is NC.

(2) X admits no essential map to an ANR.

B X=1

P

@ Xx = 1.

We therefore have a partial answer to the second question in the Introduction. By
the above and 5.1.4(10), there is no metric space of trivial G-, F-, or S-shape which
admits an essential map to S*.

5.2.3. Questions. We raise several questions concerning the interrelationship
of the notion of trivial shape in the four shape theories discussed.

(1) Is there a metric space X (necessarily noncompact) such that X is of trivial
W-shape (so X is NCC), but admits an essential map to S” (so X is not NC and
X ;ﬁ H? - .

(2) Is there a metric space X (necessarily noncompact) which is NC (so X = 1),
but not NCC (so X # 1)? ’ f

(3) Do the four versions of shape theory discussed agree on the class of metric
spaces with trivial shape?

5.2.4. ONE-DIMENSIONAL EXAMPLES. The sinl/x continuum minus a point
in the limit segment and the pseudo-arc minus any point each map essentially to S*;
hence, by 5.2.2 and 5.1.4(10), each has nontrivial G-, F-, and S-shape. Each is con-
tinuum-wise disconnected by the removal of said point; hence, by 5.2.1(3) and (7),
each is of nontrivial W-shape.

Tn Lemma 5.4.6, we show that a cellular continuum in E? minus an inaccessible
point is neither NC nor NCC.

5.3. n-dimensional examples. Let X, be the sinl/x continuum embedded in
the interior of I?* < E? so that the midpoint p, of the limit segment is (0, 0), the
limit segment is the interval from (0, %) to (0,%) on the y-axis, and the ray “wraps
around” the limit segment. See Figure 2. It is evident that p, ii inaccessible (from

E*-X). Let I* = I, xI, I, = [-1,1], for all 4, and I* = T[1I,.
i=1
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&

X

Fig. 2

For n>1, let X, = X,_,xI,., and p, = (p,_y,0) e I"*1. Then X, =I"*1
< E"** as a closed subset and p, € Int(I"**). We show below that p, is inaccessible
from E"**— X, and, hence, by the results of Section 3, X, ~{p,} admits an essential
map to S".

53.1. LevMA. The point p,e X, is inaccessible from Ei_x.

Proof. The reader may establish that p, is inaccessible. For n> I, suppose
by way of contradiction that p, is accessible. Let 4 be an arc of accessibility from
a point g e E™*'—I"*! to p,; that'is, 4n X, = {p,}, and p, is an endpoint of 4.
Let 4, be that component of 4 " I"** which contains p,. Since p, is an interior
point of I"*%, 4, is nondegenerate. Let n: E"*! — E? be the natural projection
onto the first two coordinates.

We claim that 7(4,) is nondegenerate. For otherwise, 4, would be a nondege-
nerate subset of I"** nn™"(p,). Hence, 4, would be a nondegenerate subset of X,
a contradiction of 4n X, = {p,}. Thus w(4,) is a nondegenerate continuum.

If pen(do)n X;, then n1(p) = {p} x E"~', where E"~! is the last n—1
coordinates of E"**. Since Ay =I"*! and {p}xI""'c X,, we have n”1(p)n A,
< X,n4,. Therefore, p = p,. Since n(4,) meets X; only in Py, it follows by
Theorem 2.3 that p, is accessible, a contradiction. M

5.3.2. TeeoREM. For n>1, X, has the following properties:

(1) X, is a cellular continuum in E"*1.
(2) X, has trivial shape.
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(3) X, is not locally connected at p,.
@ X,—{p,} admits an essential map to S™.

Proof. In the embedding described for X, we may assume that X, is the in-
tersection of a defining sequence {e;},=; of chains of rectangular 2-balls. The union
of the links of any given chain, {J e;, is a long, thin 2-ball. See Figure 2. For each
&> 0, there is an i 3> 1, such that B2 = |J e; is a 2-ball neighborhood of X contained
in the z-neighborhood of X;. Then B> xI"" ! is an (n+1)-ball neighborhood of X,
in I"*! contained in the g-neighborhood of X,. Hence, X, is the intersection of
a decreasing sequence of (n+ 1)-balls, and so is cellular. It can then be shown that X,
has trivial shape, using the fact that a point has a similar sequence of neighborhocods.
(That is, X, is NC.) Since p, is inaccessible from E"*!~ X, by Lemma 5.3.1, it
follows by Corollary 3.2 that X,—{p,} admits an essential map to S™

Let L, denote the limit segment of X,. Let L, = L,_yx I, for all n>1.
Then L, is the limit hyperplane of X;. It is not hard to see that L, is a continuum
of convergence of X,, and so X, is not locally connected at any point of L,,
including p,. H

5.3.3. TueorREM. For n =1, X,—{p,} is neither NC, nor NCC. Thus, X,—{p,}
is of nontrivial R-shape, Re {G,F, W, S}.

Proof. That X,—{p,} is not NC follows from the existence of an essential map
to 8" and Proposition 5.2.2. Therefore, by 5.2.2 and 5.1.4(10), X,—{p,} has non-
trivial G-, F-, and S-shape.

To show that X,—{p,} is not NCC, and thus has nontrivial W-shape, we will
show that for each n 2 1, there is a compactum 4, = X, —{p,} for which there is no
continuum B with 4,c B< X,—{p,} satisfying condition NCC.

Let A4, be: the two point set consisting of the endpoints of the limit segment L;
of X;. For n>1, let 4, = (4d,—y xI,;3)UL,-y x{—1,1}). Observe that 4, is the
S*~1 bounding the n-ball L,, where L, = L,_, x I, is the limit hyperplane of X, .

Suppose that B is a continuum in X,—{p,} containing 4,. Since B is compact,
there is an (u-+1)-ball C about p, missing B. We may assume that there is a dia-
meter D of C whose endpoints lie in E"**—X,. From the endpoints of D extend
disjoint rays R; and R, in E""'—X, to co. Then L = R,UDUR, is a line in
E"*!— B such that 4, links L. That is, 4, is not contractible in E”*'—L. Thus there
is a neighborhood ¥ = E"*!—L of B such that no neighborhood U of 4, contracts
in V. Hence, X,—{p,} is not NCC. &

5.4. Shape incomparability to S". Our main theorem of this section . is
Theorem 5.4.9, which implies that each of our one-dimensional examples (X, —{p;},
the sin1/x continuum minus ¢zy point in the limit segment, the pseudo-arc minus
any point) is shape incomparable to S1. We conjecture that for n> 1, example
X,—{p,} of Section 5.3 is shape incomparable to §". The me.hod of proof below,
however, cannot be extended to higher dimensions.

It follows from Propositions 5.1.4(9) and (10) that we may restrict our attention
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to F- and W-shape incomparability. The proof in the case of W-shape is fairly direct
and elementary, and is presented in Lemmas 5.4.6 and 5.4.7 and in Theorem 5.4.8.
The proof in the case of F-shape is less trivial, requiring a lemma about neigh-
borhoods of a cellular continuum minus an inaccessible point in the punctured
plane, and is presented in Lemmas 5.4.3 and 5.4.4 and in Theorem 5.4.5.

For ¢> 0, let S(4,8) = {x]d(x, A) <&} denote the open e-neighborhood of
a subset A of E2. For C a compactum in E2, let € denote the union of C and its
bounded complementary domains, if any. We call C the topological hull of C. Note
that we identify E2u{w}, the one-point compactification of E?, with S2.

The following two lemmas are required in the proof of Lemma 5.4.3. The proof
of the first is well known.

5.4.1. LemMA. Let A be a O-dimensional compact subset of a domain U con-
tained in S*. Then there is a 2-cell D such that AcInt(D)c Dc U.

5.4.2. LemMA. Let P and Q be compact subsets of S? such that Q is O-dimen-
sional, Pn Q = {p} and p e C1(Q— {p}). Let g € Q—{p}. Then there is a 2-cell D
and a sequence of mutually disjoint 2-cells {D,},"( such that

a Pu(U D,)cInt(D)c D < $2—{g}.
n=1 :

(2) Pa(U D) =g,

n=1
(3) the sequence {D,}y=1 converges to p (denoted D, — p), and
@ D~( Ullnt(D,,)) = (S*~Q)u{p}.

Proof. There is a 2-cell D such that PcInt(D)c D<S>—{g} and
Bd(D)n Q = B. Let {G,};> be a nested null sequence of open 2-cell neighborhoods
of pin 8% such that  "Bd(G,) = @ for alln > 1. Let U,, U,, ... be the components

of D—(Pqu(D)u( UBA(G,)) such that U,nQ # B. Then Q, = QNT, is
n=1

a compact 0-dimensional subset of the domain U,. By Lemma 5.4.1, there is a 2-cell
D, < U, such that Q, =Int(D,). Then D, converges to p, since U, does. The re-
maining properties of the 2-cells are evident from the construction. M

5.4.3. LemMA. Let X be a cellular continuum in E*, p an inaccessible point
of BA(X), V a bounded connected open neighborhood of X— {p} in E*~{p}, and ¥
a compact subset of V. Then there is a 2-cell D and a null sequence of mutually disjoint
2-cells {D,};% such that

(1) XuYu( DID,,) < Int(D),

® @unaD)=9,
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() D, - p, and
@ D=(UInt(d) = ¥u(p}
=

Proof. Let ¥ be the upper-semicontinuous decomposition of E? into com-
ponents of E*—V and single points of V. Let f: E? — E¥% be the quotient map.
By Moore’s Theorem [Mr], we may assume that E%/¢ = §2, (Because V is connected,
no component of E?—V separates E2.) Let AcE*—(XUY) be a sequence of
points converging to p. Then P = f(Xu ¥) and Q = f(AU(E?— V) are compact
subsets of S? such that @ is 0-dimensional and Pn Q = {p’}, where p' = f(p).

Since 4 converges to p and f(4) = Q—{p'}, we have p’ e C1(Q—{p'}). Note
that f~*(p’) = p, since p is inaccessible and f~*(p’) is a continuum in E2—V, It
follows that the set-valued mapping f~*: S? — E? is continuous at p’.

Since P and Q satisfy the hypotheses of Lemma 5.4.2, with ¢ = f(C) where C
is the unbounded component of EZ~V, there exist a 2-cell D’ and a sequence of
2-cells {D;}x%, in S? satisfying the conclusion of Lemma 5.4.2. Let D = f~1(D’)
and D, = f~(D}). Using the continuity of ! at p’, and the fact that (1)-(4) of
Lemma 5.4.2 are satisfied by D’ and {D;};%,, it can be seen that D and {D,}2, are
2-cells satisfying conditions (1)-(4) above. B

5.44. Lemma. Let f: U(SY, SY) — V(X—{p}, E>*~{p})) be a mutation,
where X < E* is a cellular continuum and p € BA(X) is inaccessible. Then | = 0.

Proof. Note that U(S?, S*) = {S!}. Let fef, so that /2 ! - ¥V for some
Ve V(X~{p}, E*—{p}). Since p is inaccessible from E?—X

(1) X—{p} is connected.

For, if X—{p} were not connected, then the closure of a separator of E2—{p} which
separated X—{p} would contain a nondegenerate component meeting X only in p,
contradicting Theorem 2.3.

Let ¥, be the component of ¥ containing X—{p}. We may assume that ¥, is
bounded and open, and that

@ fSH V.

For, if £ (S!) is not contained in V5, then, since £ (S*') is connected, f (') is contained
in some component of ¥ distinct from V,. Because V; < V and

v, e V(X—{p}, E*~{p]),

there is an fy € f, fo: S* — ¥ such that f, ~ fin V, which is a contradiction since
F(SY) and £,(SY) lie in different components of V.

Since each neighborhood of X—{p} in E*-{p} contains a path-connected
neighborhood of X—{p}, it suffices to show that f~ 0 in V.

By Lemma 5.4.3, there is a 2-cell D and a null sequence {D,}r= of mutually
disjoint 2-cells such that

2 — Fundamenta Mathemaiicae 132.1
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(3) D, < Int(D)—(XUf (SY),
4) D, - p, and

(5) Xuf(SHcInt(D)—( L;JID")C Viu{p}

Let My=U{Di] i=1,2,..,n and let N, = (J{D}| i=n,n+l,.., 0}
Note that N, is the disjoint union of M,_; and N,.

By (5), it suffices to show that f=~0 in D—(N; U {p}). As a first step, we claim
that

(6) f~0in D~{p}.

For, suppose 40 in D~—{p}. For any nonseparating continuum B < E? and any
map g: St - E?~B, let WN(g, B) denote the winding number of g about B.
Then WN(f, p) # 0. Since D, —» p by (4), it follows from the continuity of WN
that WN(, D,) # 0, for almost all n. Let j be such that WN(f, D,) # 0. Hence,
f40 in D—D,. By (3) and since X is cellular, there is a 2-cell D’ such that
X< D' cD-D,. Since D'—{p}e V(X—{p}, E*—{p}), there is a map g: S* —
— D'—{p} such that fevg in D—(D,u{p})<=D—D,. Since D’ is contractible,
g~0in D—D,. Thus, f~0 in D—D,, a contradiction.

" Since the homotopy of (6) must miss a nelghborhood of p in E?, there is an
integer k> 1 such that

o ,(7)f--0in D_(NkU{P})-

If k = 1, we are done: so assume that £ > 1. As in the proof of Lemma 5.4.3, there
is a 2-cell D, such that

&) (XYUN) cInt(Dy) = Dy < Int(D)— M, _,.

Since D(',——‘(Nku{p}) € V(X; {r}, EZ—{p}), there is a map f; e f such that
f1:8' = Do~ (N {p}). By (8), Do— W, u{p}) © Do—(Ny U {p}) = D—(N, U {p}):
Thus, we have

© fi=fin D—(N,u{p}).
There is a deformation retraction of the 2-cell D onto the 2-cell Dy, Let
¢: D—(N v {p}) » Dy~ (N, L {p}) be the restriction of this deformation retraction.

Then ¢ is itself a deformation retraction by (8). Let i: Dy—(N,u{p}) - D— (N,u {rh
be the inclusion. It follows from (7) and (9) that

(10) ofy > @f=~0 in Dy—(N,u{p}).
Since £1(S*) = Do— (N, U {p}), we have that
(D ief, = f.

Since by (8) the homotopy of (10) misses M;_,, and since N, = M,_, UN,, we
have that

(12) ipfy =0 in D~ U {p}).
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Consequently, by (9), (11), and (12), we have that
(13) f=0in D~V u{p}). H

5.4.5. TaeoreM. Let X < E? be a cellular continuum and let p e Ba(X) be
inaccessible. Then S* and X—{p} are F-shape incomparable.

Proof. Suppose SI%X——{p}. Then there are mutations f: U(S?, SY) —»

- V(X-{p}, E*~{p}) and §g: V(X—{p}, E>*~{p}) = U(S', S') such that
fg = , where 7 is the identity mutation on X—{p}. By Lemma 5.4.4, f = 0. By Pro-

position 5.1.1(4) (and the remark at the end of Section 5.1.2), & = fg %ﬁ. So by

Proposition 5.2.1(2), X—{p} is NC. Therefore, by Proposition 5.2.2, X—{p} admits
no essential map to S*. However, since p is inaccessible, Corollary 3.3 implies that
X—{p} does admit an, essennal map to S%. I, In view of this contradiction,
S% % X—{p}- }

Now suppose X~—{ p} > S*. Then for mutations as defined above, we have
af = #, where # is the mutatlon whose only element is the identity i on S'. Let

g €7 and fe f for which gf is defined: By Lemma 5.4.4, f~0. Hence, is: > gf~0,
a contradiction. Thus, X—{p} 2 st &

5.4.6. LemMa. Let X < E? be a cellular continuum and p € BAd(X) an inaccessible
point. Then every subcontinuum of X—{p} is contained in a cellular subcontinuum
of X—{p}. However, there is a compactum in X—{p} not contained in any subcon-
tinuum in X—{p}; hence, X—{p} is not NCC.

Proof. Let K be a subcontinuum of X—{p}. Suppose K is not ceflular. Then K
separates EZ, because cellular continua coincide with nonseparating continua
in E2. All bounded complementary domains of K in E? are contained in Int(X),
since X does not separate E2. Since p ¢ Int(X), K, the topological hull of X, is a non-
separating, thus cellular, subcontinuum of X—{p} containing K.

To show that X—{p} is not NCC, it suffices to establish the following claim:

(1) There is an &> 0 such that 4 = Xn(E*>—S(p, ¢)) is not contained in any
continuum K< X—{p}.

Suppose the claim is false. Then for each n, there is a real number &, >0, an
open disk D, = S(p, ¢,), a compactum 4, = Xn (E®*—D,), and a continuum K,
such that '

@ X-{p}o..5K,o4,>K, 24, 1>..2K D4,
3) K,nCl(D,,,) = I, and
(4) {g,}nz1 decreases to 0.

By the first paragraph of the proof, we may assume that X, .= K,. Since K,
is nonseparating, there is an arc B, from co to p missing K,. Let B, < B, be an arc

2%
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irreducible from oo to Bd(D,) missing X. We now inductively construct a locally
connected continutum M in E? meeting X only in p, thus contradicting the inac-
cessibility of p.

Let M, = B,. Let R be the component of M, n D, meeting Bd(D,) and let §
be the component of B; N Dy meeting Bd(D;). We claim there is an arc F (possibly
degenerate, if CI(R)n CI(S) # @) in D; — X from CI(R) to CI(S). For if not, then
some component L of CI(D,)n X separates CI1(R) from CI(S). Now L must meet D,
and both components of Bd(D,)—(CI(R)uCI(S)) in points of K,. See Figure 3.
But K; does not meet D,. Hence, B;u Cl(D,)u M, separates E* between points
of Ln K, nBd(D,) without meeting the continuum K,, a contradiction.

Fig. 3

Let M; bean arc in M, UFU B, from  to Bd(D;) which differs from M,
only within D,. We may repeat the above process with D,, Dy, Dy, B, and M,
replacing Dy, D;, D, B,, and M,, respectively, to obtain an arc M, from oo to
Bd(D,) missing X and differing from M, only within D,.

Inductively, forn = 1, 2, ..., there exists an arc M, f.om co to Bd(D,) missing X

Lo

and such that M, , differs from M, only inside D, _ . It is clear that M = Cl(| M)
n=2

. o
= ngMn)u{p} is a locally connected continuum meeting X only at p.

54.7. Levma. ‘Let f = {f;: E? » §2— L SL x— b )
where X< S2 i { K {r} ’ {p}} be a W-sequence,

is a cellular continuum and p e BA(X) is inaccessible. Then f 59

Prloof. It f‘ollows from the definition of a W-sequence (5.1.1(FC)) that with
A=3S5 tht?re 1s a continuum B< X—{p} such that for every neighborhood ¥
of B, there is a neighborhoed U of 4, such that for almost all k, ;| U =~ SewlUin V.
That B may be taken to be a continuum fcllows from the fact that S* iskc;nnected:
,By. the first part of Lemma 5.4.6, we may assume that B is cellular. Thus, any
‘neighborheed V of B contains a 2-cell neighborhood ¥’ of B. There is a neigilbor—

H
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hood U of S* such that £,(U) < V', for almost all k. By the contractibility of ¥,
fil U=0in V, for almost all k. Therefore, since B is a continuum, f ~0. B
s

5.4.8. TueoreM. Let X < E? be a cellular continuum and p e BA(X) inaccessible.
Then X—{p} is W-shape incomparable to S*.
Proof. Suppose that S* 2z X—{p}. Recall that the choice of AR containing

X—{p} is immaterial. Thus we may assume that there are W-sequences

f={fc E*>S8*-{p}, S, Xx-{p}}

g = {gx: $*—{p} - E* X—{p}, §'}
such that fg > ix—(p, the identity sequence on X—{p}. By Lemma 547, f = 0;

hence, by Proposition 5.1.1(4), ix—» = fg = 0. By Proposition 5.2.1(3), X—{p} is

and

_ NCC, which contradicts the second part of Lemma 5.4.6. Therefore, st % X—{p}.

Now suppose that X—{p} % S1. Then there are W-sequences as defined above
for which gf = g1, the identity sequence on S*. Since S* is connected, it follows

from Proposition 5.1.1(5) and Lemma 5.4.7, that i5: %gf '_;;9 But clearly, is: % 0.

In view of this contradiction, X—{p} % St B

Combining Theorems 5.4.5 and 5.4.8, and by virtue of Propositions 5.1.4(9)-(10),
we obtain the main theorem of this section.

5.4.9. TuroreM. If X < E? is a cellular continuum and p € BA(X) is inaccessible,
then X—{p} is shape incomparable 1o S*.

5.4.10. COROLLARY. FEach of our one-dimensional examples (Xy—{p.}, the
sin1/x continuum minus any point in the limit segment, the pseudo-arc minus any point)

_is shape incomparable to S*.

5.5. Shape incomparability to compact, noncontractible ANRs. In this Section
we indicate how to extend Theorem 5.4.9 to the case where S* is replaced by any
compact, noncontractible ANR. We obtain as our main theorem the following:

5.5.1. TurorEM. Let X < E? be a cellular continuum, p € Bd(X) an inaccessible
point, and Z any compact, noncontractible ANR. Then X—{p} is shape incomparable
to Z.

Proof. We carry out the proof modulo two lemmas to be proved subsequently.
The theorem follows immediately provided that Theorems 5.4.5 and 5.4.8 can be
strengthened by replacing S* with Z. We first assume that Z is connected. }

Lemma 5.4.7 can easily be extended by replacing S* with a connected Z and E?
with an AR M containing Z. The strengthened version of Theorem 5.4.8 immedia-
tely follows. Thus, X—{p} is not W-shape comparable to a connected Z.
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It follows from Lemma 5.5.2, proved below, that Lemma 5.4.4 can be strength-
ened by replacing S* with a connected Z. We use Lemma 5.5.2 to find a simple closed
curve in Z to which the argument of the proof of Lemma 5.4.4 is then applied. The
strengthened version of Theorem 5.4.5 immediately folows. Thus, X~{p} is
F-shape incomparable to a connected Z. .

Now suppose that Z is not connected. By Lemma 5.5.3, proved below, if Z
shape dominates X—{p}, then some component Z, of Z does. Thus, this direction
reduces to the first case. Since X—{p} is connected, X—{p} cannot shape domi-
nate Z, which has more than one component. B

5.5.2. LEMMA. If {1 Y — G is an essential mapping of a Peano continuum ¥
onto a graph G, then there is a simple closed curve S in Y such that f is essential on S.

Proof. Let T be a maximal tree in G [H, p. 117]. Let Ei, ..., E, be a listing
of the edges of G nor in T. Barycentrically subdivide each E; into E; and E, ,.

Forj=1,2, let T; = Tu({ E;)). Then G = T, UT,, with each T; a tree. By
i=1

Theorem 7 on p. 432 of [K], there exist Peano continua B, and B, in Y such that
[ T)<eB; (= 1,2), and fis inessential on B,. Let xe B,nB,. Let ¢;: B, »J
be liftings of f|B; to the universal covering space J of G such that @1(x) = @,(x).
Since f is essential and does not lift to J, there exists yeB;NnB, such that
010) # 0,(3). .

‘ Fori=1,2, let K; be an arc in B; from x to y. Let K; have its natural order
with initial point x. Let z be the first point of K, in K, n K, such that ¢,(z) # ¢,(2).

Let L; be the arc in K; from x to z. Note that z is an isolated pointin L; N K,. Let w be

the last point in L, {z} such that we L,. Let M; be the arc in K; from w to z. Then
§=M;UM, is the required simple closed curve. B

5.5.3. Lemma. If the compactum X R-shape dominates the connected set Y,
:then some component of X R-shape dominates Y.

Proof. In order that the maps comprising an R-sequence from Y to X be
(almost all) homotopic, the fact that ¥ is connected implies that (almost all) the
maps take Y into a neighborhood of some single component of X, no matter how
small theé neighborhood of that component. H
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