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The second Peano derivative as a composite derivative
by
Richard J. O’Malley (Milwaukee, Wis.)

Abstract. Differentiable functions f: R — R which simultaneously have a second derivative
m the Peano sense, f;, and a second derivative in the composite sense, (f')z, are investigated. It
is shown that {x: (f")e(x) # fi(x)} is a scattered set, i.e. a countable set not dense in any perfect
set. As a corollary it follows that f; is the derivative of f’ in the composite sense.

1. One of the long outstanding problems concerning Peano derivatives is the
lack of a precise description of in what sense an (z+1)th Peano derivative can be
considered as a derivative of the associated (n)th Peano derivative. In this paper we
provide an answer to that problem in the case when » = 1 and the derivative is taken
in the composite sense. To make the presentation as readily intelligible as possible
requires a little background information.

There is a wealth of information about certain aspects of the class of Peano
derivatives. The interested reader should see for example the excellent survey [2]. It
is also safe to say that all known properties of these functions are also properties
of approximate derivatives, see [4], [7]. However, for approximately differentiable
functions f: R — R and its approximate derivative, g, the following property is
known to hold, [6],:

For any fixed perfect set P, there is an open interval, (a, b) having nonempty

intersection with P, such that for any x in (a, b)nP,
limi f(x+h) f(x) - 90,
h—->0
x+heP

It is naturally reasonable to hope an analogous situation holds for the class of
Peano derivatives. In [6], the above enclosed relationship for a pair of functions f
and g was formalized by saying f was compositely differentiable to g and that g was
a composite derivative of f.

Using that terminology, we can rephrase the previously mentioned problem as:
Does the nth Peano derivative compositely differentiate to.the (r+ 1)th Peano
derivative ? )

Historically, Denjoy has provided partial answers to that problem, [1]. He
established that if besides the (n+ 1)th P-derivative, the (n+ 2)th Peano is also assumed
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to exist, then the nth Peano derivative does indeed compositely differentiate to the
(n+1)th Peano derivative. If this condition on n+2 is removed, the enclosed rela-
tionship above can only be verified pointwise for a residual ubset of (a, b)nP.
Here we take an alternate approach for the first and second Peano derivatives.
Namely we assume that we have a function f: R ~ R which has a derivative, f7,
a second Peano derivative, f, and that in addition, f has a composite derivative,
(). We will also call this (f*); the second composite derivative of f. It would be
natural t6 expect that f, = (f").. Unfortunately, this is not the case in general.
- Indeed in [4] the authors have constructed examples where f” is even approximately
differentiable and still the function (f");, # f». Based on the existence of such exam-
ples it is also natural to investigate whether the example of [4] can be modified to
provide a counterexample to f, being a composite derivative of f’. Clearly such an
example requires the existence a perfect set E such that {x: (fx) # fo(x)} is
dense in E. We show this is an impossibility and obtain as a corollary that f’ com-
positely differentiates to f; if f* has a composite derivative.

2. We will prove the following theorem:

TreoreM. Let f: R — R have a finite derivative f', a second Peano derivative f3
and let ' have a composite derivative, ('), for all x in R. Then the set

{x: £, # (f)e(x)}

is a scattered set, that is a countable G5. (Equivalently, it is not dense in any perfect
set.)

Proof. Assume the contrary. That is, assume that there is a perfect set Q # @
such that W = {x: f,(x) # (f)«(x)} is dense in Q. Based on previously proven
results in [3] and the definition of composite derivative we can make a number of
preliminary statements and reductions.

(1) We may assume that Q has been suitably chosen so_that for every xe Q,

lim f’(X+h’)1—f ) _

=0
+haQ

() -

That is, by reducing Q, if necessary, we may assume f’ compositely differentiates

to (f). over Q.

(2) By results in [3], the function f” restricted to Q is extendable to a differen~
tiable function g.

x
(3) If we define Gixy = [ g(t)dlt, we obtain a twice differentiable function on R.
0

(4) Next we consider the new function F(x) = f(x)—G(x).
(a) F(x) has a derivative F’ = f'—g,
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(b) F(x) has a second derivative in the Peano sense
F2 = .fl _g' b
(©) F'(x) has a composite derivative (F'), = (f).—g’.
(5) Forall xin Q, F'(x) = f'(x)—g(x) = 0 and (F')/(x) = 0 and in particular,

i PP =)

h—0 ) =BG

(6) Suppose x, is a proof of Q at which F,(x,) # 0. Then, dependent on the
sign of F,(x,), F has a strict local maxima or minima at x,. Since for any function
the set of local maxima or minima points is countable we have that:

{x: Fy(x) # 0}n Q is countable .

However {x: F,(x) # 0}n Q = {x: o(x) # g'()}n @ = {x: fo(x) # (SN} Q.

(7) By known properties of Peano derivatives we may assume Q is nowhere
dense; though our arguments following do not require that observation.

This ends the preliminary statements.

Now let e>0 be given. At any point x, in @ where Fy(x,) = 0 there is
a §(xp)>0 such that: |F(x)—F(x,)| < e(x—x,)> whenever we have 0<|x—x,]
< 8(x,). For each n= 1,2, ..., we define

A, = {xo7 |F(x)—F(xo)] < e(x—x,)® whenever 0<|x—xp| <x,}nQ.

Since F is continuous, 4, is closed for each n. Further we have that O\ {J 4, is

. n=1
a subset of {x: Fo(x) # 0}n 0, and is at most countable. Therefore by the Baire
category theorem, there is an N and (a, b) such that & # (a, b))n Q < 4y. We may

1
assume that b—a < ~. Since we are assuming {x: Fy(x) # 0} is dense in Q, we
n

may select a point x,, from (a, b)n @ = Ay such that F,(x,) # 0 and without loss
of generality also assume

@ x5, =0,
(i) F(x,) =0,
(iil) Fy(x.)> 0.

Further we will assume x,, is a limit point of Q from the right at least.

Fi
We have lim (~—£?) = y>0, 0e 4y which implies y <& We claim we may

x-0 X
assume that y <e. This follows from the argument that since (@, b)nQ can be
assumed to be perfect and {x: F,(x) = 0} is residual in (a, b)n Q, the Baire class
one function F, must have F,(x) = 0 at any point of relative continuity in Q. Hence,
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by making a further reduction, if necessary, we may assume that F,(x) <& over Q.
So y<e can be assumed.

Hindsight into the upcoming arguments causes us to wish to choose three po-
sitive numbers «, B, I in such a way that the following hold simultaneously:
0<I <y +e*—s,
p<e.

B=7+T,
o =9y-—I, ‘
We next determine a 6 >0 such that if 0<x<38<b then
* ax? < F(x) < px*.
" Inside the openkiuterval_((i, d) we have for any x, e 4 that
F(x)=F(xo) <

—&(x—x0)* < e(x—xp) ;

so that
“ Flx) < F(xg) +2(—%0)? < B+ e(x—Xo)? .
Since 0 is a right limit point of 4y we may select an X, in Ayn(0,f) so that

0<x, (e )<6 Then at ( £a>xo, +% above gives the inequality
2
o { &
F(’e—"xo)<ﬁx§+3(— 'xo—xo)
\e—a ) e—a
. . 2
o
= Bxi+exd [—-—] .
e—o |

2,2
£Xp"
If we now consider the point value ﬁxo-l- - )2 , we claim this value is less than
(=)
al — x| .
g—a
Proof of claim.
g eo? - ae?
E—a)*  (e—0)?
if and only if
ae(e—a) oe

C—a?  e—a
By our choices of «, B, I' above we have:
G+De~(—DN] = ey+el —G+Dy-TI)<e(y—-T) ;
so substituting in « and § and simplifying we have

@

e—a

B<
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e g 2
F(—— xo) <a <——— xo)
g—o g—a

however we have this point in (0, §) and by * above this implies in turn that

e & 2
F|— > ——
()=o)

which is the contradiction we have been seeking.

This implies that

COROLLARY. Under the hypothesis of the theorem above, the functzon f' has the
second Peano derivative of f as a composite derivative.

References

{11 A. Denjoy, Sur l'integration des coefficients differentials d’ordre supérieur, Fund. Math. 25
(1935), 273-326.

[2] M.J. Evans and C. E. Weil, Peano derivatives: A survey, Real Anal. Exchange 7 (1) (1981—82),
5-24.

[3] M. Laczkovish, G. Petruska, Baire class one functions, appro;rimately continuous functions
and derivatives, Acta Math. Acad. Sci. Hungar. 25 (1974), 189-192.

[4] C.M. Lee and R. J. O'Malley, The second approximate derivative and the second approximate
Peano derivative, Bull. Inst. Math. Acad. Sinica, 3 (1975), 193-197.

[51 R.J. O'Malley, Baire *1, Darboux functions, Proc. Amer. Math. Soc., 60 (1976), 187-192.

[6] — Decomposition of approximate derivatives, Proc. Amer. Math. Soc., 69 (1978), 243-247.

[71 R.J. O’Malley and C.E. Weil, Selective, bi-selective, and composite differentiation, Acta
Math. Acad. Sci. Hungar. 43 (1984), 31-36.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WISCONSIN-MILWAUKEE
Milwaukee, Wis. 53201

USA

Received 7 January 1987,
in revised form 26 October 1987


Artur




