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On ;-homogeneous ANR -spaces
by

H. Patkowska (Warszawa)

Abstract. A space X is called §-homogereous if the action on X of the group H(X) of auto-
homeomorphisms of X has exactly two orbits. In the paper it is proved that any compact %-homo-
geneous X € ANR of dimension < 2 either is a polyhedron, or has one orbit which is the union of
at most countably many of composants, each being a continuocus biunique image of the line E.

1. Intrednction. This paper is devoted to the study of spaces whose construction
from the point of view of homogeneity is similar to manifolds with boundary (whose
boundary components have the same position), and which we shall call 4-homo-
geneous.

1
In general, a space X will be called —-homogeneous if the action on X of the
n
group H(X) of autohomeomorphisms of X has exactly n orbits, i.e. if there are n sub-
sets 4;,.. , 4, of X such that X.= |J 4; and, for any x e 4;, ye 4, there is an
i=1 B

h e H(X) mapping x to y iff i = j. In Krasinkiewicz’s paper [11], it is proved that
the Sierpiniski curve is %-homogeneous. Using this fact together. with Whyburn’s
characterization of the Sierpifiski curve, given in [20], and a reasoning similar to
that in Mazurkiewicz’s paper [14], it can be proved that the only 1-homogeneous
Peano (locally connected) plane continua are the following: plane manifolds with
boundary, the Sierpifski curve, locally connected bouquets of « circles, where « is
either a natural number 7> 1 or « = ,, and all connected plane finite (geometrical)
multigraphs (where two vertices can be joined by more than one edge) which are
homogeneous in the graph-theoretical sense (except S!). Using Anderson’s
results [1], [2] concerning the universal Menger curve and homogeneous Peano
curves, all the 4-homogeneous Peano curves can also be classified.
The goal of this paper is to prove the following theorem:

TrroreM 1. Each space Xe ANR of dimension <2 which is %-homogeneous
either is a polyhedron, or has one orbit which is the union of at most countably many
of composants, each being a continuous biunique image of the line E'. Moreover,
we find a full classification of %-homogeneous polyhedra by means of homogeneous
multigraphs. . .
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The author does not know whether there exists a 4-homogeneouns 2-dimen-
sional conmected ANR with one orbit as described above.

Here, ANR -spaces are assumed to be compact. Notice that because of the result
of Bing-Borsuk [5] that each at most 2-dimensional homogeneous ANR-space
is a closed manifold, we can assume that the space X is connected. Moreover, it can
be assumed to be 2-dimensional, because each %-homogeneous local dendron is
either a bouquet of » circles, where n> 1, or a homogeneous multigraph (different
from S!) in the sense described above.

The structure of this paper is the following: In Sections 2 and 3 we prepare the
- main tools needed in the proof. Namely, in Section 2 we describe the homological
tools, based on the notion of membrane, defined and applied in [5]. We prove some
useful propositions concerning membranes, in particular Theorem 2, which asserts
the local connectedness of some membranes in ANR’s. In this paper we shall use
the Cech homology theory with coefficients in the field Q of rational numbers,
which — for compact metric spaces — is equivalent to the Vietoris theory (based
on true cycles), used in [5]. .

In Section 3, we describe the methods from the theory of topological transfor-
mation groups. In particular, we prove Theorem 3, which gives a generalization
of the well-known Effros-Hagopian theorend (cf. 6] and [9]) concerning homo-
geneous spaces. Let us notice here that, by using the Effros—Hagopian theorem,
the proof by Bing and Borsuk [5] of the theorem concerning homogeneous 2-dimen-
sional ANR’s ‘mentioned above can be shortened and simplified. Namely, we can
siniplify the proof of Theorem 8.1 of that paper if the local homogeneity of X in the
assumptions of that theorem is understood as the existence of an open covering of X
by homogeneous sets. Indeed, by Arens® results [3] (cf. also [19]), a locally compact
and locally connected (metric) space X with the transitive action of H (X) satisfies
the assumptions of the Effros-Hagopian theorem. To see how this last theorem can
be applied, see the beginning of Section 5 of the present paper and the fact (5) esta-
blished there.

In Section 4, we prove Theorem 1 in the case when X has a locally separating
point, in part in a somewhat more general form, for spaces which are not necessarily
ANR’s.

Finally, in Section 5, we prove Theorem 1 in the remaining case, first showing
that either one orbit has the described structure, or X is a polyhedron. Our strategy
in this proof is the following: First (by a procedure similar to that in [5]) we identify

o0

two orbits 4, B of the action of H(X) on X where 4 = U 4, is an F, subset of X
i=0

and B = X\A4 is a dense G; set in X. Next, after some preparations by means of
Baire’s theorem, we establish the fact (4) that each set 4;, i = 0,1, ..., is locally
connected. i

In t.he,next part of the proof, we need Theorem 3, and therefore we verify its
assumptions, so as to use it for the set A4 with the action of H (X) on it. Then we can
show the fact (7) that no set 4;,i=0,1, ..., contains a ramification point, and there-
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fore each 4, is locally an (open) arc. Further, we establish the fact (10) that such

a small arc locally disconnects the space X into at least three components. Then we
consider three cases 1°, 2° and 3°, according to the structure of the components of 4;
we eliminate cases 1° and 2°, proving in (14) that the components of 4 form a finite
sequence, consisting of simple closed curves. In case 1° the orbit 4 has the structure
described in the assumptions of Theorem 1. The fact (14) easily implies that X
must be a polyhedron.

After this long proof, using the results of Section 4, it is net difficult to classify
all 2-homogeneous polyhedra.

Notice that Theorem 1 can be extended to the case when the space X is locally
compact, but non-compact, with the conclusion being that X is a locaily finite
CW-complex, except the described case. Indeed, as in [5], all membranes can be
constructed in cofnpact subsets of X (cf. 2 comment in Section 2). The proofs of
Lemmeas 1 and 2 from Section 4 can be modified for this case, so as to assert that
the set of points which separate (locally separate) the space X is locally finite (cf.
a comment in Section 4). The proof, given in Section 5, that the orbit 4 is the ynion
of a finite number of disjoint simple closed curves can be adapted to this case, with
the finite number of curves replaced by a locally finite sequence. Observe that Theo-
rem 3 can also be applied to the orbit 4 with the action of H(X) on it, because —
by Arens’ results mentioned above — the assumptions concerning the group
G = H(X) are satisfied. The result concerning the orbit A (resp. the points which
separate, or locally separate, the space X) together with the homogeneity of the orbit
B = XA (resp. of the set of remaining points of X) easily imply — as in our proof —
that X is a locally finite CW-complex, except the described case.

i .
Evidently, for k> 2 there are ];—homogeneous ANR’s (even 1-dimensional),

which are not polyhedra. Also, for n> 2 there are 1-homogeneous n-dimensional
ANR-sets which are non-polyhedral generalized manifolds, and have — for in-
stance — one point at which they are not manifolds (obtained by contracting a wild
arc in a manifold to a point). However, some kind of classification of such %-homo-
geneous n-dimensional generalized manifolds would be interesting.

Also, in connection with the above-mentioned Krasinkiewicz theorem [11],
and Bestvina’s recent very-interesting results [4] on the homogeneity of the universal

!
Menger continnum M>"**, one can ask whether the space M;' is z -homogeneous for
some k, in particular, if the space M2" is 4-homogeneous.

2. Membranes in ANR-spaces. As mentioned in the Introduction, we define
a membrane as in [5], but using the Cech homology groups with coefficients in Q.
Our general reference in homology theory will be Eilenberg and Steenrod’s book [7]
and sometimes Spanier’s book [18].

Assume that X is a metric space, S is a compact subset of X'and 0 # y'e H(S).
Thus S is a carrier of y. A compact set M containing S will be called a membrane of y
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spanned on S if #(y) = 0, but for any compact proper subset M’ of M containing §
we have i,(y) # 0, where i: § — M, i’ S — M’ are the inclusion maps. If M > 8
and i(y) = O, then the Brouwer reduction theorem and the continuity axiom for
the Cech homology groups imply the existence of a membrane of y contained in M.
If S is a continuous image of the circle S*, then by 2 membrane spanned on .S we
shall always mean a membrane of the element y & H,(S) which is the image of a ge-
nerator of H,;(S') under the induced homomorphism.

If M is a membrane of y € H,_,(S) spanned on S, then it follows from the
exactness axiom (which is valid. since the coefficients are in the ficld Q) that there
exists a { e H (M, S) such that 8,({) = y, where 3,: H/(M, S) - H,_,(S) denotes
the boundary homomorphism. Let U be an open subset of M\.S and consider the
homomorphisms

HM, S) - H(M, M\U) - H(U,T\U),

the first of which is natural, and the second is the excision isomorphism. Let
{'e H,(U, U\U) denote the image of ¢ and let y" denote the image of ¢’ under the
boundary homomorphism 8,: H(U,U\U) — —1(U\U). Considering the com-
mutative diagram

Hn—l(U) —'—"h’n— (M)

H(M. $) > HM, M\U) ~ H(U,U\U) = H,_ (T\U)~>=H,_ (M~U).

. H, () s

one sees (cf. [5]) that:

_(1) Y #0 and U is a membrane of y’ spanned on UNU. Moreover, if
2 UNU -» M\U, j: S —- M\U are the natural maps, then iy(y") = ju(y).
If M and M’ are two membranes of 7y spanned on S < M M’ then it follows
from the Ma, er-Vietoris sequence

HMoM) > H,_(MnM") > H,_ (M) ® H,_,(M")

that M ;é M " implies H,(MuM’) 5 0. Consequently, if MUM’ is a subset of

fm n-fixmensmnal space X which is contractible in X, then we have M = M ', Hence

if M is a membrane of ye H,_,(S) spanned on S, i,: S— X, tel is a homotopy

such that g = id, M’ is a membrane of hy4(y) spanned on Ay(S) and

M utLEth,(S)uM " is contractible in X, where dim¥ = n, then M\ Ur h(S)
te

= M’\'UIh,(S). Thus (cf. [5]):

. @ If X is an n-dimensional ANR, the membrane M is sufficiently small,
h is an autohomeomorphism of X sufficiently close to the identity (and therefore

clqsely homotopic to it), then the membranes M and &(M) coincide outside a small
neighborhood of S, :
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Now, we shall prove two propositions needed in the proof of Theorem 1.

ProrostTiON 1. If My, is a membrane spanned on a compact set Sy such that
H(So) = O, then M,\S, is connected.

Proof. Let y be a generator of H,(S,). By the exactness axiom, there is
a (e Hy(M,, S;) such that 0,(0) =y, where 8,: Hy(M,, So) - Hy(S,) is the
boundary homomorphism. Assume that My\S, = N; UN,, where N;, i=1,2
are disjoint closed subsets of M,\S,. Using a description of the group H,(M,, So)
by means of suitably chosen open coverings of the pair (M,, S,), one sees that £
can be described as {;+{,, where N; is a carrier of ;. Then 04(C;) = r;y, where
r;e Q; and therefore r; % 0 implies that N; is a membrane of y spanned on S,.
Since 84({) = y and no proper compact subset of M, can be a membrane spanned
on S,, we conclude that one of the sets N;, N, must be empty.

ProrosiTioN 2. Let Y be a compact subset of X and let a simple closed curve
S < X be the union of two arcs ILJ with common end-points x,, x, such that Ic ¥,

J © X\ Y. Assume that there is a membrare N < X spanned on S. Then there is a con-

nected set C= NnBdy(Y) joining x, and x,.

Proof. Let y be a generator of H,(S). There is a { e H,(¥, S) such that
04(0) = vy, where 3,: H,(N, S) — H,(S) is the boundary homomorphism. Consider
the relative Mayer—Vietoris sequence of the pairs (NN ¥, 7) and (N\Y, J) (cf. [18],
p. 190):

e Hy(NNY, 1) @ Hy(N\Y,J) » Hy(Nn Y)UN\Y, TUJ)
s = H,(N, S) —» Hl(N_\Ym Y, InJ) = Hi(N\YN Y, {x}u{x}) - ...

The boundary homomorphism of this sequence maps { to a non-zero element of
H(N\YnY, {x;}u{x,}). Consequently, there is a connected set CcN\¥YnY
c NnBdy(Y) joining x; and x,. .

In the next part of this section, we shall prepare the proof of Theorem 2 and
of its two corollaries which will be utilized in Section 5. We shall assume that X is
a (compact) 2-dimensional ANR and ¢, > 0 is a given number such that any subset 4
of X with diamA4 < 2¢, is contractible in X. A membrane M < X will be called
sufficiently small if diam M < &, for a fixed g,. This implies — as above — that such
a membrane is unique. If we need a generalization to locally compact ANR’s, then
this definition should be changed to assume that there are two compact subsets
F,, F, of X such that M cInt(F,)cF; cF, and any subset 4 of F, with
diam 4 < 2¢, is contractible in F,. Moreover, in the proofs, instead of considering
the regions (i.e. open and comnected sets) in X, only the regions contained in
Int(F;) should be considered.

Given a sufficiently small membrane of an element y of the first homology
group, we describe a method of constructing an approximation of y in a given open
covering of the membrane, and we prove a lemma concerning this construction.
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Notice that essentially the same proof can be used to obtain the n-dimensional
version of Theorem 2, where dimX = n and y e H,_(S). However, in order not
to complicate the description, we limit ourselves to the case when dimX = 2.

Thus assume that (Y, Y,) is a compact pair in X, diam Y < g;, 0 5 y € H,(Y,),
Le Hy(Y, Y,) and 8,(() = y. Let F be a compact neighborhood of ¥ in X such
that diam F < g,. Consider a covering ¢ of ¥ by regions in X contained in F such
that ord% < 2 and so fine that, for any Ge &, if S is a continuous image of S! con-
tained in the star of G in ¢, then there is a membrane M spanned on § and con-
tained in F. Let N(IV,) denote the subcomplex of the nerve of ¢ consisting of those
simplexes whose carriers intersect ¥(Y,). Denote by {’, y" the images of { and y
under the natural projections Hy(Y, Yo) — Hy(N, Ny), H(Y,) — H{(N,) respectj-
vely. Then 8.{" = y'. s

Now, we shall construct some compact subsets of X corresponding to simplexes
of N in the following way: First, for each 0-simplex of N, choose a point belonging
to its carrier in the covering 4. Next, for each 1-simplex [vw] of N, choose an arc
joining the points corresponding to the vertices v and w, and lying in the union of
their carriers in ¢. Finally, for each 2-simplex 4 of N, choose 2 membrane spanned
on the curve corresponding to the boundary of 4 under this construction, and lying
in F. Since diam F< g,, this membrane is unique. '

Further, choose cycles representing {’ and y’, denoted by the same letters and
such that 8({") = y'. Replace the simplexes occurring in them with non-zero coeffi-
cients by the corresponding subsets of X. Thus we obtain two compact subsets of X:
Z, corresponding to {’ (and therefore also to {), and Z,, corresponding to y' (and
therefore also to y). The construction also determines an element 6 of H(Z,) cor-
responding to y*. One sees from the construction that:

=,
(3) There are a 1-subpolyhedron P of N, y"' € H,(P) and a map f of P onto Z,
which is an embedding on each 1-simplex of P and satisfies § = L'

This element & will be called an approximation of y in the covering ¢ (by means
of y"), constructed in F. ‘

The following observation explains the sense of this definition. Let ¥ be any
compact neighborhood of ¥, in X contained in F. If the covering ¢ is sufficiently
fine, then the elements of & intersecting Y, lie in ¥, and therefore Zy < V. Let
¢: Yo =V, 1 Zy > V denote the inclusions. Notice that:

- (4) If the covering ¢ is sufficiently fine, then g.(y) = V(5).

Indeed, find a sequence ¢,,%,, ... of coverings,of ¥ (of order at most 2) by

regions in X such that &,,, is a refinement of 9, and limdiam¥,; = 0. Using
i~

these covcrings_, find a description of the group H,( Y,) as an inverse limit and let

¥ = {1.}. As above, find an approximation 73 of y in the covering ¢, by means of Vi»

constructed in F. Now, it remains to observe that, if i, is sufficiently great, then the

natural homomorphisms transform y; and 71, to the same element of H(V) for
each i3> i,. i .
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To see this, consider the 1-simplexes occurring in y; and their images under the
projection #;: N; — N;,, where N,(N, io) 18 the merve of 4(%,,). Passing to the approxi-
mations, consider the corresponding arcs and join their respective end-points by arcs
which lie in the elements of ¢;,. Thus we obtain several curves for which — if Ip is
sufficiently great — there are membranes spanned on them and contained in ¥.
Consequently, we can construct membranes of ¥:—7i, contained in ¥, for all i > To»
which proves (4).

Assume now that ¥ is a membrane of y spanned on ¥, and let § be an approxi-
mation of y in the covering &, constructed in F. If 8,({) = y and Z, Z, are the sub-
sets of F corresponding to £, y resp. constructed as above, then one can prove that
gx(0) = 0, where g: Z, — Z is the inclusion map. This implies that Z contains
a membrane M of § spanned on Z;. Assume that a neighborhood V¥ of ¥, satisfies
the condition given in (4). Then MUV contains a membrane of y spanned on Y.
Since Y, Z, ¥ < F and diam F < &, we infer from the definition of &, that:

(5) YNV = M\YV and therefore M= YUV.

Suppose now that M, is any membrane of « € H,(S,) spanned on S,. Let U
be an open subset of M \S, with diam U< g. By (1), there is a y € H,(O\U)
such that U is a membrane of y spanned on UNU. Substituting in the above con-
sideration ¥ = U, ¥, = U\U, and applying (3), (4) and (5), we conclude that the
following lemma is true:

LemMA. Let X be a 2-dimensional ANR, S, a compact subset of X and M,
a membrane of « € H,(S,) spanned on S,. Then, for any sufficiently small open sub-
set U of My\S, and for any compact neighborhood V of U\U in X, there are
a 1-polyhedron P, a € H,(P) and a map f: P — V which is an imbedding on each
1-simplex of P, such that there is a membrane M of § = f.(B), spanned on f(P) and
satisfying McUUV, M\V = O\V.

THEOREM 2. Assume that X is a 2-dimensional ANR, S is a compact subset of X,
o€ H,(S) and M is a membrane of o spanned on S. Then M\S is locally connected.

Proof. Assume that M\S is not locally connected. Thus, there are an open
subset U of M\S with U < M\S and diam U < g; (where ¢, is defined as above)
and an x, € U such that, if C, denotes the component of U containing x,, then
Xo € Bdy(Cyp). Find a compact neighborhood F of U in X with diamF < g,. Find
also a sequence ¥"; = {Vi1, ..., Viu,}» i = 1, 2, ..., of finite coverings of U by open
and disjeint subsets of X such that each ¥;;nU is both open and closed subset
of U, ¥, = F,¥ 4, is a refinement of ¥, and for each component C of U there

o0
is a sequence Vi, Vyj,, ... with C =) ¥; nT.
. s=1

To obtain a convenient description of the groups H,(U\U) and H,(U, U)U),
find a sequence 4,, i = 1,2, ..., of finite coverings (of order at most 2) of U by ‘
regions in X such that | %, c F, %, is a refinement of %; and limdiam%; = 0.
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Moreover, we shall assume that, for any G € &, intersecting a set V,-s; the stér of 'G

in ¥, is contained in Vy,, and even, if C is a continuous imagle of S contained in

this star, then there is a membrane spanned on C and cgntamed in Vis. o
Now, represent the groups H,(U, U\U) and H (U\U) as inverse limits:

&) Hy(U, O\U) = Lim {H,(N;, N}), n} ,
H,(U\U) = Lim {H,(N)), =},

where N; and N; are the respective subcomplexes of the nerve of %, and
7t Hy(Niwqs Niwn) = Hy(Ny, Vi), 7 Hy(Nieq) - Hy(N]) are the respective
homomorphisms. Obserye that the groups H,(N;, N;) and H, (N;) can be represented
as direct sums

Hy(N;, Ni) = Hy(N,(, N) ©..0 H,(Ny,, Nit) s
H(N)) = H(N)®..@ H,(Ny),

where Nj; (Ny;) denotes the subcomplex of N, (V;) determined by those ele ments
of &; which lie in V;;. _

Since M is a membrane of « € H,(S) spanned on S, there is a y € H(U\U)
such that U is a membrane of y spanned on UNU. Consequently, there is
ale Hy(U, U\U)suchthat 3,(0) = y.Let{ = {{;}.y= {»}and {, = {, ®..® L,
Vi = 751 @...@ py, under the above representations. We can assume that 34(L3)
= y; and that there is a k} < k; such that ¢ ij» ¥ij for j<k; are all non-zero sum-
mands in these representations.

Furthermore, by the msthod described above, ws find an approximation §; of y
in the covering %, by means of ,, constructed in F, Moreover, we construct two
compact subsets of X: D;, corresponding to y;, and Z,, corresponding to {;, such
that 6, € H,(Dy), ¢:4(8) = 0, where ¢,: D, — Z; is the inclusion. One sees from
the assumptions concerning the coverings %;, from the construction of the approxi-
mation, and because the membranes are unique, that D; = U {Dy;: j<k}},
Z; = Zy;, where D;; c©Z;;< Vy;; therefore §; = 6, ®...® J;;, where ;€ Hy(Dy).
Moreover, ¢;;4(8,;) = 0, where @52 Dy = Zy; is the inclusion map. Consequently,
Z;; contains a membrane M;; of 6;; spanned on D,;. Since MycZ;cV,; and
Vijo Vi = @ for j # j', it follows that M;nM;. =@ for j .

Recall now that xo€ Uc U < Inty(F) < F and find an open neighborhood W
of x, in- X such that F\W is a neighborhood of U\U in X. Observe that for each
m21 there is an n> 1 such that at least m of the membranes M,,, ..., M, inter-
sect’ W. Indeed, M, = M, u...uM,y is a membrane of 8, spanned on D,, and

therefore, by (4), if nis sufficiently great, then ?4(¥) = ¥4(3,), where : U\U > F\W,

¥: D, - FN\W are the inclusion maps. Since UUM,cF and diamF < &, We .

infer from (5) that M,n W = U~ W. Since M,;<V,;, we conclude from the de-
finition of the ¥";’s that, actually, for n sufficiently great at least m of the M,;, i<k,
intersect W (since at least m of the V,;nU intersect W),

Next, denote by ¢, the subfamily of ¢, consisting of those G e %, which inter-
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sect UN\U. Find an index i, sufficiently great so that, for any cmve C which is a con-
tinuous image of S* and is contained in the star of a Ge¥; in %, there is a m m-
brane spanned on C and contained in F\J¥, Denote by 7 the number of generators
of the group H,(N,,) (determined by polyhedral simple closed curves in N;) and
find an index 7>, such that at least m = 22! of the membranes M,,, ..., My
intersect W, say M,,, ..., M,,,. Consider the homomorphism

w' Hi(Ni)@ ... ® Hy(Ny,) = H,(N}) » H,(N.,)

given by (+) and let '(y, ) = n; for j< k;. Thus one sees that either there isajg<m
sueh that y,; = 0e H,(N.), or at least 2 = Jm of the vy, with j<m, say
Yn1s s Yo, contain the same generators of H,(N;,) with mon-zero coefficients.

To complete the proof of the theorem, we shall show that both these cases are
impossible.

Assume first that y, i = 0€ H,(N;)) and choose a cycle representing this element
(denoted by the same letter). Find a chain ¢ e C,(N;,) such that 3¢’ = 7n;- Taking
into consideration the properties of ¢;, and using the method described before this
theorem, one can construct a compact subset D’ of U %, a 8,;€ H (D') correspond-
ing to y,;, and a compact set C’ corresponding to ¢’ such that C' = AW and
0+(6,) = 0, where g: D' — C’ is the inclusion map. Moreover, one sees as in the
proof of (4) that 6,(5,;) = 04(8,)), where o: D,; = F\W, ¢': D' - F\W are the
inclusions. Consequently, 04(6,;) = O, where 5 D,; » F\W is the inclusion. There-
fore there is a membrane M; ; of 6,; spanned on D,; and contained in F\W. However,
this is a contradiction, because M,; is also a membrane of §, j spanned on D,; and
contained in F, but intersecting W. .

Finally, assume that the elements .y}, ..., yv= of H,(N;) contain the same
generators, say By, ..., f, with k<, of H,(N) with non-zero coefficients. Since
Jm = 222" it is easy to prove by induction with respect to k that there are non-
zero integers ry,..,r/; such that r, Vn1 F et P YivE = Oe H,(N;). Since
M,;, for j < m, are the membranes of é,;spanned on D, 7> which are disjoint, contained
in F and intersect W, the set |J {M,;: j<./m} is a membrane of

6 =118+ +r5buin

spanned on D = U {D,;: j< /m}, which intersects W and is contained in F. By
the method used in the preceding case, one can construct another membrane M’
of & spanned on D and contained in FA\W. This is a contradiction, which concludes
the proof of the theorem.

By a theorem of Mazurkiewicz-Moore-Menger, from Proposition 1 and
Theorem 2 we obtain:

COROLLARY 1. Under the assumptions of Theorem 2, the set M\S is locally arcwise
connecred. Moreover, if M is a membrane spanned on a -compact set S such that
H((S) = Q, then M\S is arcwise connected.

3 — Fundamenta Mathematicae 132.1
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COROLLARY 2. In the lemma given before the theorem, we can require the map f to
have values belonging to Vv M.

Indeed, we can assume in the proof of the lemma that U< M\S,, and we can
choose the covering % of ¥ = U so that the sets GA M, = G MNS, for Ge¥
are connected. Consequently, by Corollary 1, when constructing the approximation
of v in the covering ¢, we can construct the arcs replacing the respective 1 -simplexes’
of the nerve of ¢ in such a way that they lie in M.

3. Topological transformation groups. The following well- known theorem on
homogeneous spaces has been proved by Effros and Hagopian (cf. [6] and [9])=

THEOREM OF EFFROS AND HAGOPIAN. Let X be a metric separable topologzcally
complete space and (G, d) a metric separable topologically complete group actmg con-
tinuously and transitively (from the left) on X. Then for every &> 0 there is an open.
covering {Uler of X such that for any teT. and x,ye U, there is a g € G with
d(g,e)<e and gx =y o
 We shall need the following more general version of this theorem, which is its
adaptation to the case when .X is not necessarily topologically complete (but rather
o -compact).

TrEOREM 3. Let X be a metric space and (G, d) a metric separable topologically
complete group acting continuously and transitively (from the left) on X. Moreover,
let F be a topologically complete subset of X such that, for any x € F, there are a neigh-
borhood Uy of x in F and a neighborhood M, of the identity e in G with MoU, < F.
Then there are an x, € F and an open neighborhood M of e in G such that Cy = Mx,
is a dense G5 subset of an open nezghborhood W, of xo in F (where M = G if F = X),
satisfying the condition:

(*) For any &> 0, there is an open covering {U,};e1 of Co such that, if y,, y, € U,,
then there exists an fe G with d(f, e)<e and fy, = y,.

Moreover, given any dense sequence go = €, 4y, g, -.. in G, there is a countable
covering {C.}%o of X by topologically complete sets such that each C; is a dense G,
set in an open subset W; of F; = g.F, satzsfymg the condition (x) with C, replaced
by C;.

Proof. First, let us show that:

(1) There is a point x, € F such that, for any neighborhood M of the identity e
in G, the set Mx, contains a dense G, set in a certain open subset of F contain-
ing x,. -

First, consider any open neighborhood P of e in G and. let {g;};2, be a given

o]
dense subset of G. Then G = |J Pyg;. Indeed, for each g € G there is an open set O
i=0

in G such that ge Q, Q@ * <= P. If g;€ O, then ge Pg,.
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"Choose any x e F. Since the orbit Gx of x in X is equal to X, it follows that

X=Gx= .Qopgfx. Thus the sets F;= (Pg;x)nF, i = 0, 1, ..., cover F. Con sider

{9 € G: gy = y} denote the stabilizer of yin G,
The set Py = Pg;x is analytic in X Consequently, F; is analytic in F, and therefore it

has the Baire property in F (cf. ibidem, p. 56); i.e. there are an opensubset V; of F and

ﬁrst category sets K;, L, in F such that F; = (V\K))UL,. Since the set F = U F;

i=0
= U (VK uL) is topologically eomplete, there is a dense G subset B, of Fsuch
that B, = U{V\K;: V; # @}. Notice that, if y,,y, e VNK;c F; < Pg,;x, then
there is an Ae PP~ such that Izy1 = y,. Indeed, there are A, h, € P such that
hygix = y1, hygyx = y,, whence hy, = y,, where h = h, k7.

Now, let Py, P,, ... be a base of open neighborhoods of e in G. By the above
reasoning applied to P; instead of P, one can find a dense G; subset B; of Fand
a countable covering {V NK; 3o of B;, where Vi # @ is an open subset of F
and Kj; is a first category subset of F, such that, for any y;, ¥, € V;;\K;;, there is
an hePP t w1th hy; = ,.

Let x5 € ﬂ B;. Then x, satisfies the required condition (1). Indeed, if M is
o 11

a neighborhood of e in G, then there are a j such that P,P7 ! = M and an i such that
Xo € V;\K;;. Evidently, V;\K;; contains a dense G, subset of Vi and Vi\Kj; © Mx,.

Let x, satisfy condition (1). We shall now prove that:

(2) There is an open neighborhood M of ¢ in G with Mx, < F such that, for
each g € M, there is an open neighborhood ¥ of x, in F such that g¥ is an open
neighborhood of gx,. in F.

Indeed, by the assumption, there are an open neighborhood M, of e in G and
an open neighborhood U, of x, in F such that M,U, = F. Ope can find an open
neighborhood M of e in G such that MM ~* < M, and Mx, < U,. Consider now
a fixed ge M and let U be an open subset of X such that UsnF = U,. Since
x = gxp€ Mx, = Uy = Uy F, it follows that there is an open neighborhood ¥’
of x, in X such that V' c Uy and gV' < Uj. Let V= V'AF, W = gV’ and
W = W' F. To complete the proof of (2), it suffices to show that g¥ = W. Indeed,
gV =gV’ and, since geM<M,, it follows that gV = g(V'nF)c=g(UynF)
= gUp = F, whence gV =gV'nF = W. On the other hand, W< W' = gV’ and,
sinceg te Mt cMyand W = gV'nFo UynF = U,, it follows that g WcF,
whence W< gF. Consequently, WegV'ngF = g(V'nF) = gV, which completes
the proof that gV = W.

Further, let M be a neighborhood of e in G satisfying (2). Evidently, if F = X,
then we can take M = G. Suppose that x€ X, g € G and gxe Mx,. Let N be an
open neighborhood of g in G. We show that:

3*


Artur


36 H. Patkowska

(3) There are an open neighborhood U of y = gx in Fand a dense G, subset B
of U such that B« Nx.

Since y € Mx,, there is an ke M such that y = hx,. Since heh™'g = ge N, -

it follows that there is a neighborhood P of e in G such that APh~'g = N. In virtue
of (1), there are an open neighborhood W of x; in F and a dense G, subset B.° of W
such that By = Px,. Since # € M, using (2), we infer that there is an open neighbor-
hood U of y in F such that the set B = hByn U is a dense G; subset of U. T'hen
BchB, < hPxy = hPh™'y = hPh™'gx = Nx, and therefore B is the required
subset of U.

Nezxt, let us prove that:

(4) For any x € Mx, and for any neighborhood P of ¢ in G, there is a neighbor-
hocd U’ of x in Mx, such that U’ < Px.

First, find an open neighborhood Q of e in G such that 0"*QcPAM.
Applying (3) to the given point x, g = e and this neighborhood Q of e, one can find
an open neighborhood U of x in F and a dense G; subset B of U such that B < Qx.
Let U’ = Un Mx,. We shall show that 07U’ = Q7 1Qx. Then U’ = eU' = Q1 U’
< Px, and therefore U’ is the required neighborhood of x.

Thus assume that there exists a ye Q~*U’ with y ¢ Q~*Qx. Find g € G such
that y = gx. Since y =gx¢ 07'Qx, it follows that Qgxn Qx = @. Thus
QgxnU' = QgxnMxynUc UNQxc UNB. To obtain a contradiction, we shall
prove that Qgxn U’ contains a dense G5 set in an open subset of F.

For this purpose, let t: G — X denote the map given by the formula 7 (h) = Ax
and let U be an open subset of X such that U’ nF = U. Then t~(U"") is an open
subset of G, t”}(U")x = U" and, since Mx, < F, we have Qgxn U’ = Qgxn
AUnMxy = QgxnU"nMxy = Qgx 0™ ({U")xn Mxy > (Qg nz~ 2 (U")xn
0 Mx,. The set Qgnt~Y(U") is an open subset of G, which is non-empty, because
y=gxeQ 'U’, and therefore there is an ke Q such that hy = hgxe U’
= UnMx, = U"” n Mx,, whence hg € Qg nt~1(U""). Since hgx € Mx,, applying (3)
we infer that there are an open neighborhood ¥, of hgx in F and a dense G; subset B,
of ¥, such that B; = (Qgnt~*(U""))x. Substituting, in (3), x, instead of x, M instead
of N and taking into consideration that there is an f& M with fx, = hy = hgx € Mx,,
we infer that there are an open neighborhood ¥, of 4y in F and a dense G, subset B,
of ¥, such that B, = Mx,. Consequently, B, ~ B, contains a dense G; subset of an
open non-empty subset of F, contained in (Qgnt *(U"))xn Mx, < Qgxn U".
This is the desired contradiction, which completes the proof of .

To complete the proof of the first assertion of the theorem, consider the map
6: M ~ Mx, given by the formula 5 (g) = gx,. Condition (4) implies that the map o
is open. Indeed, let N be an open subset of M and let x = gXo € 0(N) = Nxo = Mx,,

where g € N. There is an open neighborhood P of e in G such that Pg < N. By (4),
there is an open neighborhood U’ of x in Mx, such that U’ < Px = Pygx, < Nx,,
which proves that Nx, = ¢(N)"is open in Mx,.
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Since M, being an open subset of G, is topologically complete, 50 is Mx, (cf. [81,
p. 442). Consequently, since each topologically complete set is an absolute Gy set,
it follows from (3) that there is an open subset Wo of F such that Mx, is a dense G
subset of W,. Moreover, given any &> 0, we can find a neighborhood P of ¢ in G
such that PP~'c{feG: d(f,e)<s}. By (@), for any xeC, = Mx,, there
is an open neighborhood U’ of x in Mx, such that U’ = Px. Consequently, for any
y1,¥2€ U, there are f,, f, e P with fix = y, for j = 1, 2; this implies that fy, = y,
and d(f, e)<e, where f=f, fi 1.

To prove the second assertion, consider a given dense sequence {g,}2, in G.
As at the beginning of the proof; the sequence {g;M}2,isa covering of G. Thus
the sequence {C;}{Z,, where C; = g:Mx,, is a covering of X. The C;’s, being homeo-
morphic images of Mx,, are topologically complete and, moreover, for each i there
is an open subset W; of F; = g, F such that C, is a dense G, subset of W;, It follows
fromi (4) that, for each y e C; and for each neighborhood Q of e in G, there is
a neighborhood ¥’ of y in C; such that V' = Qy (it suffices to find U’ < Px, where
X =g 'ye Mx,, Pc g7 ' Qy;, and take V' = g:U"). As before, this implies that C;
satisfies the condition () (with C, replaced by C), which completes the proof.

4. Proof of Theorem 1 in the case when X has a locally separating points. First,
we shall consider the case when X has a separating point. We shall prove Lemma 1
below, using the theory of cyclic elements for Peano continua, as described in [13]
and [15]. Recall that a non-degenerate cyclic element of X is a maximal subset of X
which is disconnected by no point. If, in this lemma, X is locally compact, instead
of being compact, then any point of X has a neighborhood in X which is a Peano
continuum. Considering the cyclic elements of such neighborhoods and reasoning
as in our proof of the lemma, one can show that the set of separation points of X is
locally finite.

Lemma 1. Let X be a L-homogeneous Peano continum of dimension greater
than 1 which has a separation point. Then X has exactly one separation point.

Proof. Let 4 consist of the points x € X which separate X, and let B = X\ A.
Since dim X =2, it follows that X contains at least one non-degenerate cyclic ele-
ment Z and Zn A4 is an at most countable set of points which bound components
of X\Z. Then BnZ # @, and since Z % X and Z is closed in X, AnZ # @. By
the %-homogeneity of X, this implies that each xe X belongs to a non-degenerate
cyclic element of X,

Assume that 4 contains more than one point. Then there is a non-degenerate
cyclic element Z, of X containing at least two points of 4. Since, for any non-dege-
nerate cyclic element Z of X, no x e Zn B belongs to a cyclic element of X different
from Z, it follows from the 4-homogeneity of X that Zn 4 must also contain at
least two points. Order all the non-degenerate cyclic elements of X into a sequence
Z,,Z,, ... Observe that, for each 7, each component C of X\Z; must contain infinitely
many Z;’s, because otherwise one can find a Z, = € such that Z;n A consists of
exactly one point. :
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Now, let us construct a subsequence Z;,, Zy,, ... of the sequence {Z}Z, and
a descending sequence C;, C,, ... of compact subsets of X such that X\C; is con-
nected. Let Z;, = Z; and let C; be the closure of any component of X\Z,. If Z,,
and C, are constructed, let ;.4 denote the first index greater th’an i; such .that
Zi,,, < C; and let Cjyy denote the closure of any component of X\Z,,,, contained
in C;. Such a component exists, because the set X\C; is connected, and
therefore it intersects Z;,,, it at most one point of the (at most) countable

set Z;;,,n4. Evidently, X\Cj.y is connected and one sees from the con=
struction that, for each j, Z;,n C;,, = &. Consequently, if x, is a common ponllt
of the sets C;, j = 1,2, ..., then x, cannot belong to any non-degenerate cyclic
element of X. This is a contradiction, which completes the proof of the lemma.

COROLLARY. Each connected %-homogeneous 2-dimensional ANR -space which
has a separation point is a polyhedron. Moreover, we can obtain a full classification
of all such spaces.

Proof. Define 4 and B as in the preceding lemma and let 4 = {x,}. Let C be
a component of B = X\{x,}. Then C is a2 homogeneous, locally compact and locally
contractible, 2-dimensional (metric separable) space, which implies, by the Bing-
Borsuk theorem [5], that C is an open 2-manifold. We shall show that C = E’u {x0}
is a polyhedron (cf. [10]) and that, in fact, it is a pseudomanifold. Indeed, C, being
a retract of X, is an ANR. It can have at most one locally separating point, namely xo.
Since x, does not separate T, there is a region U in C such that x, € U, C\U # @
and for any region ¥ in C, where x, € ¥ <= U, the set ¥\{x,} has the same number
n1 of components (cf. [16], p. 276). Moreover, we can assume that the region U
is so small that each simple closed curve S < U is contractible in C. It follows that x,
has an open neighborhood homeomorphic with the plane E? in the closure of any
component of U\{x,}. Consequently, C must be a closed 2-pseudomanifold with
at most one irregular point, obtained from a closed 2-manifold by identifying some n
points. Evidently, if n = 1, then C is a manifold. .

It follows from the 1-homogeneity of X that all the non-degenerate cyclic ele-
ments of X (i.e. the closures of the components of B) must be homeomorphic pseudo-
manifolds, and since X € ANR, their number is finite. Thus X is a bouquet of k> 1
homeomorphic pseudomanifolds described above, and therefore a polyhedron.
Conversely, every such bouquet is evidently a -homogeneous connected 2-dimen-
sional ANR having a separation point.

Next, we shall consider the case when X has locally separating points, but is
a cyclic space, i.e. no point x € X separates X. Denote by Ly the set of these points
which locally separate X. We shall use the theory of strongly cyclic elements, which
has been described in [16] for the spaces X € «, i.e. for Peano continua satisfying the
_condition: there is an &> 0 such that no simple closed curve S = X with diamS<¢
is a retract of X. Recall that a non-degenerate strongly cyclic element of X is a maxi-
-mal subset of X which is disconnected by no finite set.

If X is locally compact, instead of being compact, then the definition. of the
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class & can be adapted to this case, by the assumption that there is an open covering &
of X such that no simple closed curve S < Ge ¥ is a retract of X, Moreover, in the
definition of strongly cyclic elements of X and in their properties proved in [16],
the word “finite” must be replaced by “locally finite”. Using these remarks, one can
adapt our proof of Lemma 2 50 as to obtain the conclusion that X is the union of its

non-degenerate strongly cyclic elements, where the family of these elements, as well
as the set Ly, are locally finite.

Lemma 2. Let X ea be a %-homogeneous cyclic space of dimension greater than
1 such that Ly # @. Then there is a positive integer m such that X = U E;, where E;,
i=1

Jor i<m, are all non-degenerate strongly cyclic elements of X. Moreover, the E;'s
.are homeomorphic and, in particular, there is a positive integer n sich that Jor each
i the set E;nLy consists of exactly n points.

Proof. Let 4 = Ly and B = X\Ly. Since X is a cyclic space, it follows from
[16] that 4 is closed in X and B 5 @, because X cannot be a local dendron. A non-
degenerate strongly cyclic element of X is the closure of a component of B = X\A4.
By [16], for any such element E of X, the set En Ly is finite, it does not separate £
and contains Bd(E)ULgz. Moreover, if E # X, then Bd(E) contains at least two
points. By the %-homogeneity of X, each x € X must belong to sucha non-degenerate
element E of X and all these elements must be homeomorphic. Consequently, there
is a positive integer 7 such that, for each such element E of X, the set En A consists
of exactly n points. Moreover (cf. [16], p. 276), any x € E locally disconnects E into
a finite number of components, i.e. for any sufficiently small region U in E conta-
ining x, the set U\{x} has the same finite number of components.

It remains to prove that the number of non-degenerate strongly cyclic elements
of X must be finite. Assume that this is not the case. By [16], the family of these
elements is countable and their diameters converge to 0. Since 2 < cardBd (E)
< card(En 4) = n, it follows that card 4 = &,. Since 4 is closed in X, it contains
its accumulation points. Thus, by the $-homogeneity of X, the compact set 4 is
countable and dense in itself, which is a contradiction.

CoroLLARY. Each connected, cyclic, %-homogeneous, 2-dimensional ANR-
space X such that Ly # @ is a polyhedron. Moreover, we can obtain a full classification
of all such spaces by means of homogeneous multigraphs.

Proof. In virtue of Lemma 2, there are positive integers m and » such that
X = U E; and card(E;nLy) = n. Since E;n Ly > BAd(E)), the sets E; for i<m can
i=1

intersect one another only at points belonging to Ly. By the 1-homogeneity of X,
the sets E;\Ly are homogeneous and, applying the Bing-Borsuk theorem, we infer
as in the proof of the preceding corollary that they are open 2-manifolds. Moreover,
one can prove that the E;’s are closed 2-dimensional pseudomanifolds with the


Artur


40 H. Patkowska

finite set Ly, = E;n Ly of irregular points. Thus one sees that X = UA{E;: i<m}
is a polyhedron.
By the %-homogeneity of X, there is a positive integer p such that E;nLy

? . .
= U E;, where E;; consists of those points x € E;nLy which locally disconnect E;
j=1

into the same number g; of components and 1<g; <...<g,. Evidently, card E;;
= cardE;; for i,i'<m, j<p. f m=1, then p=1 and ¢, >1. If m>1, then
cardBd(E) = n>2.

Now, the structure of the polyhedron X can be described by means of the
following multigraph G = (¥, E): The set ¥ of vertices of G is in a one-to-one cor-

respondence with Ly. Then ¥ = | V;, where ¥, corresponds to E;nLy. The set V7,
i=1

in turn, is the union of p disjoint subsets ¥;;, j < p, corresponding to the E;;’s. Two
different vertices v, w e ¥ such that v, we V; for some i are joined by an edge e€ E.
In this way we obtain a multigraph G which is the union of m subgraphs G; = (V;, E)),
where any two different vertices v, we V; are joined by an edge ec E;. By the
4-homogeneity of X, the multigraph G is homogeneous in the following sense:
For any two vertices v, we V there is an autoisomorphism ¥ of G such that
¥ (v) = w and, for each i< m, there is an i’ <m with Y (G) = Gy and Yy (V) = Vi
for all j < p. Moreover, for any i, i < m there is an autoisomorphism y of G of this
type such that Y (G)) = G;. Since X is connected and cyclic, the multigraph G is
also connected and cyclic.

Conversely, it is easy to see that for any multigraph G of this type and for any
closed 2-dimensional psendomanifold P whose irregular points x e Lp satisfy the
above conditions, corresponding to the structure of G, there is exactly one %-homo-
genesous 2-dimensional X ANR whose non-degenerate strongly cyclic elements
are homeomorphic to P, whose intersections are described by G, and such that Ly
corresponds to ¥. The conditions put on P and G imply that X satisfies the assumpt-
ions of the corollary. Thus there is a one-to-one correspondence between such
ANR-spaces and the pairs (P, G), which completes the proof.

5. Proof of Theorem 1in the case when X has no locally separating points. Let X be
a connected 2-dimensional, }-homogeneous ANR-space such that Ly = &. We
begin as in Bing and Borsuk’s paper [5]. Since X' e ANR, there is an g, > 0 such that
any subset ¥ of X with diam ¥ < 2¢, is contractible in a proper subset of X. More-
over, there exists an ¢; > 0 such that for any compact subset Z of X with diam Z < s,
there is a compact subset ¥ of X with diam ¥ < &, such that the inclusion i: Z — ¥
induces the null-homomorphism of the homology groups. To prove that X is a poly-
hedron, we can assume that X is not a 2-manifold. Tt follows from Young’s charac-
terization of 2-manifolds (cf. [22]) that there is a simple closed curve So < X with
diam S, < e, which does not separate X, Consequently, there is a membrane M,
spanned on Sy, such that diam M, < &;. Since S, does not separate X and X\ M, o #* 9,
the set 4y = X\Myn (M\S,) is not empty.
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Denote by A the class of all points x € X such that there is an autohomeormor-
phism % of X with x € h(4,), and let B = X\4. Observe that, as in [5], the set A4 is
of the first Baire category in X. To sce this, find a sequence k4, = id, A, , A, ... of
autohomeomorphisms of X which is dense in the group H(X) of all autohomeomor-
phisms of X. Let M; = h(M,), S; = h(S,) and A; = h(d,) for i=0,1,2, ...
It is clear from the definition that each of the A’ is of the first Baire cafegory in X.

Moreover, one sees as in [5] that 4 < .U 4;, because, if /4 and &, are sufficiently close

i=

to each other, then the membranes A(M,) and A,(M,) = M; must coincide outside
a small neighborhood of S;. (Indeed, it suffices to apply condition (2) of Section 2 to

the membrane M, and the homeomorphism A~ *%;.) Thus 4 = {J 4, is an F, set
i=0

of the first category in X, and therefore B = X\4 is a dense G, set in X. Evidently,
for each autchomeomorphism % e H(X), we have h(4) = 4 and h(B) = B, and
therefore 4 and B are the two orbits of the action of H(X) on X, mentioned in the
Introduction.

We shall first prove that:

(1) There are an i>0 and an open subset U # @ of 4; such that, for any j,
D;;> Und;, where D;; = Inty(4;nA4).

Assume that (1) is not true. Thus, for each i >0 and for any open subset U
of A,, there are a j and an open subset V of 4;n 4; such that ¥ = Uand V is a boun-
dary subset of 4;. Observe that V' can be assumed to be open in 4;. Indeéd, since
each 4; is locally compact, applying Baire’s theorem to the covering {4;nA4g}i2o
of 4, we infer that there is an x € 4, such that, for each i, if x € 4;, then 4, contains
a neighborhood of x in 4,. Since the image of 4, by any-autohomeomorphism of X
locally coincides with one of the 4,’s, it follows from the -homogeneity of X that
for each y e A there is a set 4, containing y such that, for each i, if y € 4;, then 4,
contains a neighborhood of y in 4. In particular, if ye V= 4;n 4;, as above,
then ¥ contains a neighborhood of y in 4;. Consequently, replacing j by k& and
shrinking ¥ if necessary, we can assume that ¥ is indeed an open subset of 4;.

Now, let us define an (infinite) sequence i, = 0 <i; <... of indices and a descend-
ing sequence ¥V, o ¥V, o... of compact sets, as follows: ¥, is any compact subset
of A, such that Int, (V) # @. If i,, and V,, are defined, then i, , is the least index j
such that there is an open subset ¥ of 4; which is a boundary subset of 4;  and satisfies

@0

V< V,. Then V,,,, is the closure of V. Let xe () V;. Thus x € 4, and therefore
j=0

there is a k such that x € 4, and, for any j, if x € 4;, then 4; contains a neighborhood
of x in 4,. Consequently, each of the sets 4;,, 4;,, ... contains a neighborhood of x
in A,, and therefore, by the construction, k is one of the indices iy, i, ... This is
a contradiction, which proves (1).

Since the image of each 4; by any autohomeomorphism of X locally coincides
again with one of these sets, it follows that the index 7 given by (1) can be assumed

\
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to be 0. If U < A4, is given by (1), then, since 4 is an orbit of the action of H(X)
on X, we have 4 = | h(U). Consequently, we can assume that U = A4,. Indeed,
i=0

there is an open subset ¥ of My\S, such that ¥ n A4, = U. Since M, is a membrane
spanned on Sy, it follows from (1) of Section 2 that there is a y € H,(V\V) such
that ¥ is a membrane of y spanned on WVN\V. Replacing, in our definition of the
orbit A, the membrane M, by V, S, by WV and 4, by U= Vnd, = X\VnV,
we can in fact assume that U = 4,. Consequently, we infer from (1) that D;; > 4,1 4;
for any i, . This implies that E;; = Dy;;n Dy; is an open and dense subset of 4,1 4;,
and it is open both in 4; and in 4;.

Now, consider the set 4, and the family {F;}2, of subsets of A,, where
F; = Ayn A\E,;. Since each 4, is locally compact, we infer from Baire’s theorem
that there is an x, € 4, such that, for each i, if x, € 4;, then x, € E,;. Consequently,
for any i, j, if x, € A;n 4;, then x4 € E;;, i.e. there is a common neighborhood of x,
both in 4; and 4. It follows from the £-homogeneity of X that:

(2) For any xe 4 and for any i, j, if xe A;n A;, then there is a common open
neighborhcod of x both in 4; and 4.

Now, we shall prove that:
(3) There is an x, € 4, such that 4, is locally connected at x,.

First, consider the case when any open subset U of 4, has at most countably
many components. Let U; be any open subset of 4, such that diam U, < 1. Using
Baire’s theorem, find a component C; of U, containing an interior pofnt of A4,.
In this way, we can construct inductively a sequence {C;}i2; of subsets of 4, such

. — 1
that C; is conmected, Cir; < Int,(C;) and diamC;< ~. Evidently, 4, is locally
4

connected at the common point x, of the C’s.

Thus assume that there are an-open subset U, of 4, and a family {C}cr,
where cardT > 5, consisting of components of U,. We shall prove that this is im-
possible. For this purpose, for any ¢ € T, choose an x; € C,. Since the set of points
which are accessible (by arcs) from X\ M, is dense in Bd(X\Mp) >4, = X\Myn
N (M\Sy) (cf. [13], p. 194), there is an Xy € A, which is accessible from X\M,.
By the J-homogeneity of X, for any x e 4 there is an i3>0 such that x is accessible
from X\M;. Thus, replacing if necessary the family {C}ter by an uncountable
subfamily, we can assume that there exists an ip>0 such that, for any te 7,
there is an arc I, with x,el,, IN{x;}=X\M,,. Find ay = X;, Which is a con-
densation point of {x},.r; i.e. in any neighborhood of y there are uncountably
many of x.’s (cf. [12], p. 140). Using (2) and replacing U, if necessary by a smaller
open subset of 4,, we can assume that U, is also an open neighborhood of y in
A;y = M;\S;,. Now, find a neighborhood U of y in X such that U n'S, = J and
UnA4; < U,. Since X< ANR and by Theorem 2, there is a region V< U in X
such that y e ¥, the set VoM, = Vo(M,\S,) is connected and, moreover, for
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any simple closed curve S < ¥ there is a membrane spanned on S and contained in U.
Since V0 A;,0 {x,}; 7 is uncountable, there are a 6 > 0 and uncountably many xs
Such that x, € ¥ and ¢(y,, M;,) > 6, where y, denotes the end-point of 7, different
from x,. Thus one sees.that there are two different points p; = x,,, p, = x, €V
and an arc 7 joining them such that 'c I\M, io- By Corollary 1 to Theorem 2, there
is an arc J = Vn M, joining p, with p,. By the assumption on ¥, there is a mem-
brane N spanned on the simple closed curve S = IuJ and contained in U. Con-
sequently, by Proposition 2 from Section 2, there is a connected set
CceNnX\M;,n M, joining p, and p,. Since Cc N« U< X\S;, it follows that
Cc=Und,, < U, Thus we obtain a contradiction with the fact that p, = x,, and
P2 = X, lie in different components of Uy, and therefore (3) is proved.

~ Using (2), we infer from (3) that, for each i > 0 such that x; € 4;, the set 4, is
locally connected at x,. By the +-homogeneity of X, we conclude that:

(4) Each A,:, i=0,1,.., is locally connected.

In the next part of the proof, we are going to apply Theorem 3 with X replaced
by 4, G replaced by H(X) and F replaced by 4,. Since 4 is-an orbit of the action

~of H(X) on X, it follows that H(X) acts continuously and transitively on 4. Thus

to verify the assumptions of Theorem 3, it remains to prove that:

(5) For any x, € 4, there are a neighborhood U, of x, in 4, and a neighbor-
hood Q, of e in H(X) such that Q,U, cA,.

Let xp €49 = (MyN\Sp)n X\M, and let ¥ be a compact neighborhood of S,
in X such that x, ¢ V. Since diam M, < &, it follows from condition (2) of Section 2
that there is a neighborhood P of e = id in H(X) such that, if 4 € P, then the mem-
branes M, and h(M,) coincide outside V; therefore A(My)NV <= My\S,. Find
an open neighborhood U of x, in X and a neighborhood @ of e in H(X) such that
Uc X\V, OQcP and QU< X\V. Next, find a neighborhood @, of e in H(X)
such that Q,05'< O and let U, = Un A,. Thus, if xe Uy, he Qq, then h(x)
e h(My)n X\V © M\S,. If y € UNM,, he O, then A(y) ¢ M,, because otherwise
y =k h(y) e U M) Uc B (M\V < M,, since h™'e Qp' <= Q<=P. Thus
ye U\M,, he Q, imply h(y)e X\M,, and therefore x € Uy, he Q, yield that
h(x)e (MO\SO)(\X\M; = Ay, which completes the proof of (5).

Thus we infer from Theorem 3 that:

(6) For each i =0, 1,... there are an open subset V; of 4; = h(4,) and
a dense G, subset C; of ¥, satisfying the condition (+) in Theorem 3 with C, replaced

by Ci and such that 4 = | C;.
; =0

" Further, we shall establish that:

. (7) No set 4;,i=0,1, ..., contains a triod (i.e. the union of three arcs, as in
the letter T).
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For this purpose, fix any p € Cy = V, < hy(4,) = 4,. As we have already seen
in the proof of (3), there is a k such that p e 4, =« M,\S; and p is accessible from
X\M,. It follows from (5) that there is an open neighborhood Q of the identity e in,
H(X) such that, for any 7 e Q, the point 4 (p) belongs to A, and is accessible from
X\M,. Consequently, we infer from (2) and (6) that there is an open neighborhood U,
of p, both in ¥, and in 4, such that any x e Uy C, is accessible from X\Af,.

Now, assume that (7) is not true. It follows from the {-homogeneity of X and
from (2) that for each i any x € 4, is a ramification point of 4,. In particular, there

3 .
is a trdod T= {J I; contained in Uy, where ,nLnl, = (p)=I,nI,n I, To
j=1 ,
obtain a contradiction, we are going to prove that:

(8) There are a membrane N, spanned on a set S, a point x € Ng\.S and an
arc I< U, such that xel and IN{x} c X\N,.

For this purpose, first find an open neighborhood O, of p in X such that
diam O, < ¢, and each of the sets Ij\ﬁ; forj =1, 2, 3 is non-empty. Next, find an
open neighborhood O, of p in X such that, for any curve R <O, which is a con-

tinuous image of S*, there is 2 membrane spanned on R and contained in 0,. Fur- .

ther, let us construct an open neighborhood O of p in X such that, for any curve
R < 0y which is a continuous image of S!, there is 2 membrane spanned on R,
contained in O, and, moreover, satisfying the following condition:

() For any x, y € O30 C, there is an arc J joining these points such that J = 0,
and J < X\M,.

To find this neighborhood O, one can apply (6) and the facts that relUynC,
and that any xe U,n C, is accessible from X° \M,. 3
Now, we shall construct an arc I, ¢ U, issuing from the triod T = U Z; such

=1
that Z,n T is an end-point g of I,, g€ 0, and IO, # @, possibly modlifying the
triod. We can do it, for instance, in a small nei ghborhood of the arc Iy, joining a sub-
triod of T with two points lying outside 0, by two disjoint arcs, as in a lemma given
in [13] (p. 241). The construction can be made, because 4, is locally compact and
locally connected, each x € 4, is a ramification point of 4, and, moreover, no point
of 4, locally disconnects 4. This last statement follows from the 1-homogeneity
of X and from the theorem of Whyburn (cf. [21] and [13], p. 223) that all points
which locally disconnect a continuum X, except at most countably many, have
order (in the sense of Menger-Urysohn) equal to 2.
) Having constructed the arc I, denote by I, the only arc contained in T and
joining p with ¢. We can assume that Iy b3. By [12] (p. 128), we can find an open
.neighborhood W of p in M, such that [, c W, W O3 and the boundary of W
in M, intersects TUI, at exactly four points, each belonging to an arc 7;, where
J<4. Next, find a compact neighborhood ¥ of WA\W in X such thathc 0s,
I, = WN\V (cf. Fig. 1). Since M, is a membrane spanned on Sk, we can apply to M,
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the lemma and Corollary 2 from Section 2, with W instead of U. Thus there are
a 1-polyhedron P, a map f: P — VA M, and a membrane N of the corresponding
6 € H(Vn M) spanned on f (P), as in the lemma. We can assume that the four points
at which WN\W intersects Tu I, correspond to some vertices of P, and, moreover,
that the intersection f(P) " (T'w 1,) lies in four disjoint sets, corresponding to small
neighborhoods of these vertices in P.

Fig. 1

Now, observe that there is a simple clcsed curve P, = P defining a generator
(belonging to a natural base) of the group H,(P) and such that p belongs to a mem-
brane N, « O, spanned on f(P;). Indeed, since f(P) = ¥ < O, it follows from the
definition of O, that for any simple closed curve R = P d=fining a generator belonging
to a base of H,(P), there is a membrane spanned on f(R) and contained in O,.
The union of these membranes contains a membrane of § spanned on f(P) and con-
tained in O, < O, which must coincide with N, because NcWuV < 0,<0,
and diam O, < g,. Since p € W\V = N\V, we conclude that there exist the desired
simple closed curve P; and the membrane N; < O, spanned on f(P,) and such that
pPe NNV NN(Py).

Further, notice that, if (8) is not true, then each of the arcs I;, I,, I5, I, must
intersect f(P,) = f(P) = V' M, at a point different from p and g. Indeed, each of
these arcs contains a point which does not belong to N;, because N, = O, < 0y,
and each of them contains a point which does not belong to O, (see Fig. 1). Since
I, = X\V < X\f(P,), we conclude that either (8) is true, or there exist four points r;,
J <4, where r; # p, q, at which the arcs I;’s intersect f (P,). We shall show that in
this last case . (8) is also true.

In fact, considering the assumptions about the intersection f(P)n(Tul,),
we can assume that the points »;, i< 4, are ordered so that, on the simple closed
curve P, the pair of sets £~1(r,), £~ 1(r;) interlaces the pair £~ *(r,), f~1(r,) (more
exactly, some arcs containing these sets have this property). Moreover, there are
four disjoint reighborhoods of the r’s, i< 4, in VnM,, the union of which con-
tains f(P)n(Tul). Since ry,rseTul,cUycd,nVy,ry,rseV=0; and G
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is a dense G; subset of ¥, it follows from (9) that there is an arc J < O, joinin'gvr'l-'
and r, and intersecting M, only in the neighborhoods of these points, chosen above
(cf. Fig. 2).

¥

Y )

I,

Fig. 2

Find two arcs with common end-points belonging to £ ~(r,) and £ ~(r;) respec-
tively, whose union is the simple closed curve P;, and denote by K, and K, their
images. under f, where r, € K,, r4 € K. Since X,, K,,J < O0,, there are two mem-
branes: N,, spanned on K, uJ, and N,, spanned on K, UJ, both contained in O,.
The union N, U N, contains'a membrane spanned on f'(P,), which must coincide
with Ny, because diam O; < &,. Consequently, p e N, UN,. Assume, for instance
that p € N,. Since N, < 0, the arc I, ul, < U, does not intersect X, uJ and I, con-
tains a point which does not belong to O,, we conclude that condition (8) must be
satisfied, with NV, instead of N, and a suitable subarc of I,u I, instead of I.

Having established condition (8), using (6) we get a contradiction, which com-
pletes the proof of (7). Indeed, let xe INN,\S and I< U, as in (8). Since

w0 - .

Upc A4y 4 = | C,, there is an [ such that x € C;, C; being a dense G; subset of
i=0 '

an open subset ¥ of 4;. By (2), there is a common open neighborhood W of x.:
both in Uy = 4, and in ¥;. Since x & No\.S, where N, is a membrane spanned on S,
it follows as in the proof of (5) that there is a neighborhood P of the identity e in
H(X) such that, for each & € P, we have 2 (x) € N,. On the other hand, since x & C,
IN{x} = X\N, and I contains a subarc with end-point x contained in W, it follows
from (6) that there are an ky e P and a y € X\N, such that /y(x) = y. This is the
desired contradiction, which completes the proof of (7).
In the next part of the proof, we shall need the following fact:

(°10) There are a point y, € 4y, an arc I« 4, and a region O, in X such that
Yo € I = 0, and, for any region O = O, containing y,, the set ONJ has at least three
components. '

To prove (10), recall that 4, = (M,\S,) m'X\Mo = Bdx(My) N (M\Sp),
where M, is a membrane of an « € H,(S,) spanned on Sp. It follows from (4) and (7)
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that the components of 4, form a locally finite (in M,\S,) family consisting of open
arcs and/or simple closed curves (cf. [13], p. 218 and 220). Consequently, one can
find a point y, € 4, an arc I « 4, and a region O, in Xsuchthat y, e f < 0; c X\S,,
e X\0,, diam O, < gy, O; n Ay = I and O,\ M, has at least one component whose
boundary is contained in 7 and contains y,. Find also a region 0, and an open neigh-
borhood ¥ of 0,\0, in X such that y, € 0, <0, = 0, Yo ¢ V and, for any curve
R < 0,0V which is a continuous image of S*, there is a membrane spanned on R
and contained in Oy. Let M = 0,0 M,, S,= M\0,. In virtue of (1) from Section 2,
there is a y € H,(S) such that M is a membrane of y spanned on S.

Assume that (10) is not true for y, chosen above. Observe that (MN\S)\J is
open in X, because Bdy(M)NS < Bdy(My)n0O; c4,n 0O, Since the mem-
brane M can be replaced by the closure of its open subset, we can assume, shrinking
also -the neighborhood ¥ if necessary, that (MU V)\I is connected. Now, apply
the lemma and Corollary 2 from Section 2 to y € H,(S) and the neighborhood ¥
of 0,\0,>S. Thus there are a 1-polyhedron P, a map f: P — VA M, with
JS(P) < V which is an imbedding on each 1-simplex of P, and there are a § € H,(P)
and a membrane N of B = f,(5) spanned on f(P) and satisfying N MUV,
M\V = N\V. :

- Thus y, € N\V. Let Py, ..., P, be simple closed curves in P which determine
a base of H,(P). Since f(P;) = V for i< k, there is a membrane N; spanned on f(P;)
k

and contained in Oy. Then | N;Uf(P) must contain a membrane of § spanned on
C i=1

J(P), which must coincide with N, because diam O, < ;c:o. Consequently, there is
a j<k such that y, e N;. We shall assume that j = 1. Observe now that:

(11) If R< X\{y,} is a curve which is a continuous image of S* and intersects
at most one component of I\{,}, then, if Q is a membrane spanned on R and con-
tained in O,, then y, ¢ Q.

Indeed, suppose that y,e Q. Then y, € Q\R. Since Nc O, and [ = X\O,,
there are a y e J n(Q\R) and a subarc J of I such that ye J, (JN{yDHn Q = @.
Since y € O\R, we infer as in (5) that each autohomeomorphism of X sufficiently
close to the identity maps y to a point belonging to @\ R. On the other hand, since
Je I 4, it follows from (2) and (6) that there is an autohomeomorphism # of X,
arbitrarily close to the identity, such that A(y) e J\{y}. This is a contradiction,
which proves (11).

Thus, since y, € N,\f(P,), we infer from (11) that the curve P; = f(P)cV
intersects both components of I\{y,}. Cm}rsequcntly, there is a finite family of arcs

1

(or points) K;, for i< 4/, such that P‘, = | K;j; if i is odd, then FK)NI = & and
j=1

() intersects both components of I\N{y,} and, if 7 is even, then f(K;) intersects
only one component of IN{y,}. Moreover, the arcs K;, K;., (where the indices
are considered mod4/) have only a common end-point (see Fig. 3).

Since, for each i, K = f(K;) = V and (MU V)\Iis a region in X, one can con-
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Fig. 3

struct some arcs Lo, ..., L;.; = (MU V)\I such that L; joins a point belonging

to Ki;., with a point belonging to K45 (cf. Fig. 3). Thus one obtains /41 curves

Ry, Ryy ooy R (MU V)N{y}, each being (in a natural way) a continuous image

of S!, whose union contains P;, but none of which intersects both components of

IN{y,}. Since Ryc MUV < 0,UV, there is a membrane O, spanned on R; and
1

contained in 0,. Then |J Q; < O, contains a membrane spanned on the curve Py,
=0

and therefore |J Q; > N,, because diam O, < g,. It follows from (11) that y, ¢ U Q;.
Since y, € Ny, we obtain a contradiction, which completes the proof of (10).

Next, let us consider the structure of the set 4 = |J 4;. By (4) and (7), each 4, is
i=0

locally an (open) arc, and therefore 4 is the union of countably many arcs. We shall
consider the following three cases:

1°. The components of 4 are non-compact.
2°. The components of A are compact and infinitely many.
3°, The components of A are compact and finite in number.

Evidently, by the homogeneity of 4, in cases 2° and 3° any component R of 4
is a simple closed curve and, if 1° or 2° holds, then 4, being non-compact, is dense
in X.

In case 1°, the orbit 4 is the union of at most countably many disjoint sets 4],
i =1,2,.., each of which is a biunique continuous image of the line E* and it is
maximal with respect to this property. Evidently, A} are composants of 4, and
therefore in this case the orbit 4 has the structure described in the assumptions of
Theorem 1. Thus in the sequel of this proof we shall assume that this case does not
hold, and we are going to prove that case 2° cannot hold.

Thus consider case 2° and order all components of 4 into a sequence R;, R, ...
To prove that 2° cannot hold, we shall consider successively the following subcases:

(i) Each component R; of 4 disconnects the whole space X.

(ii) Case (i) does not hold, but any component R; of 4 locally disconnects X
into at least three components.
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(iif) Case (i)-does not hold, but any component R, of 4 locally disconnects 4
into exactly two components.

(iv) No component R; disconnects X locally or globally.
First, consider (i). To obtain a contradiction, we shall show that:

(12) There are a by € B and a continuum E < B such that b, € E and for any
neighborhood U of E in X there is a component R, of A such that the component
of X\R, containing E is contained in U,

To prove (12), we shall construct inductively a subsequence R;,, Ry, ... and
a descending sequence Ey, E,, ... of continua as follows: Let R, = R, and let E,
be the closure of any component of X\R;. If i; and E; are defined, let i;+; denote

the least i such that i > i; and R; < E;. Then E;.,, is the closure of any component C
[-+]

of X\R;,,, contained in E;. Let E = () E; and let b, be any point of E. It follows
i=1 .
from the comstruction that E is a continuum contained in B and satisfying (12).

To obtain a contradiction, we shall now find a point b € B which does not have
the property (12) with b, replaced by b. For this purpose, we also construct induc-
tively a subsequence R;,, R;,, ... and a descending sequence F,, F,, ... of continua

K

in X such that Bdy(F,) < U R;,. Let j; = 1 and let F; be the closure of any com-
i=1

ponent of X\R;. If j, and F, are defined, let j,., denote the least j such that j > j,
k+1

and R; < F,. Then F,,, is the closure of any component C of X\ {J R;, such that
© i=1
CcF, and Bdy(C)NBdy(F,) # &. Let F= () F,. Since F is a continuum,
© k=1
F\ U Ry, is non-empty and it is clearly contained in B. Let b be any point of this
k=1

set. Then b does not have the property (12). Indeed, let E = B be any continuum such
that b € E. Choose a component C, of X\R;, for k = 1, 2 such that C,nF = @,
and let C denote the component of (X\R;,)\R;, whose closure contains F. Let Ube
a region in X such that € < U and C,\U # @ for k = 1, 2. Then, for any compo-
nent R; of A contained in U, the component D of X\R; containing b (and therefore
also containing E) intersects X\U, and therefore (12) is not satisfied by b. Thus
we obtain a contradiction with the fact that B is an orbit of the action of H(X)
on X, which implies that (i) cannot Lold.

Consider now (ii). For n = 1, 2, ... let @, denote the decomposition of X whose
non-degenerate elements are the curves Ry, R,, .., R,. Let Y, = X/2, and let
m,: X — ¥, denote the natural projection. Since X € LC! and each element of this
decomposition belongs to LC°N C°, we infer by the well-known Smale theorem
(cf. [17]) that ¥, e LC!. Consequently, Y, € «, where « is the class defined in Sec-
tion 4. Let y; = m,(R,) for i< n. By the assumptions of (ii), each point y;, i<n,
locally disconnects Y, into at least three components; however, no point disconnects
the whole space Y,, which implies that ¥, is a cyclic space in the sense of Section 4.

Using the theory of strongly cyclic elements described in [16], it is easy to show (by
4 — Fundamenta Mathematicae 132.1
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induction with respect to ) that the rank of H,(Y,) is at least n+1. Moreover, there
are simple closed curves Sy, ..., S,+, in ¥, determining the generators of this group.
These curves can be chosen so that there exist simple closed curves Ty, ..., T4,
in X such that m,(T)) = §; for i<n+1. Consequently, the rank of H;(X) cannot
be finite, which contradicts the assumption that X e ANR. Thus (i) also cannot
hold.

Next, onsider subcase (iii). As in (ii), consider the decomposition &, of X and
the spaces ¥, = X/9,forn=1,2,...Letn,: X - Y,andg,,: ¥, = Y, form<n
denote the natural projections. Consider the set Ly_ of all points locally disconnect-
ing Y,, and the strongly cyclic elements of ¥,. The set Ly, consists of exactly » points,
which must belong to non-degenerate strongly cyclic elements of ¥,, which are the
closures of components of ¥;,\Ly,. Consider the following two possibilities: (1) for
each m, there is an » such that ¥, has at least m locally disconnecting points, each
belonging to the interior of the non-degenerate strongly cyclic element of ¥, con-
taining this point (cf. Fig. 4); (2) for each m, there is an n, such that ¥, contains at
least m non-degenerate strongly cyclic elements whose boundaries contain more
than two points (cf. Fig. 5). If one of these possibilities holds, then one can prove,
as in i), that the rank of H((X) is infinite, which is a contradiction.

Therefore we can assume that none of these possibilities holds. Thus there are
a space Y,  and a non-degenerate strongly cyclic elemeit E of Y,, such that for
each n > n, and for any non-degenerate strongly cyclic element E’ of Y, contained

OnenlE)
Fig. 6

in 0,,(E) the set Bdy,(E’) consists of exactly two points and no point y € Inty (E")
locally disconnects ¥, (cf. Fig. 6). Let Bdy, () = {po @}, F=m,,}(E) and
Ry = 1. (Po): Ry = m3,1(go). Choose PER;, ge R;. One sees that no proper
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subset of a component R; = (F\R;)\R;, of A disconnects F, because otherwise
there are points of R; arbitrarily close to éach other such that one of them cannot
be mapped to the other by a small autohomeomorphism 4 e H (X). Thus F is the
closure of a component of (X\Ri;;\R;, and each curve R; contained in Int,(F)
= (F\R;)\R;, disconnects F irreductively into two components, the first conta-
ining p and the second containing ¢. Evidently Fe ANR, since it is a neighborhood
retract of X,

Observe now that for any be Bn F there is a continuum T'c BA F such that
beT and T disconnects F between p and ¢. To find 7, construct inductively a se-
quence T}, 75, ... of subcontinua of F, bounded by the curves R; and containing b,
as follows: Let Ty = F.If T, is defined. let k denote the least i such that R; < Intx(T})
and let / denote the least index greater than k such that R, = Inty(T,) and the com~
ponent Cof (T,\R)\R, satisfying Bdy(C) = R, U R, contains b. Such k and I always

@

exist, because b & Intx(7,) and 4 = |J R; is dense in X. Then T,+1 is the closure of
© i=%

C. The set T = () T, is evidently a continuum containing b and disconnecting F bet-

n=1

ween p and g. Moreover, T must coincide with the component of the orbit B con-
taining b. Thus' Inty(F) is the union of disjoint continua, each disconnecting F
between p and ¢ (and therefore also between R;, and R;,). It follows from the theory
of the separation of connected spaces described in [13] (p. 98) that there is a map f of F
onto the interval {0, 1) such that f(R;) =0, f (R;,) = 1, for any te{0,1) the
set £~ '(¢) is either a component R; of 4 or a component of B contained in F and, if
t; <t, <t;, then f~'(t,) disconnects F between f~1(z,) and f~(t,). Moreover,
since 4 is dense in X, we infer that AN F is dense in F, and therefore

{re0,1): f71() = 4}

is dense in €0, ). Observe also that, for any #, €0, 1) and any neighborhood
of f7!(ty) in X, there are 1,1, € {0, 1) such that f~1((t,, t,») is a neighborhood
of /7*(t,) contained in U. In particular, if f~1(z,) = 4, then there are L <ty<ty
such that f71(z,) is a retract of £71({t;, 1,)). :

Consider now a fixed curve Ry, < Intyx(F) and let U be a regior in X such that
UnR,, # @ and, for any simple closed curve S U, there is a membrane M spanned
on S with diamM < p, where pu = min(so, diam Ry, o(Ry,, BdX(F))). Then, for
any region V intersecting R,, and such that V< U, we have:

(13) If R, disconnects ¥ between some points x, y e V\Ry,, then R,  also
disconnects U between these points.

Indeed, suppose that this is not true. Then we can construct a simple closed
curve S'< U such that §n R, is a small arc (or point) contained in ¥ and S inter-
sects two different components of V\R,,. Let M be a membrane spanned on § with
diam(M) < p. Then MAR,, = SN R,,, since otherwise there is a z € (M\S) " R, \M,
and this yields a contradiction as in the proof of (11). .
4+
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Thus consider the decomposition M = (M~ V)u(M\V), where Mn WAV
PRy, since M N R, = Sn R, = V. Taking into consideration that § intersects
two different components of V\R,,, one can prove that S is a retract of M (cf. [16],
the proof of (3.1)). Since M is a membrane spanned on S, this is a contradiction,
which proves (13).

Now, let I denote the number of components of UNRy,. It follows from (10)
and (13) that 3 < M < 8. Evidently, M does not depend on the choice of the region U
(satisfying the above mentioned assumptions) and, if M = &,, then almost all com-
ponents of U\R,, must liec in an arbitrarily small neighborhood of Ry,.

Next, observe that there is a component C of F\R,, intersecting at least two
components of UNR;,, because F\R,, has exactly two components and M > 2.
For any curve R, < Inty(F), we choose a component C of F\R,, such that the
number N of components of Cn U is greater than or equal to the number of com-
ponents of C' A U, where C’ is the other component of F\R,,. This C will be called
the distinguished component of F\Ry,. Evidently, 2 < ®t <x, and this number is the
same for all curves R, < Inty(F). Replacing F if necessary by F' = f~1({¢t,, t,})

(where £7(t;), £ 7*(t,) © 4), we can assume that the set of 7€ {0, 1) such that -

f7'(#) <= 4 and the distingnished component of F\f"!(¢) contains R;, = f~(1)
is dense in {0, 1). We shall also find a neighborhood W of R,, in C, which will be
called a typical neighborhood of Ry, (in the closure of the distinguished component C
of F\R,,). To construct W, find a finite number Wy, ..., W, of regions in C such
that W;nW; s @ iff [i—j| < 1 (where the indices are considered modulo 1), W;n R,,
is an arc and, moreover, for any simple closed curve S« W;_, UW;u W,,, for
some i < [ there is a membrane M spanned on S with diam M < u (where yu is defined
for R, as before). Considering the intersections of the components of the sets
1
W \R;, for i</, one sees that W = |J W, is a neighborhood of Ry, in C which is —
i=1
in a sense — an Jt-band which runs along R, 9t times, but is not disconnected by R;,.
Observe that the arc W;n R,, is contained in the boundary of any component of
Wi\Ry,, just as we have shown that R,, is the boundary in F of both components
of F\R,,. The components of the sets W;\Ry, for i</ will be called parts of this
typical neighborhood W of Ry,, and the parts contained in the consecutive regions W,
will be called consecutive parts.

In the next part of the proof that (jii) cannot hold, we shall use the Clech homo-
logy groups with coefficients in the group Z of the integers. These groups for a pair
(Y, Y,) will be denoted by H,(Y, Y,;Z), to distinguish them from the groups
H,(Y, Y), where the coefficiénts are in the field Q. To simplify notation, in the
sequel we shall identify elements of homology groups with their images by natural
hememorphisms, which should be clear by indicating homology groups in which
some relations between these elements hold.

Since Fe ANR, it follows that the group H, (F; Z) is finitely generated and there-
fore, since F contains infinitely many of the curves Ry, there are a finite sequence
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Ry, .., Ry, and a linear combination myy, +...+m,y,, where m; is a non-zero integer
and y; is a generator of H,(Ry,;Z), such that myy,+..+my, = 0 in H,(F; Z).

Assume first that I=1 and let R, =7 ), F, =110,z
Fy =7, 1)). Since Fy, F;, F=F,UF, and R;, = FynF, are all ANR-
spaces, their Cech homology groups coincide with the singular ones, and therefore
they satisfy the Exactness Axiom. Thus there is a (e H,(F, R,; Z) such that
04+(0) = myy,. Using the relative Mayer—Vietoris sequence for the pairs (Fy, Ry,)
and (F,, R,,), one sees that at least one of F,, Fy, say F,, satisfies the conditions:
Inty(F;) # @ and there is a non-zero integer n, such that n;y; = 0 in H,(F;; Z).
The described structure of F and of the map f: F— {0, 1) implies that there is
a t; > t, such that Ry, is a retract of F, = f~'({¢,, t,)) and therefore no non-zero
multiple of y, is zero in H,(F,; Z). We can assume that £~ (z,) is a curve R, and
let 9, be a generator of H;(R,,; Z). Considering the decomposition F; = f ~*({t,, 1))
= 74ty 1)) Uf " ({t;, 1)) and using the same methods as before, one can prove
that there is a non-zero integer n, such that n, 9, + 71,7, = 0 in H,(F,; Z). Let y; de-
note the image of y; under the natural homomorphism H,(R;Z) — H;(R;,; O)
= H,(R,). Then, evidently, n;yi+ny, =0 in H,(F,); however, no non-zero
multiple of y, or y, (y1 or ¥5) is 0 in H,(F,; Z) (in H,(F,)).

In the case when /> 1, using the same methods, one can also find two curves
Ry, = f7t,), Ry, = f~!(t,) such that nyy,+n,9, = 0 in H,(F,; Z), where n; is
a non-zero integer, y; is a generator of H (R,,;Z) and F, = f~*({t,, £,). We can
also assume that no non-zero multiple of p, or y, (resp. y; or y3) is zero in H (F,; Z)
(resp. H(F,))-

Observe also that, for any curve R, = f~ () « Int(F,), there are non-zero
integers m, n such that n;p,+my = 0 in H(f {2y, 1));Z) and ny+myy, =0
in Hy(f~ (£, 1.)); Z), where y is a generator of H,(R;; Z). However, no non-zero
multiple of y is zero in H;(F,; Z) and the same holds for y’, where y’ is the image of y
under the natural homomorphism H,(R;; Z) — H(Ry).

Finally, to obtain a contradiction showing that (iii) cannot hold, we shall show
that a non-zero multiple of v} is 0 in H,(F%) for some F5 o F,. Indeed, since the
set of t€¢0,1) such that the distinguished component of F\f ~1(¢) contains
R, = f71(1) is dense in {0, 1}, we can assume, replacing if necessary the curve R,
by another one, that ¢, >0 and that the distinguished component of F\R,, con-
tains R;,. For the same reasons, for any natural number m, we can find a sequence
of curves R;, = Ry, Ry, = f7X(52), s Ry, = f7(s,,) such that 1; <8, <... <8, <15,
the distinguished component of F\R,, contains Ry, and Ry, for j> 1, is contained
in some typical neighborhoods of the curves Ry, with i<j. Let §; for 2<i<mbe
a generator of H;(Ry,; Z) and let §; denote its image under the natural homomorphism
H(R,;Z)—~ Hy(R,). We can assume that these typical neighborhoods of the
curves Ry, are chosen so that, for any simple closed curve § contained in the union
of three consecutive parts of this neighborhood, there is a membrane N spanned
on S with diamN < max(g,, diamR;) and N < Fj, where Fy =f~'({tf, 1,)) for
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some ¥, 0 < t¥ < #,, chosen so close to ¢, that y} is not 0 in H,(F3). It follows that
the typical neighborhood of R;, = Ry, cannot run along Ry, &, times. Indeed, other-
wise Ry, intersects only a finite number of parts of the chosen typical neighborhood
of R,. Then, constructing a finite number of arcs, each joining two points of Ry,
and contained in a part of this neighborhood, one obtains a finite number of simple
closed curves such that the union of some membranes spanned on them contains
a membrane M < F; of &), spanned on Ry,. However, this is impossible, because —
as noticed before — &) cannot be 0 in H,(F,) nor in H,(F3).

Thus there is a natural number #3>2 such that any typical neighborhood of
R, < Int(F) runs » times along R;. One sees, by a similar construction of membranes,
that d5—ny;, = 0 and, moreover, for each 1 <i<m we have &, —nd; =0 in
H,(F5), where the chosen generator 6, must be replaced by ( 1)6; if necessary.
Consequently, &,—n" 9, = 0 in H,(F;). ‘

On the other hand, as noticed before, there is a non-zero integer p, such that
Ry Y, + Dbl = 0 in H,(F,) (and therefore also in H,(F3)), where n is the fixed
integer from the formula #,y,+n,y, = 0. Consequently, (n,+p,n" )y =0
in H,(F3). Since one can construct the sequences R;,, ..., R, with arbitrarily great m
and since n3> 2, one sees that the integer n, +p,»" ! can be made non-zero. As
noticed before, this is a contradiction, which shows that (i) cannot hold.

Finally, consider (iv). Then, using (10) as in (iii), we can find a number
A< Ny, and for any curve R, i = 1,2, ..., we can construct a typical neigh-
borhood U of R; in X, which runs along R; 9t times. We shall consider separately
the cases Mt = &, and N<K,.

Suppose first that 9 = &,. Then, for any positive integer m, we shall construct
a polyhedron P, and a map f,,: X — P, such that H,(P,) is a free group with m
generators and f,, sends homeomorphically the curves Ry, ..., R, onto curves deter-
mining a base of H,(P,). To construct P,, find a typical nelghborhood U, of R; for
i<m such that U;nU; = @ for i # j. For each i< m find a finite number of parts
of U, whose closures form a band F; running a finite number of times along R; and
such that the remaining parts are contained in Inty(U)). Let X' = X\ {U;: i<m}u
u U {V;: i< m} and consider the closed covering of X’ by X\|J U, and the closures
of those parts of the Uy’s which lie in the ¥’s. The desired polyhedron P,, is con-
structed by replacing the closures of these parts by 2-simplexes with a common
vertex v corresponding to the set X\|J U;. The 1-faces of those simplexes which do
not contain v lie on simple closed curves corresponding to the R;’s for i < m and P,
is a bouquet of m polyhedra P, ..., P, with the common point ». The intersections
of the remaining 1-faces of the 2‘s1mplexes lying in P,; correspond to the inter-
sections of the corresponding parts of the U;s. Then it is easy to show that Hy(P,)
is a free group with m generators and one can construct the desired map f,,, first
defining it on X and then extending it to X. Consequently, since X & ANR, we infer
that the case |t = &, cannot hold.

Suppose now that 3 < 9t < ,. Then we proceed similarly, with the change that
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the groups H,(P,,; Z) and H,(X; Z) must be considered. For each positive integer m,
we construct similarly a polyhedron P, and a map f,: X — P,, such that H,(P, s Z.

is isomorphic to the direct sum of m groups Zy@®...@® Zy and fom maps homeomor-
phically the curves Ry, ..., R, onto curves determining a base of H,(P,;Z). Since
H;(X; Z) is finitely generated, we obtain a contradiction, which completes the proof
that (iv) cannot hold. Thus we conclude that case 2° cannot hold, and therefore 3°
remains, which proves that:

(14) The set 4 has a finite number of components, say R;, ..
simple closed curves.

-, R,,, which are

Thus B = X\4 is locally compact and therefore it follows from the homo-
geneity of the orbit B and the Bing-Borsuk theorem [5] that B is an open 2-manifold.
By (10), for any x € A there is a region U in X containing x such that U n A4 is an arc
and U\A has at least three components. Since X € ANR, we infer as in the proof
of the corollary to Lemma 1 that this region can be chosen so that the closure of any
component of U\A is a disk and, moreover, the number of these components is
finite. Since, as proved by Kosinski in [10], the property of being a 2-polyhedron
is a local one, we conclude that:

(15) The space X is a 2-polyhedron (except the described case).

Thus it remains to give a full classification of %-homogeneous connected
2-polyhedra X which are not 2-manifolds and which have no locally disconnecting
points. Let & denote the decomposition of X whose non-degenerate elements are
the components of 4, let ¥ = X/9 and let n: X — Y denote the natural projection.
Evidently, ¥ is a +-homogeneous polyhedron. We shall consider the following three
cases:

I. No y e n(4) locally disconnects Y.
II. There is a y e m(4) which disconnects Y.
III. Neither I nor II holds.

Assume first that I holds. Then Y is a closed 2-pseudomanifold with no locally
separating points, and therefore a closed 2-manifold. Let y; = n(R;) for i< n,.
Find disjoint disks Dy, ..., D,, such that D; is a neighborhood of y; in ¥ and let
M = Y\ {D;: i<n,} Evidently, M is a connected 2-manifold with 7, boundary
components and 7~ 1(M) = M’ is homeomorphic to M. Let D} = n~1(D,). Then

; = n~(y;) does not disconnect D;. However, for any x € R;, there are an my >3
and a region U in D} containing x such that U\R,; has m, components. Evidently,
myg does not depend on x and on i Thus one sees that D; must be homeomorphic
to the pseudo-projectwc band of order m, obtained from the annulus

= (xeR: <M<

by contraction (to points) of the subsets of the curve S = N of the form p~1(x)
for xe S, where p: S* —-S?! is the covering projection of order m,. Evidently,
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the space X = M'u | {D}: i< #} is homeomorphic to the manifold M, where
the same contractions are made on each component of the boundary 0M. Con-
versely, given any (compact connected) 2-manifold M with ny > 1 bound.ary com-
ponents and a number m, > 3, the space X obtained by the above-described con-
tractions on the boundary dM is a k-homogeneous 2-polyhedron for which the
assumptions of the case I are satisfied. This completes the proof in this case.
Consider now case IL It follows from Lemma 1 and its corollary that in this
case n, = 1 and there is a k> 1 such that ¥ is a bouquet of k£ homeomorphic pseudo-
manifolds Py, ..., P, intersecting at y; = n(Ry). Moreover, there are a number
I 1, k homeomorphic closed 2-manifolds M, ..., M, and maps ¢;: M; — P, for
i< k such that o7 *(y,) consists of [ points and @; 1(y) consists of exactly one point
if y ¢ y,. Considering a neighborhood Q; of y, in P; — which is a bouquet of / disks
intersecting at y; — and the set ¢; 1(Q,), one can construct a polyhedron M| and
maps @) M, —» P}, mi: M;— M,;, where P{=n"'(P), such that the diagram

7

1%,»'—“—>P,-l
- |wie!

\I/ o1

M; —>P;

commutes. The maps ¢} and 7} are one-to-one on M;\¢; ™ *(R;), ¢ is a homeomor-
phism on each component of ¢}"(R,), and 7} maps each of these components to
a point. As in case I, one sees that there are numbers m,..,m;, where
1< my <...< my, such that M; is homeomorphic to a polyhedron obtained from M,
by removings the interiors of / disjoint disks Dy, ..., D, and by identifications of those
points belonging to the boundary D; of D, which correspond to one another under
the covering projection of order m;. Since Py, ..., P; must be homeomorphic, the
numbers #1, , ..., ny; do not depend on i and — since X is not a manifold — if k = 2,
then either /> 1 or m; > 1. Conversely, given a closed 2-manifold M and numbers
k,1,my, ...,m satisfying the above-described conditions, one can construct
a 1-homogeneous polyhedron satisfying the assumptions of case II, considering
manifolds M, ..., M, homeomorphic to M and then constructing successively by
the above-described identifications polyhedra M, ..., M;, polyhedra P, ..., P;
and finally the desired space X. This completes the proof in case II.

Finally, it remains to consider case III. In this case the space Y satisfies the
assumptions of Lemma 2. We shall describe it as in the corollary. to Lemma 2, using

the same notation, except that we replace there X by Y. Thus ¥ = (J E;, where E; is
« i=1 P

a pseudomanifold — being a strongly cyclic element of ¥ — and E;nLy = U Ey;,
i=1

where any y € Ey; locally disconnects E, into g; components and 1< g, <... <g,-
The intersection scheme of the E/s is given by a homogeneous multigraph
G=(V,E), where ¥V = {V;: i<m}, Vi = U {Vy;: j<p}, as described in that
corollary. As in case II, we construct manifolds M; for i< m and maps ¢;: M; - E;.
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Moreover, for each i <m we construct the corresponding polyhedron M; and maps
oi: M{ - E{ = n~(E), 72 M > M, such that the diagram

o
M, —>E
1:: ! { n}E’l
Voo
M, ——E,

commutes. Evidently, Ly = n(U {R;: i<n,}). For any yeE;cE;nLy, the
set ¢o; }(y) consists of q; points whose counter-images under } are simple closed
curves. We shall divide these g; points according to the orders of the pseudo-pro-
jective bands which are neighborhoods of the respective curves in M. Thus, if
Vi € Eyyand Q, a bouquet of g; disks, is its neighborhood in E;, then there are pairs
of numbers (P, t1)s wvos (Firsps Liksz) SUch that @i~ 7~ *(Q) consists of ry; bands
of order #j, where 1<I<sp, g+ sy = s 1<ty <. <ljs,. Here,
the index i is omitted, because the polyhedra E/, for i < m, are hemeomorphic, and
therefore their structures are isomorphic. If the multigraph G is the union of m sub-
graphs G; = (V;, E) for i<m as in the corollary to Lemma 2, then we assign this
sequence of pairs to that vertex v;; € V;; = ¥; of G, which corresponds to Yijx- By
the }-homogeneity of X, for any two vertices v, , v, € ¥ there is an autoisomorphism ¥
cf the multigraph G such that y(v,) = v,, for each /<m there is an i’ <m with
Y (G) = Gy, ¥ (V) = V,;forallj< pand, for any ve V;, the sequences assigned to
vin G;and to ¥ (v) in ¥ (G;) are the same. Moreover, for any i, i < m there is an auto-
isomorphism ¥ of G as above such that ¥/ (G;) = G;. The multigraph G is connected
and cyclic and, moreover, since X is not a manifold in a neighborhood of any point
x€d =n"(Ly),wehave:Ifm = 1,thenp = 1,9, >2 and if g; = 2, then Fipsee > 1
for any v,;; € V1. If m> 1 and any vertex v € ¥ belongs to exactly two of the G,’s,
say Gy, Gy,, then a similar condition must be satisfied by the numbers g; and the
suitable sequences of pairs assigned to v in at least one of the graphs G, G,,.

Conversely, given a closed 2-manifold M and a multigraph G with the above-
described structure and with assigned sequences of pairs of numbers, where G is
homogeneous in the above-described sense, we can construct successively the ma-
nifolds M; for i <m homeomorphic to M, then the polyhedra M; and E!, i<m,
and finally the space X. The constructed space is evidently a 1-homogeneous poly-
hedron which satisfies the assumptions of case III. This completes the proof of
Theorem 1.
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The space (w*)""! is not always a continuous
image of (w*)"

by

Winfried Just (Warszawa)

Abstract. It is shown that the following statement is relatively consistent with ZFC: “For all
n € w, the space (w*)™* is not a continuous image of the space (w*)™”.

§ 1. Introduction. By w* we denote the remainder of the Cech-Stone compacti-
fication of w, the countable discrete space, and by (w*)" the product of n copies of w*.
It was shown in [vD] that the spaces (w*)" and (w*)™ are not homeomorphic whenever
n % m. Clearly, if n<m, then (0*)" is a continuous image of (w*)". Moreover, if
the Continwum Hypothesis holds, then (w*)" is a continucus image of w* for every n
(see [P]), and hence it is relatively consistent with ZFC that (w*)" is a continuous
image of (0*y" for arbitrary m,n>1.

Naturally, the question arises whether one can prove in ZFC alone that (w*)***
is a continuous image of (w*)" for some n> 1.

In order to answer the above question we first translate it into the language of
Boolean algebras.

Let n, ke w. By I, we denote the subset of " defined as

L = {{x0s s Xt Ai<n (x; <k)}
and let -

J,={Xe2?"): dJkeo X<, )} = U 2P, .

Then J, is a proper non-principal ideal in the Boolean algebra #(0") of all subsets
of the set " '

By %, we denote the subalgebra of 2(w") generated by the family
{Xox Xy x..xX,_q: Vi<n (X;s0)}.

Obviously, the set J, defined as J; = J,n4%, is an ideal in 4, and it is not hard to
see that the Stone space of the Boolean algebra 4,/J, is homeomorphic to (w*)".

Therefore the question stated above dualizes as follows: “Is it provable in ZFC
that for some n>1 the Boolean algebra 4, ,//,+; is isomorphic to a subalgebra
of # 41, v
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