

116

that M_{n+1} is obtained from M_n by placing a Whitehead embedding in each component of M_n . Let $T_1, T_2, ..., T_k$ be the components of M_n . Choose disjoint open 3-balls $U_1, U_2, ..., U_k$ in 3-space so that T_i is contained in U_i as an unknotted solid torus. The loop γ contracts in 3-space. By general position we may assume that it bounds a singular disk so that for each $i, 1 \le i \le k$, the singular disk bounded by γ meets T_i in a finite collection of meridional disks. However, a meridian of $\operatorname{Bd} T_i$ bounds a singular disk in $U_i - M_{n+1}$ [Wh]. Hence, γ bounds a singular disk in the complement of M_{n+1} , and our theorem is proved.

References

- A] L. Antoine, Sur l'homeomorphie de deux figures et de leur voisinages, J. Math. Pures Appl. 86 (1921). 221-325.
- [A-S] F. D. Ancel and M.P. Starbird, The shrinkability of Bing-Whitehead decompositions, to appear in Topology.
- [B] R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354-362.
- [C] T. A. Chapman, Lectures on Hilbert Cube Manifolds, (Amer. Math. Soc. CBMS regional conference series), No. 28, Amer. Math. Soc., Providence, RI, 1976.
- [D] R. J. Daverman, Embedding Phenomena based upon decomposition theory: wild Canton sets satisfying strong homogeneity properties, Proc. Math. Soc. 75 (1979), 177-182.
- [D-E] R. J. Daverman and R. D. Edwards, Wild Cantor sets as approximations to codimension two manifolds. Topology Appl. 26 (1987), 207-218.
- [D-0] D. G. De Gryse and R. P. Osborne, A wild Cantor set in Eⁿ with simply connected complement, Fund. Math. 86 (1974), 9-27.
- [Wh] J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. 6 (1935), 268-279.
- [Wr] D. G. Wright, Rigid sets in En. Pacific J. Math. 121 (1986) 245-256.

DEPARTMENT OF MATHEMATICS BRIGHAM YOUNG UNIVERSITY Provo, Utah 84602

> Received 1 April 1987; in revised form 21 September 1987

Polynomial growth trivial extensions of simply connected algebras

b

Jerzy Nehring and Andrzej Skowroński (Toruń)

Abstract. Let A be a finite-dimensional, basic, connected algebra over an algebraically closed field. Denote by T(A) the trivial extension of A by its minimal injective cogenerator. We show that, if A is simply connected, then the following conditions are equivalent: (i) T(A) is nondomestic of polynomial growth, (ii) T(A) is nondomestic of finite growth, (iii) there exists a tubular algebra B such that $T(A) \simeq T(B)$, (iv) A is tilting-cotilting equivalent to a canonical tubular algebra. Isomorphism classes of such algebras are also determined.

Introduction. Let K denote a fixed algebraically closed field, and A a finite-dimensional K-algebra (associative, with an identity) which we shall assume to be basic and connected. We shall denote by $\operatorname{mod} A$ the category of finite-dimensional right A-modules. We recall that A is called simply connected (in the sense of [2]) if it is triangular, that is, the ordinary quiver of A has no oriented cycles, and such that, for any presentation $A \simeq KQ/I$ of A as a bound quiver algebra, the fundamental group $\pi(Q, I)$ of (Q, I) [18] is trivial. In the representation-finite case, this notion of simple connectedness coincides with the notion introduced in [6]. Further, A is called $\operatorname{domestic}$ [20] if there exists a finite number of (parametrising) functors F_i : $\operatorname{mod} K[X] \to \operatorname{mod} A$, $1 \le i \le n$, where K[X] is the polynomial algebra in one variable, satisfying the following conditions:

- (a) For each i, $F_i = -\bigotimes_{K[X]} Q_i$, where Q_i is a K[X]-A-bimodule which is finitely generated and free as a K[X]-module.
- (b) For any dimension d, all but a finite number of isomorphism classes of indecomposable A-modules of K-dimension d are of the form $F_1(M)$, for some i and some indecomposable right K[X]-module M.

A is called *n-parametric* if the minimal number of such functors is n. Moreover, for a dimension d, denote by $\mu_A(d)$ the least number of functors F_i : $\text{mod } K[X] \to \text{mod } A$, $1 \le i \le \mu_A(d)$, satisfying the above condition (a) and the following condition:

(b') All but a finite number of isomorphism classes of indecomposable A-modules of K-dimension d are of the form $F_i(S)$ for some i and some simple right K[X]-module S.

Then A is tame (in the sense of [11]) if $\mu_A(d) < \infty$ for every d. Following [22]. A is called of polynomial growth if there exists a natural number m such that, for every dimension $d \ge 2$, $\mu_A(d) \le d^m$. Finally, A is of finite (linear) growth if there exists a natural number n such that $\mu_{-}(d) \leq nd$, for every $d \geq 1$. It follows from [9] that, if A is domestic, then A is of finite growth.

Recall from [14, 21] that a module T_{4} is called a tilting (resp. cotilting) module provided: $\operatorname{Ext}_A^2(T_A, -) = 0$ (resp. $\operatorname{Ext}_A^2(-, T_A) = 0$), $\operatorname{Ext}_A^1(T_A, T_A) = 0$ and the number of nonisomorphic indecomposable direct summands of T_s equal the rank of the Grothendieck group $K_0(A)$ of A. Two algebras A and B are called tiltingcotilting equivalent [3] if there exists a sequence of finite-dimensional K-algebras $A = A_0, A_1, ..., A_m, A_{m+1} = B$ and a sequence of modules $T_{A_i}^i, 0 \le i \le m$, such that $A_{i+1} = \operatorname{End}(T_i^i)$ and T_i^i is either a tilting or cotilting module. It is shown in [2] that if A is tilting-cotilting equivalent to a hereditary algebra of Dynkin type or a hereditary algebra of Euclidean type \tilde{D}_n or \tilde{E}_n or one of Ringel's [21] tame canonical tubular algebra, then A is simply connected (in the above sense).

The trivial extension T(A) of A by its minimal injective cogenerator bimodule $D(A) = \text{Hom}_{r}(A, K)$ is the algebra whose additive structure is that of the group $A \oplus DA$, and whose multiplication is defined by:

$$(a, f)(b, g) = (ab, ag+fb)$$

for $a, b \in A$ and $f, g \in D(A)$. It is known that T(A) is selfinjective, and in fact even symmetric. Trivial extensions have been extensively investigated in representation theory (see [4] for the corresponding references). It is known [17], [1] that for an algebra A the following conditions are equivalent: (i) T(A) is representationfinite, (ii) there exists a tilted algebra B of Dynkin type such that $T(A) \simeq T(B)$, (iii) A is tilting-cotilting equivalent to a hereditary algebra of Dynkin type In particular, if T(A) is representation-finite, then A is (representation-finite) simply connected (see also [26]). Recently, the authors have proved with I. Assem [4] that, for a simply connected algebra A, the following conditions are equivalent: (i) T(A) is representation-infinite domestic, (ii) T(A) is 2-parametric, (iii) there exists a representationinfinite tilted algebra B of Euclidean type \tilde{D}_n or \tilde{E}_n such that $T(A) \simeq T(B)$, (iv) A is tilting-cotilting equivalent to a hereditary algebra of Euclidean type \tilde{D}_n or \tilde{E}_n .

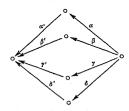
The main objective in this article is to present the following characterisation of all nondomestic polynomial growth trivial extensions of simply connected algebras.

THEOREM 1. Let A be a finite-dimensional, basic and connected algebra over an algebraically closed field K. If A is simply connected, then the following conditions are equivalent:

- (i) T(A) is nondomestic of polynomial growth.
- (ii) T(A) is nondomestic of finite growth.
- (iii) There exists a tubular algebra B such that $T(A) \simeq T(B)$. (iv) A is tilting-cotilting equivalent to a canonical tubular algebra.

The trivial extensions of canonical tubular algebras have been described in [15] In a forthcoming paper we shall show that the polynomial growth trivial extensions T(A) of nonsimply connected algebras A are domestic. Thus our theorem gives a complete characterisation of all nondomestic trivial extensions of polynomial growth.

Recall that following Ringel [21], a canonical algebra of type (2, 2, 2, 2) is given by the quiver



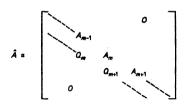
bound by $\alpha\alpha' + \beta\beta' + \gamma\gamma' = 0$, $\alpha\alpha' + \lambda \cdot \beta\beta' + \delta\delta' = 0$, where $\lambda \in K \setminus \{0, 1\}$ a canonical algebra of type (p, q, r), $p \le q \le r$, is given by the quiver

bound by $\alpha_1 ... \alpha_r + \beta_1 ... \beta_q + \gamma_1 ... \gamma_r = 0$.

If (p, q, r) equals (3, 3, 3), (2, 4, 4), (2, 3, 6), that is $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$, or is of type (2, 2, 2, 2) the algebra is called tubular canonical.

In the proof we shall use freely results from [2], [3], [4], tilting theory [14], [21], Ringel's theory of tubular algebras [20], [21], and covering techniques developed recently in [8], [10].

§ 1. Preliminaries. Let A be a finite-dimensional algebra. Its repetitive algebra \widehat{A} is the selfinjective, locally finite-dimensional algebra [17]



in which matrices have finitely many non-zero entries, $A_m = A$, $Q_m = {}_AD(A)_A$ for all $m \in Z$, all the remaining entries are zero, and multiplication is induced from the bimodule structure of D(A) and the zero map $D(A) \otimes D(A) \to 0$.

The identity maps $A_m \to A_{m+1}$, $Q_m \to Q_{m+1}$ induce an automorphism v of \widehat{A} , called the Nakayama automorphism, and thus \widehat{A} is a Galois covering [6, 13] of T(A) with the infinite cyclic group generated by v. We say that the algebra \widehat{A} is of polynomial growth if any full finite subcategory of \widehat{A} , considered as an algebra, is of polynomial growth. Moreover, following [8], \widehat{A} is called locally support-finite if, for each object x of \widehat{A} , the full subcategory of \widehat{A} formed by all objects of the support Supp M, where M ranges through all indecomposable finite-dimensional A-modules such that $M(x) \neq 0$, is finite. Then we have the following consequences of [8] (see also [22]).

Proposition 1. If T(A) is of polynomial growth (resp. domestic) so is \widehat{A} .

PROPOSITION 2. Assume that \hat{A} is locally support-finite and of polynomial (resp. finite) growth. Then T(A) is of polynomial (resp. finite) growth.

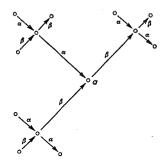
For a locally finite-dimensional K-algebra we shall denote by Q_A its ordinary quiver and by $(Q_A)_0$ the set of vertices of Q_A . For $i \in (Q_A)_0$ we denote by e_i the corresponding idempotent of A, and by $S_A(i)$ the corresponding simple A-module. We shall denote by $P_A(i)$ (resp. $I_A(i)$) the projective cover (resp. injective envelope) of $S_A(i)$.

The one-point extension (resp. coextension) of an algebra A by an A-module M will be denoted by A[M] (resp. [M]A). In order to handle module over one-point extensions, we shall use vector space category methods, for which we refer to [20], [21]. Let A be a triangular algebra, and i be a sink of Q_A . The reflection S_i^+A of A at i is the quotient of the one-point extension $T_i^+A = A[I(i)]$ by the two-sided ideal generated by e_i [17]. Dually, starting with a source j, we define the reflection S_j^-A . Clearly, the repetitive algebras of A and S_i^+A are isomorphic. Also it is shown in [24] that A and S_i^+A are tilting-cotilting equivalent. Moreover, by [25] $T(A) \simeq T(S_i^+A)$. The quiver of S_i^+A is denoted by $\sigma_i^+Q_A$ and is called a v-reflection of Q_A . The sink i of Q_A is replaced in $\sigma_i^+Q_A$ by a source i'. A v-reflection sequence of sinks i_1, \ldots, i_t is a sequence of vertices of Q_A such that i_s is a sink of $\sigma_{i_{s-1}}^+\ldots\sigma_{i_1}^+Q_A$ for $1 \le s \le t$.

Finally, we shall denote by τ_A the Auslander-Reiten translate [12] in mod A, by τ_A^{-1} its inverse and by Γ_A the Auslander-Reitan quiver of A.

§ 2. Branch enlargements. We first recall from [3] the notion of branch enlargements. An extension branch K in a vertex α , called its root, is a finite connected full bound subquiver of the following infinite tree, consisting of two types of arrows: the α -arrows and the β -arrows, and bound by all possible relations of the forms

 $\alpha\beta = 0$, $\beta\alpha = 0$:



A coextension branch K in a is defined dually (reversing all arrows in the figure). The number of vertices in a branch K is called its length and is denoted by |K|. We shall agree to consider the empty quiver as a branch of length zero.

Let A = KQ/I be a bound quiver algebra, and (Q', I') be a full bound subquiver of (Q, I) with a source a. Then A is said to be obtained from KQ'/I' by rooting an extension branch (Q'', I'') in a provided that (Q'', I'') is a full bound subquiver of (Q, I) such that:

- (1) $Q_0' \cap Q_0'' = \{a\}, \ Q_0' \cup Q_0'' = Q_0.$
- (2) I is generated by I', I'' and all paths $\beta\gamma$ where $\beta\in Q_1''$ has target a, and $\gamma\in Q_1'$ has source a.

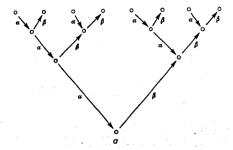
Let C be a tame concealed algebra [21] with a tubular family $(T_{\lambda})_{\lambda \in P_1(K)}$, and let $E_1, ..., E_t$ be pairwise non-isomorphic simple regular C-modules. For each $1 \le i \le t$, we let K_i be an extension branch in a_i , and K'_i be a coextension branch in a_i , where either K_i or K_i may be empty. We shall define inductively the branch enlargement A of C by the extension branches K, and the coextension branches K'. The algebra $C[E_1, K_1]$ is obtained from the one-point extension $C[E_1]$ with extension vertex a_1 by rooting the branch K_1 in a_1 , and, for $1 < i \le t$, $C[E_i, K_i]_{i=1}^j$ is obtained from the one-point extension $C[E_i, K_i]_{i=1}^{j-1}[E_i]$ with extension vertex a_i by rooting the branch K_i in a_i . Then $B = C[E_i, K_i]_{i=1}^t$ is called the branch extension of C at the modules E_i by the extension branches K_i $(1 \le i \le t)$. We now let E_i^r be the unique indecomposable B-module whose restriction to C is E, and whose restriction to K_i is the unique indecomposable module with support consisting of all x in K_i such that there is a non-zero path from x to the root of K_i . Then $[E'_1, K'_1]B$ is obtained from the one-point coextension $[E'_1]B$ with coextension vertex a'_i by rooting K'_1 in a'_1 , and, for $1 < j \le t$, $i = j \in [E'_i, K'_i] B$ is obtained from $[E'_j]_{i=1}^{j-1}[E'_i, K'_i]B$ with coextension vertex a'_i by rooting K'_i in a_i . Then $A = \prod_{i=1}^{t} [E_i', K_i'] B$ is the required branch enlargement of C.

Let A be a branch enlargement of C, and let r_{λ} denote the rank of the tube T_{λ} , $\lambda \in P_1(K)$, of Γ_C . The tubular type $n_A = (n_{\lambda})_{\lambda \in P_1(K)}$ of A is defined by

$$n_{\lambda} = r_{\lambda} + \sum_{E_i \in T_{\lambda}} (|K_i| + |K_i'|)$$

We shall write, instead of $(n_{\lambda})_{\lambda \in P_1(K)}$, the finite sequence consisting of at least two n_{λ} , keeping all those which are larger than 1, and arranging them in non-decreasing order. A branch enlargement A of C is called *domestic* (resp. *tubular*) if n_A is one of the following: (p, q), $1 \le p \le q$, (2, 2, r), $2 \le r$, (2, 3, 3), (2, 3, 4), (2, 3, 5) (resp. (3, 3, 3), (2, 4, 4), (2, 3, 6) or (2, 2, 2, 2)).

A truncated branch in a (branch in the sense of [21]) is a finite connected full bound subquiver, containing a, of the following infinite tree bound by all possible relations $\alpha\beta = 0$:



If $K_1, ..., K_r$ are truncated branches, then the branch extension $B = C[E_i, K_i]_{i=1}^t$ is a tubular extension in the sense of [21]. If n_B is tubular, then B is called a tubular algebra [21]. Moreover, if n_B is domestic, then B is a tilted algebra of Euclidean type having a complete slice in its preinjective component, and conversely, every representation-infinite tilted algebra of Euclidean type is either a domestic truncated branch extension or a domestic truncated branch coextension of a tame concealed algebra [21, 4.9].

In our proof we shall use the following lemma.

LEMMA 2.1. Let A be a truncated branch extension of the tame concealed algebra C. Then the following conditions are equivalent:

- (i) A is a tubular algebra.
- (ii) A is nondomestic of finite growth.
- (iii) A is nondomestic and tame.

Proof. It follows from [21, 5.2, Theorem 6] that, if A is a tubular algebra, then A is nondomestic of linear growth. Thus (i) implies (ii), and obviously (ii) implies (iii). Moreover, from [21, 4.9] and [4, 2.3], we know that A is domestic if and only if n_A is domestic. Suppose that n_A is neither domestic nor tubular. We shall show that then A is wild. Let B be a full bound subquiver of A containing C,

minimal for the property that n_B is neither domestic nor tubular. We shall consider two cases. First assume that there is a simple (has only one neighbour in Q_B) source or sink x of a branch K of B such that the tubular type of the full subcategory D = B(x) of B formed by all objects of B except x is domestic. We claim that x may be assumed to be a source. Indeed, if it is not the case, let a be root of the branch K of B and A denote the maximal distance from A to a vertex in K. If K contains a source A such that the distance from A to A equals A, then we replace A by A. If A contains no such source, let A be an arbitrary vertex of A (thus, a sink) whose distance to A equals A. Since A is truncated branch, A is not the terminal point of a zero-relation in A. Let A be the full subcategory of A formed by all objects of A except A. Then A is a one-point coextension of A with the coextension vertex A. Applying the A PR-tilting module A is A in the coextension vertex A and A is A in the end of A is A in the coextension vertex A and A is A in the A PR-tilting module A is A in the coextension vertex A and A is A in the A PR-tilting

which is a one-point extension of D^* and a truncated branch extension of C. Moreover, $n_{D^*} = n_D$ is domestic, and, by [16], B is tame if and only if B^* is. This proves our claim. Thus B = D[M] with extension vertex x. Then D is a tilted algebra of Euclidean type having a complete slice S in its preinjective component. Let T_D be the slice module of S and $H = \operatorname{End}(T_D)$. We want to show that the full subcategory $\mathscr U$ of the vector space category $\operatorname{Hom}_D(M, \operatorname{mod} D)$ formed by all objects of the form $\operatorname{Hom}_D(M, X)$ where X is an indecomposable preinjective which is a proper predecessor of S, is wild. Let $N_H = \operatorname{Ext}_B^1(T, M)$. Since M is a regular D-module [21], N_H is a regular H-module. It follows directly by the Brenner-Butler theorem [14] that $\mathscr U$ is equivalent to the full subcategory $\mathscr V$ of the vector space category $\operatorname{Hom}_H(N_H, \operatorname{mod} H)$ formed by all objects of the form $\operatorname{Hom}_H(N, Y)$ where Y_H is indecomposable preinjective. By [20, 3.5], $\mathscr V$ is wild and consequently B is wild.

Now assume that for any simple sink or source of a branch of B the full subcategory B(x) is a tubular algebra. As above we can assume that there is a simple source, say v, in a branch K of B such that the distance from v to the root a of K is the maximal distance from a to a vertex of K. Let D = B(y) and $y \to b$ be the unique arrow in Q_B starting at y. We have two cases: y is not a starting point of a zerorelation or there is an arrow $b \to c$ such that $\alpha\beta = 0$, and obviously c is a simple sink of B. In the former case $M = P_D(b)$ and the latter case $M \simeq P_D(b)/S_D(c)$ $\simeq \tau_D^{-1}(S_D(c))$. We claim that the vector space category $\operatorname{Hom}_D(M, \operatorname{mod} D)$ contains an object $\operatorname{Hom}_{\mathbf{p}}(M, X)$ such that $\operatorname{End}_{\mathbf{p}}(X) \simeq K$ and $\dim_{\mathbf{r}} \operatorname{Hom}_{\mathbf{p}}(M, X) \geqslant 3$. This implies by [20, 2.4] that B = D[M] is wild. By our assumption D is a tubular extension of $C = C_0$, and hence from [21, 5.2, Theorem 3] D is also a tubular coextension of a tame concealed algebra C_1 . Moreover, the preinjective component Q_1 of C_1 is also a preinjective component of D. Since all vertices of K are not objects of C, they are, by [21, 5.1] objects of C_1 . Thus every object of K belongs to the support of all but a finite number of indecomposable modules from Q_1 . Hence, if $M = P_D(b)$ then there is an indecomposable module $X \in Q_1$ such that $\dim_K \operatorname{Hom}_D(M, X) \geqslant 3$ and obviously $\operatorname{End}_D(X) \simeq K$, since Q_1 is a preinjective component of D. Similarly, if $M = \tau_D^{-1} S_D(c)$ then there is an indecomposable module

124

 $Y \in Q_1$ such that $\tau_D^{-1} Y \neq 0$ and $\dim_K \operatorname{Hom}_D(S_D(c), Y) \geqslant 3$. Then, for $X = \tau_D^{-1} Y$, $\operatorname{Hom}_D(M, X) \simeq \operatorname{Hom}_D(\tau_D(M), \tau_D(X)) \simeq \operatorname{Hom}_D(S_D(c), Y)$ and we are done.

§ 3. Proof of Theorem 1. Obviously, (ii) implies (i). We shall show that (iv) implies (iii). Assume that A is tilting-cotilting equivalent to a canonical tubular algebra Λ .

Since A is simply connected and not tilting-cotilting equivalent to a hereditary algebra of Dynkin type, there exists [4, Corollary 3.4] a ν -reflection sequence of sinks i_1, \ldots, i_t such that $D = S_{i_t}^+ \ldots S_{i_1}^+ A$ is representation-infinite and clearly $T(A) \simeq T(D)$ (take D = A if A is representation-infinite). By [24], D is tilting-cotilting equivalent to A and consequently by [3, Theorem 2.5] D is a branch enlargement of tame concealed algebra C with $n_D = n_A$. Then by [4, Proposition 2.6] there exists a truncated branch extension B of C such that $T(D) \simeq T(B)$ and $n_D = n_B$. In fact, $B = S_{j_r}^+ \ldots S_{j_r}^+ D$ for a ν -reflection sequence of sinks j_1, \ldots, j_r in Q_D . Therefore B is a tubular algebra of type n_A and $T(A) \simeq T(B)$.

(iii) \rightarrow (iii). Assume that B is a tubular algebra of tubular type m. We shall show that $R = \hat{B}$ is locally support-finite, nondomestic of finite growth. Then, by Propositions 1 and 2, T(B) is nondomestic of finite growth. Let $B_0 = B$ be a tubular extension of a uniquely determined concealed algebra C_0 and let ind $C_0 = P_0 \vee T_0 \vee Q_0$ where P_0 is a preprojective component of C_0 , Q_0 is a preinjective component of C_0 , T_0 is a stable tubular $P_1(K)$ -family of Euclidean type, and the ordering from left to right indicates that there are non-zero maps only from any of the classes to itself and to the module classes to its right. From [21, 5.2 Theorem 3] B_0 is also a cotubular algebra, that is, a truncated branch coextension of type m of a uniquely determined tame concealed algebra C_1 , say with ind $C_1 = P_1 \vee T_1 \vee Q_1$. Then by [21, 5.2, Theorem 4]

$$ind B_0 = P_0 \vee T_0^r \vee M_{0,1} \vee T_1^c \vee Q_1$$

where T_0^r is obtained from T_0 by a finite number of ray insertions [7], [21, 4.5], T_1^c is obtained from T_1 by a finite number of coray insertions [7], [21, 4.6], and $M_{0,1} = \bigvee_{\gamma \in Q_1^0} T_{\gamma}^{\gamma}$, for stable tubular $P_1(K)$ -families T_{γ}^0 , $\gamma \in Q_1^0$, of tubular type m.

Here, for any integer i, Q_{i+1}^i denotes the set of all rational numbers q with i < q < i+1. Moreover, all indecomposable projective (resp. injective) B_0 -modules are contained in $P_0 \vee T_0^r$ (resp. $T_1^c \vee Q_1$). Observe that R is obtained from B_0 by successive one-point extensions using modules whose restrictions to B_0 belong to $T_1^c \vee Q_1$ or are zero, and successive one-point coextensions using modules whose restrictions to B_0 belong to $P_0 \vee T_0^r$ or are zero. In this process, all stable tubular families T_1^o , $\gamma \in Q_1^0$, remain unchanged, and consequently they form components of the Auslander-Reiten quiver Γ_R of R. In particular, all shifts $\nu(T_1^o)$, $\gamma \in Q_1^0$, of T_1^o by the Nakayama automorphism ν , considered here as the functor mod $R \to \text{mod } R$, are also components of Γ_R . By [4, Lemma 2.5] there exists a ν -reflection sequence of sinks $t_1, \ldots, t_{\ell(1)}$ of Q_B such that: $I_B(t_1), \ldots, I_B(t_{\ell(1)})$ belong to T_1^c and $D_1 = S_{t_{\ell(1)}}^+, \ldots S_{t_1}^+ B_0$ is a tubular extension of C_1 of type m. Applying [21, 5.2 Theorem 3] we conclude

again that D_1 is truncated branch coextension of type m of a tame concealed algebra C_2 . Moreover, if ind $C_2 = P_2 \vee T_2 \vee O_2$, then

Polynomial growth trivial extensions

$$\operatorname{ind} D_1 = P_1 \vee T_1^r \vee M_{1/2} \vee T_2^c \vee O_2$$

where T_1^r is obtained from T_1 by a finite number of ray insertions, T_2^c is obtained from T_2 by a finite number of coray insertions and $M_{1,2} = \bigvee_{\gamma \in Q_1^1} T_{\gamma}^1$ for stable tubular

 $P_1(K)$ -families of type m. Then, using [21, 4.9], we conclude that, for $E_1 = T_{i_{t(1)}}^+ \dots T_{i_t}^+ B_0$,

$$\operatorname{ind} E_1 = P_0 \vee T_0^r \vee M_{0,1} \vee \hat{T}_1 \vee M_{1,2} \vee T_2^c \vee Q_2$$

where $\hat{T}_1 = T_1^{cr} = T_1^{rc}$ is a (nonstable) tubular $P_1(K)$ -family of type m obtained from T_1^c (resp. T_1^r) by a finite number of ray (resp. coray) insertions. Moreover, projective-injective indecomposable E_1 -modules are in \hat{T}_1 and indecomposable injective non-projective E_1 -modules are in $T_2^c \vee Q_2$. Repeating the same arguments we deduce that there are (uniquely determined by B) concealed algebras C_0, C_1, \ldots , tubular algebras $D_0 = B_0, D_1, D_2, \ldots$ of the same tubular type m such that:

- (1) Each D_i is a tubular extension of C_i and a tubular coextension of C_{i+1} .
- (2) $D_{j+1} = S_{i_{\ell(j+1)}}^+ \dots S_{i_{\ell(j)+1}}^+ D_j$ for a ν -reflection sequence of sinks $i_{\ell(j)+1}, \dots, i_{\ell(j+1)}$ in $Q_{D_j}, j \ge 0$.

(3) If ind
$$C_i = P_i \vee T_i \vee Q_i$$
, then

$$\operatorname{ind} D_j = P_j \vee T_j^r \vee M_{j,j+1} \vee T_{j+1}^c \vee Q_{j+1}$$

where T_j^r is obtained from the tubular family T_j by a finite number of ray insertions, T_{j+1}^c is obtained from T_{j+1} by a finite number of coray insertions, and $M_{j,j+1} = \bigvee_{\gamma \in Q_{j+1}^j} T_{\gamma}^j$ for stable tubular $P_1(K)$ -families T_{γ}^j , $\gamma \in Q_{j+1}^j$, of type m.

(4) If
$$E_{j+1} = T_{i_{t(j+1)}}^+ \dots T_{i_{t(j)+1}}^+ E_j$$
, then

$$\operatorname{ind} E_{j+1} = P_0 \vee T_0^r \vee \bigvee_{0 \leq s \leq j} (M_{s,s+1} \vee \widehat{T}_{s+1}) \vee M_{j+1,j+2} \vee T_{j+2}^c \vee Q_{j+2}$$

where $\hat{T}_{s+1} = T_{s+1}^{cr} = T_{s+1}^{rc}$ is a (nonstable) tubular $P_1(K)$ -family of type m, obtained from T_{s+1}^c (resp. T_{s+1}^r) by a finite number of ray (resp. coray) insertions.

(5) Indecomposable projective-injective (resp. injective nonprojective) E_{j+1} -modules are contained in \hat{T}_{s+1} , $0 \le s \le j$ (resp. in $T_{j+2}^c \lor Q_{j+2}$).

Thus, if D_{∞} denotes the full subcategory of R formed by all objects of D_j , j=0,1,2,..., then

$$\operatorname{ind} D_{\infty} = P_0 \vee T_0' \vee \bigvee_{s \geq 0} (M_{s,s+1} \vee \widehat{T}_{s+1}).$$

For $j \ge 0$, we set $J_{j+1} = \{i_{i(j)+1}, ..., i_{i(j+1)}\}$. Let n be the least number such that J_{n+1} contains v(x) for some vertex x of Q_{B_0} . We shall show that $D_n \simeq v(B_0)$

and consequently E_n is isomorphic to the algebra

$$\begin{pmatrix} B_0 & 0 \\ D(B) & B_1 \end{pmatrix}$$

It is known [21, 5.1] that any tube from T_{γ}^{0} , $\gamma \in Q_{1}^{0}$, consists of sincere *B*-modules. Therefore, for any two vertices γ and z of Q_{B} , there are non-zero maps

$$P_R(y) \to X \to I_R(z)$$

which are non-isomorphisms and X belongs to $T_{1/2}^0$. This implies that there exists in ind R a chain of non-zero maps

$$(*) \qquad P_R(v(y)) \to v(P_B(y)) \to v(X) \to v(I_B(z)) \to P_R(v^2(z))$$

all of them are non-isomorphisms, and $\nu(X)$ belongs to the stable tubular family $\nu(T_{1/2}^0)$ of ind R. Moreover, since by [21, 5.2], ind $R = \mathscr{A} \vee \nu(T_{1/2}^0) \vee \mathscr{B}$ and $\nu(T_{1/2}^0)$ is stable, there is no a finite chain of non-zero maps

(**)
$$P_R(v^2(z)) = Y_0 \to Y_1 \to ... \to Y_r = P_R(v(y))$$

We claim that $J_1 \cup ... \cup J_n = (Q_n)_0$. Let z be a vertex of Q_n such that v(z) belongs to J_{n+1} . Suppose that y is a vertex of Q_B which does not belong to $J_1 \cup ... \cup J_n$. Since every injective D_n -module is projective, y belongs to some J_s , $s \ge n+1$. If s > n+1 then there exists a finite chain (of non-zero maps) of the form (**), a contradiction. If s = n+1, both $P_R(v^2(z))$ and $P_R(v(y))$ belong to \hat{T}_{n+1} . Moreover, there is no non-zero maps between different tubes of \hat{T}_{n+1} . Hence, the existence of a chain (*) implies that $P_R(v^2(z))$ and $P_R(v(y))$ belong to the same tube of the tubular $P_1(K)$ -family \hat{T}_{n+1} . Thus there is a chain (**) and we have again a contradiction. Therefore $J_1 \cup ... \cup J_n$ is the set of all vertices of O_n . From the minimality of n, the socle of any indecomposable injective D_r -module is of the form $S_R(v(x))$ for some vertex x of Q_B , and hence $D_n \simeq \nu(B_0)$. Let now, for p < q in Z, $B_{p,q}$ denote the full subcategory of \hat{B} consisting of the objects of B_r , $p \le r \le q$. We claim that any indecomposable $B_{p,q}$ -module is actually a $B_{r,r+1}$ -module for some $p \le r \le q-1$. Indeed, $B_{p,q+1}$ is obtained from $B_{p,q}$ by a sequence of one-point extensions by modules whose restrictions to $B_{p,q}$ are either 0 or an indecomposable injective $B_{p,q}$ -module. From the previous considerations, it follows that any indecomposable $B_{p,q+1}$ -module is either a $B_{p,q}$ -module or a $B_{q,q+1}$ -module. Dually, any indecomposable $B_{p-1,q}$ -module is either a $B_{p-1,p}$ -module or a $B_{p,q}$ -module. This show our claim. Hence \hat{B} is locally support-finite and

$$\operatorname{ind}\widehat{B} = \bigvee_{s \in Z} (M_{s,s+1} \vee \widehat{T}_{s+1})$$

Further, using Ringel's description [21, 5.2] of modules in $M_{s,s+1}$ by radical vectors of the corresponding quadratic forms, we infer that \hat{B} is of finite growth. Moreover, for any $s \in Z$, $v(\hat{T}_s) = \hat{T}_{s+n}$, $v(M_{s,s+1}) = M_{s+n,s+n+1}$, and by [8, Theorem] ind T(B) consists of the stable tubular $P_1(K)$ -families $F_{\lambda}(\hat{T}_s)$, $\gamma \in Q_{s+1}^s$, $0 \le s \le n-1$, and nonstable tubular $P_1(K)$ -families $F_{\lambda}(\hat{T}_{s+1})$, $0 \le s \le n-1$, all of tubular type m.

(i) \rightarrow (iv) We shall proceed as in [4, Sections 5 and 6] using the following (more general) lemmas below.

Lemma 3.1. Let B be an algebra whose bound quiver consists of a full subcategory C which is hereditary of type \widetilde{A}_m and objects of a walk connecting two different objects of C, and assume that B is bound only by zero-relations. Then T(B) is not of polynomial growth.

Proof. Use the free closed walks u and v constructed in the proof of [4, Lemma 5.2] and apply arguments as in the proof of [22, Lemma 1].

Lemma 3.2. Let B = C[M] be a one-point extension of a tame concealed algebra C such that T(B) is tame. Then M is a regular C-module.

Proof. Since T(B) is tame so is \hat{B} . Observe that C[M] and [M]C are full subcategories of \hat{B} . Then by [20, 2.5, Lemma 3], M is regular.

Lemma 3.3. Let $B = C[\dot{M}]$ be a one-point extension of a tame concealed algebra of type \tilde{D}_n or \tilde{E}_p by a regular module M, and assume that B is of polynomial growth. Then M is a simple regular C-module.

Proof. As in the proof of [4, Lemma 5.4] we can assume that C is hereditary. Suppose that M is not simple regular. Then by [20, 3.5], C is of type \tilde{D}_n and M is regular of regular length two with non-isomorphic simple composition factors. In this case, the vector space category $\operatorname{Hom}_C(M, \operatorname{mod} C)$ is one of two types $(\tilde{D}_n, \frac{n-2}{n-2})$ or $(\tilde{D}_n, (n-2) \oplus (n-2))$ [20], and hence $\operatorname{mod} B$ contains a full subcategory equivalent to the subspace category [20] of the following poset



Then, combining the arguments from the proof of [22, Lemma 1] with these in the proof of [27, Theorem] (see also [19]), we conclude that B is not of polynomial growth.

Lemma 3.4. Let B = C[M] be a one-point extension of a hereditary algebra of type \widetilde{A}_m by a regular C-module M, and assume that T(B) is of polynomial growth. Then M is a simple regular C-module.

Proof. Since B is tame, by [20, 3.5], M is of regular length at most two with non-isomorphic simple regular composition factors. Suppose M is not simple regular. Then by Lemma 3.1, M is an indecomposable of regular length 2 lying in a tube of rank at least two. Let i be the extension vertex of C[M] and $P = P_B(i)$. Observe that \hat{B} contains, as a full subcategory, the one-point coextension D = [P]B of B by P. Consider the universal Galois covering $\tilde{D} \to D$ with infinite cyclic group deter-

mined by the cycle C. A simple analysis shows that \tilde{D} contains a full subcategory E obtained by identifying the extension vertex of a one-point extension C'[X] of a tame concealed algebra C' of type \tilde{D}_n by a simple regular C'-module X, lying in a tube of rank n-2, to the vertex j in a quiver of the form

where $\circ - \circ$ means $\circ \to \circ$ or $\circ \leftarrow \circ$. Let F be the full subcategory of E formed by all objects of E except a. Then by [21, 4.9] F is a tilted algebra of type \widetilde{D}_m , m > n, with a complete slice in the preinjective component. Let U_F be the slice module [14] of a complete slice S of the preinjective component of F. Then $H = \operatorname{End}(U_F)$ is a hereditary algebra of type \widetilde{D}_m and $Y = \operatorname{Ext}_F^1(U_F, P_F(b))$ is an indecomposable regular H-module of regular length 2 lying in the tube of rank m-2 (see [4, Lemma 5.6]). Moreover, $E = F[P_F(b)]$ and the vector space category $\operatorname{Hom}_H(Y, \operatorname{mod} H)$ is equivalent to the full subcategory of the vector space category $\operatorname{Hom}_F(P_F(b), \operatorname{mod} F)$ whose indecomposable objects are of the form $\operatorname{Hom}_F(P_F(b), Z)$ where Z belongs to the tube containing M or is an indecomposable preinjective F-module and a proper predecessor of S. From Lemma 3.3, the one-point extension H[Y] is not of polynomial growth. Therefore, by Proposition 1, D, \widetilde{D} , \widehat{B} and hence T(B) are not of polynomial growth.

LEMMA 3.5. Let C be a tame concealed algebra, M a simple regular C-module and B = C[M][M]. Then T(B) is not of polynomial growth.

Proof. Let D=C[M]. We can assume that D is tame, that is, by [4, Lemma 2.3] and Lemma 2.1, n_D is either domestic or tubular. Assume first that n_D is domestic. Observe that M is a regular D-module of regular length 2 (see the proof of Lemma 3.3) and hence D is not of polynomial growth for C of type \widetilde{D}_n or \widetilde{E}_p . If D is of type \widetilde{A}_n , that is, C is hereditary algebra of type \widetilde{A}_{n-1} , then \widehat{B} contains two full subcategories C[M][M] and [M][M]C, and, as in the proof of Lemma 3.4, we conclude that T(B) is not of polynomial growth.

Now assume that n_D is tubular. We shall show that B is wild. Let x be the extension vertex in Q_D corresponding to M. Then, by [7], $P_D(x) = \tau_D'(M)$ for some positive integer r. From [21, 5.2] D is also a tubular coextension of a tame concealed algebra C', having x in its support, and the preinjective component Q' of C' is the unique preinjective component of D. Then there exists an indecomposable $X \in Q'$ such that $\dim_K \operatorname{Hom}_D(P_D(x), X) \geqslant 3$ and $\tau_D^{-r}X \neq 0$. Put $Y = \tau_D^{-r}X$ and observe that $\operatorname{Hom}_D(M, Y) \simeq \operatorname{Hom}_D(\tau_D'M, \tau_D'Y) \simeq \operatorname{Hom}_D(P_D(x), X)$. Thus, $\operatorname{End}_D(Y) = K$, $\operatorname{dim}_K \operatorname{Hom}_D(M, Y) \geqslant 3$ and consequently by [20, 2.4] the vector space category $\operatorname{Hom}_D(M, \operatorname{mod} D)$ is wild. Therefore D, and hence also T(B), is wild.

Lemma 3.6. Let B = C[M] be a one-point extension of a tame concealed algebra C by a simple regular module M. Let i denote the extension vertex corresponding

to M, and A is obtained from B by identifying i to the vertex j in a quiver with underlying graph as follows

Proof. Since $T(eAe) \simeq eT(A)e$ for any idempotent e, without loss of generality.

Then T(A) is not of polynomial growth.

we can assume that the walk $i_1 - \circ - \dots - \circ - i$, has radical square zero. Let D be the full subcategory of A consisting of all vertices except a. Then D is a truncated branch extension of C. Assume that n_n is equal to (p, q), $1 \le p \le q$. In this case A is a bound quiver algebra bound by zero-relations. Let i' be the coextension vertex of the one-point coextension $E = [P_R(i)]A$. Observe that \hat{A} contains a full subcategory F obtained from E by identifying i' to the vertex i_1 in a quiver of the form (*). Consider the universal Galois covering $\tilde{F} \to F$ with infinite cyclic group determined by the cycle C. Then \tilde{F} contains a full subcategory G obtained by identifying the extension vertex of a one-point extension C'[X] of a tame concealed algebra C' of type \tilde{D}_{x} by a simple regular module X to the vertex i_{1} in a quiver of the form (*). Therefore, in order to prove the lemma, it is enough to show by Proposition 1 that if C is of type \tilde{D}_n or \tilde{E}_n , then A is not of polynomial growth. We can assume that a is a source. Indeed, if a is a sink, applying the APR-tilting module [5] $T_A = \tau_A^{-1}(S(a)) \oplus \bigoplus_{j \neq a} P_A(j)$, we replace A by an algebra A^* (see the proof of Lemma 2.1) of the same form as A and such that α is a source in A^* , and A is of polynomial growth if and only if A^* is of polynomial growth. Thus A = D[Y]where $Y = P_A(i_t)$. Applying, if necessary, the APR-tilting or the APR-cotilting A-module at the vertex b, we can also assume that j_i is a sink or a source in D. If n_D is neither domestic nor tubular, D is wild, by Lemma 2.1 and [4, Lemma 2.3], and hence A is wild. Assume that n_D is domestic. Then D is a tilted algebra of type \tilde{D}_n or \tilde{E}_n with a complete slice in the preinjective component. Let U_D be the slice module of a complete slice in this component, $H = \operatorname{End}(U_D)$ and $N_H = \operatorname{Ext}^1_D(U, Y)$. Then the vector space category $\operatorname{Hom}_{\mathcal{D}}(Y, \operatorname{mod} D)$ contains a full subcategory \mathscr{U} equivalent to be full subcategory \mathscr{V} of the vector space category $\operatorname{Hom}_{H}(N, \operatorname{mod} H)$ formed by indecomposable objects of the form $\operatorname{Hom}_{R}(N, Z)$ for all indecomposable preinjective H-modules Z. On the other hand, we have, by [14], the connecting Auslander-Reiten sequence in mod H

$$0 \to \operatorname{Hom}_D(U,I) \to W \to N \to 0$$

where $I = I_D(i_t)$. The middle term W is determined up to extension by the short exact sequence

$$0 \to \operatorname{Ext}_D^1(U, \operatorname{rad} Y) \to W \to \operatorname{Hom}_D(U, I/\operatorname{soc} I) \to 0$$

[14], [21]. A simple analysis shows that for any orientation of the quiver $j_{t-1} - j_t - b$, the above connecting Auslander-Reiten sequence has two indecomposable middle terms, and hence N is an indecomposable regular module of regular length at least two. Then by Lemma 3.3, H[N] is not of polynomial growth. Hence $\mathscr V$, and consequently A, is not of polynomial growth. Assume now that n_D is tubular. Then D is a tubular algebra and, as in the proof of Lemma 3.5, we show that there exists a preinjective D-module X such that $\operatorname{End}_D(X) = K$ and $\dim_K \operatorname{Hom}_D(Y, X) \geqslant 3$. Hence A = D[Y] is, by [20, 2.4], wild.

Now assume that A is simply connected and T(A) is nondomestic of polynomial growth. If A is representation-finite, then since \widehat{A} is not locally representation-finite there exists, by [4, Corollary 3.4] a ν -reflection sequence of sinks $i_1, ..., i_t$ such that $S_{i_t}^+ ... S_{i_t}^+ A = B$ is representation-infinite but $S_{i_{t-1}}^+ ... S_{i_t}^+ A$ is representation-finite. From [4, Lemma 3.1] B is simply connected and, by [24], tilting-cotilting equivalent to A. Thus we can assume that A is representation-infinite. Then, using Lemmas 3.1, ..., 3.6 and their duals, we prove in the same way as in [4, Section 6] that A contains a tame concealed algebra C as a full convex subcategory, and is a branch enlargement of C. From [4, Proposition 2.6] there exists a truncated branch extension D of C such that $n_A = n_D$ and $T(A) \simeq T(D)$. Since T(A) is nondomestic, by [4, Theorem] and [3, Theorem 2.5], $n_D = n_A$ is nondomestic and hence, by [4, Lemma 2.3], D is nondomestic. On the other hand, D is tame since T(D) is tame. Therefore, D is a tubular algebra and $n_A = n_D$ is tubular. Then, by [3, Theorem 2.5] D, and thus A, is tilting-cotilting equivalent to a canonical tubular algebra. This finishes the proof of Theorem 1.

§ 4. Isomorphisms of trivial extensions. Two algebras A and B are said to be reflection-equivalent if there exists a sequence of algebras $A=A_0,\,A_1,\,\ldots,\,A_{m+1}=B$ such that $A_{r+1}\simeq S_{i_r}^+A_r$ or $S_{j_r}^-A_r$, $0\leqslant r\leqslant m$, for a sink i_r or a source j_r of Q_{A_r} . We shall show the following theorem.

THEOREM 2. Let A and R be two simply connected algebras such that T(A) and T(R) are nondomestic of polynomial growth. Then the following conditions are equivalent:

- (i) $T(A) \simeq T(R)$.
- (ii) $\hat{A} \simeq \hat{R}$.
- (iii) A and R are reflection-equivalent.

Proof. The implications (iii) \rightarrow (ii) and (ii) \rightarrow (i) are obvious. We shall show that (i) \rightarrow (iii). From Theorem 1, there are two tubular algebras B and A such that A is reflection-equivalent to B, R is reflection-equivalent to A, and $T(B) \simeq T(A) \simeq T(R) \simeq T(A)$. Consider the following diagram of functors

$$\begin{array}{ccc}
\operatorname{mod}\widehat{\Lambda} & \operatorname{mod}\widehat{B} \\
\downarrow^{F_{\Lambda}^{A}} & \downarrow^{F_{\Lambda}^{B}} \\
\operatorname{mod}T(\Lambda) \xrightarrow{\Phi} \operatorname{mod}T(B
\end{array}$$

where F_{λ}^{A} and F_{λ}^{B} are the push-down functors [6, 13] and Φ is induced by an isomorphism $\psi: T(A) \to T(B)$. We know [8] that every module X of mod T(A) is of the form $F_{\lambda}^{A}(M)$ for some $M \in \text{mod } \hat{A}$, and hence

$$\operatorname{Hom}_{T(\Lambda)}(F_{\lambda}(M), F_{\lambda}(N)) \simeq \bigoplus_{r \in \mathbb{Z}} \operatorname{Hom}_{\widehat{\Lambda}}(M, v^r N)$$

where M and N belong to $\operatorname{mod} \widehat{\Lambda}$. Similarly, every module Y from $\operatorname{mod} T(B)$ is of the form $F_{i}^{B}(U)$, for some $U \in \operatorname{mod} \widehat{B}$ and

$$\operatorname{Hom}_{T(B)}(F_{\lambda}^{B}(U), F_{\lambda}^{B}(W)) \simeq \bigoplus_{r \in \mathcal{I}} \operatorname{Hom}_{\widehat{B}}(U, v^{r}W).$$

if U and W belong to $\operatorname{mod} \widehat{B}$. Observe that, if P and P' are two indecomposable projective \widehat{B} -modules then $\operatorname{Hom}_{\widehat{B}}(P,P')\neq 0$ if and only if $\operatorname{Hom}_{\widehat{B}}(\nu^{-1}P',P)\neq 0$. Hence, since $Q_{\widehat{B}}$ has no oriented cycles, if P and P' are two non-isomorphic indecomposable projective \widehat{B} -modules with $\operatorname{Hom}_{\widehat{B}}(P,P')\neq 0$ then F_{λ}^{B} induces isomorphisms

$$\operatorname{Hom}_{T(B)}(F_{\lambda}^{B}P, F_{\lambda}^{B}P') \simeq \operatorname{Hom}_{\widehat{B}}(P, P'),$$

$$(*) \operatorname{Hom}_{T(B)}(F_{\lambda}^{B}P, F_{\lambda}^{B}P) \simeq \operatorname{Hom}_{\widehat{B}}(P, P) \oplus \operatorname{Hom}_{\widehat{B}}(P, \nu(P))$$

We have similar relations between indecomposable projective modules over $T(\Lambda)$ and $\hat{\Lambda}$. Moreover,

$$\operatorname{ind}\widehat{B} = \bigvee_{s \in Z} (M_{s,s+1} \vee \widehat{T}_{s+1})$$

and

$$\operatorname{ind} \widehat{\Lambda} = \bigvee_{s \in Z} (M'_{s,s+1} \vee \widehat{T}'_{s+1})$$

where $M_{s,s+1}$ (resp. $M'_{s,s+1}$) is formed by stable tubular $P_1(K)$ -families, and, for any $s \in Z$, \widehat{T}_{s+1} (resp. \widehat{T}'_{s+1}) is a nonstable tubular $P_1(K)$ -family. Denote by \mathscr{P}_A the full subcategory of $\operatorname{ind}\widehat{A}$ formed by the indecomposable projective \widehat{A} -modules $P_{\widehat{A}}(i)$, $i \in (Q_A)_0$, where we identify Λ with Λ_0 . Obviously $\Lambda \simeq \operatorname{End}_{\widehat{A}}(P)$, where $P = \bigoplus_{i \in (Q_A)_0} P_{\widehat{A}}(i)$. Let q be the least integer such that \widehat{T}'_{q+1} contains a module from \mathscr{P}_A .

Since $F_{\lambda}^{\mathbb{R}}(\hat{T}_{s+1})$, $0 \leq s \leq n-1$, form all nonstable tubular $P_1(K)$ -families in $\operatorname{ind} T(B)$, $\Phi F_{\lambda}^{\mathbb{A}}(\hat{T}_{q+1}) = F_{\lambda}^{\mathbb{R}}(\hat{T}_{r+1})$ for some $r, 0 \leq r \leq n-1$. From the proof of Theorem 1 we deduce that \mathcal{P}_{λ} is the full subcategory of $\operatorname{ind} \hat{\lambda}$ formed by all projective $\hat{\lambda}$ -modules from the tubes $\hat{T}_{q+1}^{\prime}, \ldots, \hat{T}_{q+n}^{\prime}$. Observe also that $\Phi F_{\lambda}^{\lambda}(\hat{T}_{q+j}^{\prime}) = F_{\lambda}^{\mathbb{R}}(\hat{T}_{r+j})$ for $1 \leq j \leq n$. Let \mathcal{P}_{B} be the full subcategory of $\operatorname{ind} \hat{B}$ consisting of all projective B-modules of the tubes $\hat{T}_{r+1}, \ldots, \hat{T}_{r+n}$. Observe that the endomorphism algebra of the direct sum of all projective modules from \mathcal{P}_{B} is isomorphic to the algebra $D_{r} \simeq D_{r+n}$, defined in the proof of Theorem 1 (implication (iii) \rightarrow (ii)). Let \mathcal{P} be the category whose objects are indecomposable projective T(B)-modules and, for $P(i) = P_{T(B)}(i)$, $P(i) = P_{T(B)}(i)$,

$$\operatorname{Hom}_{P}(P(i), P(j)) = \begin{cases} \operatorname{Hom}_{T(B)}(P(i), P(j)) & \text{if } i \neq j \text{ and} \\ \operatorname{Hom}_{\widehat{B}}(P_{\widehat{B}}(i), P_{\widehat{B}}(j)) \neq 0 \\ \operatorname{End}_{T(B)}(P(i)/J(\operatorname{End}_{T(B)}(P(i))) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

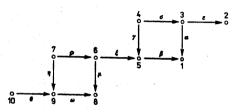
where $J(\operatorname{End}_{T(B)}(P(i)))$ is the Jacobson radical of $\operatorname{End}_{T(B)}(P(i))$. Thus $\operatorname{Hom}_P(P(i),P(i))\simeq K$. Now, using the formulas (*), we conclude that the functors $\Phi F_{\lambda}^{A}\colon \operatorname{mod}\widehat{\Lambda}\to\operatorname{mod}T(B)$ and $F_{\lambda}^{B}\colon \operatorname{mod}\widehat{B}\to\operatorname{mod}T(B)$ induce isomorphisms of categories $\mathscr{P}_{\Lambda}\simeq \mathscr{P}$ and $\mathscr{P}_{B}\simeq \mathscr{P}$. Consequently $\Lambda\simeq D_r$. But $D_r=S_{i_{t(r)}}^+\ldots S_{i_1}^+B$, for the ν -reflection sequence of sinks $i_{t_1},\ldots,i_{t(r)}$, constructed in the proof of Theorem 1, and so Λ and B are reflection-equivalent. Hence A and B are reflection-equivalent, and Theorem 2 is proved.

The following corollary is an immediate consequence of the above proof.

COROLLARY 1. Let A and R be two tubular algebras and the Grothendieck groups $K_0(A)$ and $K_0(R)$ have rank n. Then the following conditions are equivalent:

- (i) $T(A) \simeq T(R)$
- (ii) $\hat{A} \simeq \hat{R}$
- (iii) $R \simeq S_{i_t}^+ \dots S_{i_1}^+ A$ for a v-reflection sequence of sinks $i_1, \dots, i_t, t \leq n$, of Q_A .
- (iv) $A \simeq S_{i_s}^{\dagger} \dots S_{i_1}^{\dagger} R$ for a v-reflection sequence of sinks $i_1, \dots, i_s, s \leq n$, of O_R .
- § 5. Remarks. (1) It follows directly from Theorem 1 and [23] that a nondomestic trivial extension of a simply connected algebra is stably equivalent to the trivial extension of a canonical tubular algebra.
- (2) Let B be a tubular algebra and r(B) denote the rank of the Grothendieck group $K_0(B)$. It follows from our proof of Theorem 1 that the number n(B) of non-stable tubular $P_1(K)$ -families in $\Gamma_{T(B)}$ coincides with the number of tubular algebras of the form $S_{i_t}^+ \dots S_{i_t}^+ B$ for a v-reflection sequence of sinks i_1, \dots, i_t in Q_B , $t \leq r(B)$, and hence $n(B) \leq r(B) \leq 10$. Moreover, using [21, Section 5], one can deduce that $3 \leq n(B)$. If B is a canonical tubular algebra then n(B) = 3 by [15]. On the other hand, for any positive integer m, $3 \leq m \leq 9$, it is not difficult to find a tubular algebra B such that n(B) = m. We do not know if there exists a tubular algebra B such that n(B) = 10. We end the paper with an example of a tubular algebra B such that n(B) = 9.

Let B be the bound quiver algebra KQ/I where Q is the quiver and I is the ideal in the quiver algebra KQ generated by the elements $\gamma\beta - \sigma\alpha$, $\gamma\omega - \varrho\mu$ and $\varrho\xi\beta$. Then B



is a one-point extension (resp. one-point coextension) of the tame concealed algebra C_0 (resp. C_1) of type \tilde{E}_8 , formed by all vertices of Q except 7 (resp. except 1), by a simple regular C_0 -module (resp. C_1 -module) lying in the tube of rank 5. Thus B is a tubular (and cotubular) algebra of tubular type (2,3,6). Then, in our notations

from the proof of Theorem 1, we have the following nine (nonisomorphic) tubular algebras reflection-equivalent to B: $D_1 = S_1^+ B$, $D_2 = S_2^+ D_1$, $D_3 = S_8^+ D_2$, $D_4 = S_5^+ D_3$, $D_5 = S_9^+ S_3^+ D_4$, $D_6 = S_6^+ D_5$, $D_7 = S_4^+ D_6$, $D_8 = S_{10}^+ D_7$ and $D_9 = S_7^+ D_9 = B$.

References

- I. Assem, D. Happel and O. Roldán, Representation-finite trivial extension algebras,
 J. Pure Appl. Algebra 33 (1984), 235-242.
- [2] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450.
- [3] Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463.
- [4] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. (1988), to appear.
- [5] M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1-46.
- [6] K. Bongartz and P. Gabriel, Covering space in representation-theory, Invent. Math. 65 (1981/82), 331-378.
- [7] G. d'Este and C. M. Ringel, Coherent tubes, J. Algebra 87 (1984), 150-201.
- [8] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. 44 (1985) 522-529.
- [9] On the representation type of locally bounded categories, Tsukuba J. Math., 10 (1986), 63-72.
- [10] Galois coverings of representation-infinite algebras, Comment. Math. Helvetici 62 (1987), 311-337.
- [11] Yu. Drozd, Tame and wild matrix problems, in: Representations and Quadratic forms, Kiev 1979, 39-73 (in Russian).
- [12] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Lecture Notes in Math. 831 (1980), 1-71.
- [13] The universal cover of a representation-finite algebra, Lecture Notes in Math. 903 (1981), 68-105.
- [14] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
- [15] The derived category of a tubular algebra, Lecture Notes in Math. 1177 (1986), 156-180.
- [16] M. Hoshino, Splitting torsion theories induced by tilting modules, Comm. Algebra 11 (1983), 427-441.
- [17] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364.
- [18] R. Martinez and J. A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (1983), 277-292.
- [19] L. A. Nazarova and A. V. Rojter, On a problem of I. M. Gelfand, Funkc. Anal. Appl. 7 (1973), 54-69 (in Russian).
- [20] C. M. Ringel, Tame algebras, Lecture Notes in Math. 831 (1980), 137-287.
- [21] Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099 (1984).
- [22] A. Skowroński, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499-516.
- [23] H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra, 109 (1987), 138-165.
- [24] Applications of reflection functors for selfinjective algebras, Lecture Notes in Math. 117 (1986), 308-327.

J. Nehring and A. Skowroński

[25] T. Wakamatsu, Note on trivial extensions of artin algebras, Comm. Algebra 12 (1984)

1261 K. Yamagata, On algebras whose trivial extensions are of finite type II, Preprint (1983).

[27] A. G. Zavadskij and L. A. Nazarova, On the finiteness and boundedness of a number of parameters, Inst. Math. Acad. Sci. Ukrainian SSR, Preprint 27 (1981), 21-29 (in Russian).

NSTITUTE OF MATHEMATICS NICHOLAS COPERNICUS UNIVERSITY Chopina 12/18 87-100 Toruń Poland

134

Received 9 April 1987

Non-trivial homeomorphisms of $\beta N N$ without the continuum hypothesis

by

Saharon Shelah (Jerusalem) and J. Steprans (Toronto)

Abstract. The problem of constructing non-trivial homeomorphisms of $\beta N \setminus N$ without assuming the continuum hypothesis is examined.

In [3] Shelah showed that it is consistent that all automorphisms of $\mathscr{D}(\omega)/Finite$, or, equivalently, all autohomeomorphisms of $\beta N \setminus N$, are trivial in the sense that they are induced by almost-permutations of the integers (an almost-permutation of ω is an injective function from ω to ω whose domain and range are both cofinite). In [2] W. Rudin showed that the continuum hypothesis implies that there is a nontrivial autohomeomorphism by showing that there are in fact $2^{2^{80}}$ such homeomorphisms. It is the purpose of this paper to examine the question of how to construct non-trivial autohomeomorphisms in the absence of the continuum hypothesis. The reader should be warned that $\beta N \setminus N$ and $\mathscr{D}(\omega)/Finite$ will be used almost interchangeably. As well, subsets of the integers will routinely be confused with clopen sets in $\beta N \setminus N$.

At this point the reader may be wondering why the argument assuming $2^{\aleph_0} = \aleph_1$ does not generalize to MA_{\aleph_1} and make the rest of this paper pointless. The reason, of course, is that an induction of length greater than ω_1 may run into a Hausdorff gap and stop. In fact it will be shown in [4] that PFA implies that all autohomeomorphisms of $\beta N N$ are trivial and so this is consistent with MA_{\aleph_1} . This raises the following unanswered question:

QUESTION. Is it consistent with MA_{\aleph_1} that there is a non-trivial autohomeomorphism of $\beta N \backslash N$?

The first result towards obtaining non-trivial autohomeomorphisms of $\beta N N$ without the continuum hypothesis is due to Frolik [1]. He showed that the set of fixed points of any 1-1 continuous function from an extremally disconnected space to itself form a clopen set. To see how this can be used to construct non-trivial autohomeomorphisms of $\beta N N$ consider the following lemma

Lemma 1. Suppose that $\mathscr I$ is an ideal on ω generated by an \subseteq *-ascending sequence $\{A_\alpha\colon \alpha\in\varkappa\}$. Suppose further that f_α is an almost-permutation of A_α for