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that M, is obtained from M, by placing'a Whitehead embedding in each com-
ponent of M,. Let Ty, Ty, ..., T}, be the components of M,. Choose disjoint open
3-balls U;, Uy, ..., Uy in 3-space so that T, is contained in U; as an unknotted solid
torus. The loop y contracts in 3-space. By general position we may assume that it
bounds a singular disk so that for each i, 1 < i<k, the singular disk bounded by y
meets T} in a finite collection of meridional disks. However, a meridian of BdT;
bounds a singular disk in U;— M, ., [Wh]. Hence, y bounds a singular disk in the
complement of M,.,, and our theorem is proved. '
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Polynomial growth trivial extensions
of simply connected algebras

by

Jerzy Nehring and Andrzej Skowreonski (Toruft)

Abstract. Let 4 be a finite-dimensional, basic, connected algebra over an algebraically closed
field. Dznete by T(4) the trivial extension of 4 by its minimal injective cogenerator. We show that,
if A4 is simply connected, then the following conditions are equivalent: (i) T(4) is nondomestic of
polynomial growth, (i) T(4) is nondomestic of finite growth, (iii) there exists a tubular algebra B
such that T'(4) =~ T(B), (iv) 4 is tilting-cotilting equivalent to a canonical tubular algebra. Iso-
morphism classes of such algebras are also determined.

Introduction. Let K denote a fixed algebraically closed field, and 4 a finite-
dimensional K-algebra (associative, with an identity) which we shall assume to be
basic and connected. We shall denote by mod A the category of finite-dimensional
right A-modules. We recall that A4 is called simply connected (in the sense of [2])
if it is triangular, that is, the ordinary quiver of 4 has no oriented cycles, and such
that, for any presentation 4 =~ KQ/I of A as a bound quiver algebra, the fundamental
group =n(Q, I) of (@, I) [18] is trivial. In the representation-finite case, this notion
of simple connectedness coincides with the notion introduced in [6]. Further, 4 is
called domestic [20] if there exists a finite number of (parametrising) functors
F;: modK[X] — modA4, 1<i<n, where K[X] is the polynomial algebra in one
variable, satisfying the following conditions:

(2) For each i, F; = — ® 0;, where O,

K[X]
finitely generated and free as a K[X]-module.

(b) For any dimension d, all but a finite number of isomorphism classes of
indecomposable 4 -modules of K-dimension d are of the form F,(M), for some i and
some indecomposable right K[X]-module M.

A is called n-parametric if the minimal number of such functors is n. Moreover,
for a dimension d, denote by u,(d) the least number of functors F;: modK[X] —
— modd, 1<i< puy(d), satisfying the above condition (a) and the following con-
dition:

() All but a finite number of isomorphism classes of indecomposable
A-modules of K-dimension d are of the form F(S) for some i and some simple
right K[X]-module S.

is a K[X]-4-bimoduie which is
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Then A is tame (in the sense of [11]) if p(d) < « for eve'y d. Following [22],
A is called of polynomial growth if there exists a natural number m such that, for
every dimension d2 2, p,(d)<d". Finally, 4 is of finite (linear) growth if there
exists a natural number 1 such that p,(d) < nd, for every d> 1. It follows from [9]
that, if 4 is domestic, then A4 is of finite growth.

Recall from [14, 21] that a module T, is called a tilting (resp. cotilting) module
provided: Ext3(Ty,—) =0 (tesp. Extj(—, T, = 0), Exti(T,, T) =0 and the
number of nonisomorphic indecomposable direct summands of T, equal the rank
of the Grothendieck group Ky(4) of 4. Two algebras 4 and B are called filting-
cotilting equivalent [3] if there exists a sequence of finite-dimensional K-algebras
A=Ay, Ay, .y Ay, Ayyy = B and a sequence of modules Ti,, 0<i<m, such
that A, , = End(T) and T}, is either a tilting or cotilting module. It is shown
in [2] that if 4 is tilting-cotilting equivalent t6 a hereditary algebra of Dynkin type
or a hereditary algebra of Euclidean type D, or E,, cr one of Ringel’s [21] tame canon-
ical tubular algebra, then 4 is simply connected (in the above sense).

The trivial extension T(A) of A by its minimal injective cogenerator bimodule
D(A4) = Homg(4, K) is the algebra whosé additive structure is that of the group
A@® DA, and whose multiplication is defined by:

(a,f)®, 9) = (ab, ag+1b)

for a,be d and f, ge ,D(4),. It is known that T(4) is selfinjective, and in fact
even symmetric. Trivial extensions have been extensively investigated in Tepresen-
tation theory (see [4] for the corresponding references). It is known [17], [1] that
for an algebra 4 the following conditions are equivalent: (i) T'(4) is representation-
finite, (ii) there exists a tilted algebra B of Dynkin type such that 7(4) =~ T(B),
(iii) A is tilting-cotilting equivalent to a hereditary algebra of Dynkin type In partic-
ular, if T(4) is representation-finite, then 4 is (representation-finite) simply connected
(see also [26]). Recently, the authors have proved with I. Assem [4] that, for a simply
connected algebra 4, the following conditions are equivalent: (i) T(4) is representa-
tion-infinite domestic, (i) T(4) is 2-parametric, (iii) there exists a representation-
infinite tilted algebra B of Euclidean type D, or E, such that T(4) ~T(B), (iv) A4 is
tilting-cotilting equivalent to a hereditary algebra of Euclidean type D, or E,.

The main objective in this article is to present the following characterisation
of all nondomestic polynomial growth trivial extensions of simply connected algebras.

TrueorEM 1. Let A be a finite-dimensional, basic and connected algebra over an

algebraically closed field K. If A is simply connected, then the following conditions
are equivalent:

() T(4) is nondomestic of polynomial growth.
(il) T(4) is nondomestic of finite growth.
(iii) There exists a tubular algebra B such that T(4) ~ T(B).
(v) 4 is tilting-cotilting equivalent to a canonical tubular algebra.
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The trivial extensions of canonical tubular algebras have been described in [15].
In a forthcoming paper we shall show that the polynomial growth trivial extensions
T(4) of nonsimply connected algebras 4 are domestic. Thus our theorem gives
a complete characterisation of all nondomestic trivial extensions of polynomial
growth, .
Recall that following Ringel [21], a canonical algebra of type (2,2,2,2) is
given by the quiver

bound by oa'+fBB +yy =0, aa’+Ai BB +6) =0, where le K\{0,1} and
a canonical algebra of type (p,g,r), p<g<r, is given by the quiver

/ .

[

[ SR T O - o<———ﬁ2 o} b o

X , -
oOe—— ... —— w2 _p 1

bound by e ..o, +By... S+ 7407, = 0.
1 1.1
If (p, q,r) equals (3, 3, 3), (2,4, 4), (2,3, 6), that is — + ; +- =1, or is of
P r

type (2,2, 2, 2) the algebra is called tubular canonical.

In the proof we shall use freely results from [2], [3], [4], tilting theory [14], [21],
Ringel’s theory of tubular algebras [20], [21], and covering techniques developed
recently in [8], [10].

§ 1. Preliminaries. Let A be a finite-dimensional algebra. Its repetitive algebra )
is the selfinjective, locally finite-dimensional algebra [17]

\\ o
\\\ Amt
A= Q. A,
Quy A
0 ‘\\\\
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in which matrices have finitely many non-zero entries, 4, =_A, Q,,, = .AD(A) "
for all meZ, all the remaining entries are zero, and multiplication is induced
from the bimodule structure of D(4) and the zero map D(4) (;9 D(4) = 0.

The identity maps A, = 4ni1s Om = Quey induce an automorphism v of A4,
called the Nakayama automorphism, and thus A is a Galois covering [6, 13!
of T(A) with the infinite cyclic group generated by v. We say that tl}e algebra A
is of polynomial growth if any full finite subcategory of 4, fqnmdered as an
algebra, is of polynomial growth. Morei)vcr, following [8], 4 is callfd locally
support-finite if, for each object x of A, the full subcategory. of A formed
by all objects of the support Supp M, where M ranges through all indecomposable
finite-dimensional 4-modules such that M(x) # 0, is finite. Then we have the fol-
lowing consequences of [8] (see also [22]).

PROPOSITION 1. If T(A) is of polynomial growth (resp. domestic) so is A

PROPOSITION 2. Assume that A is locally support-finite and of polynomial (resp.
finite) growth. Then T(4) is of polynomial (resp. finite) growth.

For a locally finite-dimensional K-algebra we shall denote by Q its ordinary
quiver and by (Q,), the set of vertices of Q4. For i (Q,), we denote by e; the
corresponding idempotent of 4, and by S,(i) the corresponding simple A-module.
We shall denote by P,(i) (resp. I,(i)) the projective cover (resp. injective envelope)
of S,(i).

The one-point extension (resp. coextension) of an algebra 4 by an A-module M
will be denoted by 4[M] (resp. [M]4). In order to handle module over one-point
extensions, we shall use vector space category methods, for which we refer to [20], [21].
Let A be a triangular algebra, and i be a sink of Q. The reflection Stdof Adatiis
the quotient of the one-point extension T;" 4 = A[I(i)] by the two-sided ideal gener-
ated by ¢; [17]. Dually, starting with a source j, we define the reflection S; 4. Clearly,
the repetitive algebras of 4 and S; A are isomorphic. Also it is shown in [24] that 4
and Si 4 are tilting-cotilting equivalent. Moreover, by [25] T(4)~ T(S;" 4). The
quiver of S;* 4 is denoted by 67 0, and is called a v-reflection of Q. The sink i of Q,
is replaced in ¢;"Q, by a source i. A v-reflection sequence of sinks i, ..., i,
is a sequence of vertices of Q, such that i, is asink of o _,..07,Q, for
I1<s<t

Finally, we shall denote by t, the Auslander—Reiten translate [12] in mod 4,
by r;* its inverse and by I'y the Auslander—Reitan quiver of 4.

§ 2. Branch enlargements. We first recall from [3] the notion of branch enlarge-
ments. An extension branch K in a vertex a, called its root, is a finite connected full
bound subquiver of the following infinite tree, congisting of two types of arrows:
the a-ar.ows and the f-arrows, and bound by all possible relations of the forms
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wf =0, fo = 0:

O,

N

©

o
N
o o

°a

6

/oD

0‘0
AN

A coextension branch K in aq is defined dually (reversing all arrows in the figure).
The number of vertices in a branch K is called its length and is denoted by. |K]. We
shall agree to consider the empty quiver as a branch of length zero.

Let A = KQ/I be a bound quiver algebra, and (@', I') be a full bound sub-
quiver of (@, I) with a source a. Then 4 is said to be obtained from KQ/I' by
rooting an extension branch (Q", I') in a provided that (Q"*, I"") is a full bound sub-
quiver of (@, I) such that:

(1) Qon Q4 = {a}, QoL Q5 = Q.
(2) Iis generated by I’, 1" and all paths By where fe Q7 has target a, and
y € Q7 has source a.

Let C be a tame concealed algebra [21] with a tubular family (73); cp,(x), and
let E,, ..., E, be pairwise non-isomorphic simple regular C-modules. For each
1<i<t, we let K; be an extension branch in g;, and K; be a coextension branch
in 4, where either K; or K; may be empty. We shall define inductively the branch
enlargement A of C by the extension branches K; and the coextension branches K; .
The algebra C[E;, K] is obtained from the one-point extension C[E,] with exten-
sion vertex a; by rooting the branch K, in a;, and, for 1 <j<t, C[E, K}, is
obtained from the one-point extension C[E;, K,Ji=} [E;] with extension vertex g; by
rooting the branch K] in a;. Then B = C[E;, K,]i~; is called the branch extension
of C at the modules E; by the extension branches K; (1 <i<t). We now let E/
be the unique indecomposable B-module whose restriction to C is E; and whose
restriction to K is the unique indecomposable module with support consisting
of all x in K; such that there is a non-zero path from x to the root of K;. Then
[E{, K{1B is obtained from the one-point coextension [E;]B with coextension
vertex g; by rooting Kj in af, and, for 1<j<t1, ;=7[E/, K/]B is obtained from
[EjY={[E/, K/1B with coextension vertex d; by rooting Kj in . Then
A = _{[E/,K/]1B is the required branch enlargement of C. )

8 — Fundamenta Mathematicae 132.2
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Let 4 be a branch enlargement of C, and let r, denote the rank of the tube T';,

AeP,(K), of I'c. The tubular type ny = (1)zepyy Of A is defined by
n, =r,+ Z (Kd+IKD
E;eTa

We shall write, instead of (n);epux), the finite sequence consisting of .at least
two n,, keeping all those which are larger than 1, and arranging them in non-
decreasing order. A branch enlargement 4 of C is called domestic (rcsp. tubular)
if n, is one of the following: (p,q), 1<p<gq, 2,2,r),2<r,(2,3,3), (2,3, 4,
2,3,9 Gesp. 3,3,3), @4, 4), 2,3,6) or 2,2,2,2). :

A truncated branch in a (branch in the sense of [21]) is a finite connected full
bound subquiver, containing a, of the following infinite tree bound by all possible
relations «ff = 0:

NAOAA NS A

g /\/

If Xy, ..., K, are truncated branches, then the branch extension B = C[E;, Kli=1
is a tubular extension in the sense of [21]. If np is tubular, then B is called a rubular
aelgebra [21]. Moreover, if ng is domestic, then Bisa tilted algebra of Euclidean
type having a complete slice in its preinjective component, and conversely, every
representation-infinite tilted algebra of Euclidean type is either a domuestic
truncated branch extension or a domestic truncated branch coextension of a tame
concealed algebra [21, 4.91. :
In our proof we shall use the following lemma.

Lemma 2.1. Let A be a truncated branch extension of the tame concealed al-
gebra C. Then the following conditions are equivalent:

() 4 is a tubular algebra.
(i) A is nondomestic of finite growth.
(iil) A is nondomestic and tame.

Proof. It follows from [21, 5.2, Theorem 6] that, if 4 is a tubular algebra,
then 4 is nondomestic of linear growth. Thus (i) implies (i), and obviously
(i) implies Gii). Moreover, from [21, 4.9] and [4, 2.3], we know that 4 is
domestic if and only if n, is domestic. Suppose that n, is neither domestic nor tubular.
‘We shall show that then 4 is wild. Let B be a full bound subquiver of A containing C,
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minimal for the property that #; is neither domestic nor tubular. We shall consider
two cases. First assume that there is a simple (has only one neighbour in Qy) source
or sink x of a branch K of B such that the tubular type of the full subcategory
D = B(x) of B formed by all objects of B except x is domestic. We claim that x may
be assumed to be a source. Indeed, if it is not the case, let a be root of the branch K
of B and d denote the maximal distance from ato a vertex in K. If K contains a source i
such that the distance from a to i equals d, then we replace x by i. If X contains no
such source, let j be an arbitrary vertex of K (thus, a sink) whose distance to a equals
d. Since K is truncated branch, j is not the terminal point of a zero-relation in K
Let D* be the full subcategory of B formed by all objects of B except j. Then B is
a one-point coextension of D* with the coextension vertex j. Applying the APR-tilting
module Uy = T;](SEO)) @ & Pg(i) [5] at j, we obtain an algebra B* = End(Up),

i) ’

which is a one-point extension of D* and a truncated branch extension of C. More-
over, np, = ny is domestic, and, by [16], B is tame if and only if B* is. This proves
our claim. Thus B = D[M] with extension vertex x. Then D is a tilted algebra of
Euclidean type having a complete slice S in its preinjective component. Let T, be
the slice module of .S and H = End(7,). We want to show that the full subcate-
gory-% of the vector space category Hom (M, mod D) formed by all objects of the
form Homy(M, X) where X is an indecomposable preinjective which is a proper
predecessor of S, is wild. Let Ny = Exty(T, M). Since M is a regular D-module [21],
Ny is a regular H-module. It follows directly by the Brenner—Butler theorem [14]
that % is equivalent to the full subcategory ¥ of the vector space category
Homy(Ny, mod H) formed by all objects of the form Homg(N, Y) where Yy is
indecomposable preinjective. By [20, 3.5], ¥ is wild and consequently B is wild.

Now assume that for any simple sink or source of a branch of B the full sub-
category B(x) is a tubular algebra. As above we can assume that there is a simplé
source, say ¥, in a branch K of B such that the distance from y to the root a of X is

& .
the maximal distance from a to a vertex of K. Let D = B(y) and y - b be the unique
arrow in Qp starting at y. We have two cases: y is not a starting point of a zero-

relation or there is an arrow b —p> ¢ such that of = 0, and obviously c¢ is a simple
sink of B. In the former case M = P,(b) and the latter case M ~ Pp(b)/Sp(cy
o 15 '(Sp(c)). We claim that the vector space category Homy(M, mod D) contains
an object Homp(M, X) such that Endp(X) =~ K and dimgHomy(M, X)>3. This
implies by [20, 2.4] that B = D[M]is wild. By our assumption D is a tubular ex-
tension of C = Cg, and hence from [21, 5.2, Theorem 3] D is also a tubular coex-
tension of a tame concealed algebra C,. Moreover, the preinjective component Oy
of C, is also a preinjective component of, D. Since all vertices of K are not objects
of C, they are, by [21, 5.1] objects of C,. Thus every object of K belongs to the
support of all but a finite number of indecomposable modules from Q,. Hence, if
M = Py(b) then there is an indecomposable module Xe @; such that
dimg Homp(M, X) > 3 and obviously Endp(X) ~ K, since Q, is a preinjective com~
ponent of D. Similarly, if M = 5" Sp(c)) then there is an indecomposable module
3'
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Ye Q, such that 7Y # 0 and dimgHomp(Sy(c), ¥) > 3. Then, for X = 157,
Homy(M, X) =~ Homp(tp(M), 15(X)) 2 Homp(Sp(c), ¥) and we are done.

§ 3. Proof of Theorem 1. Obviously, (i) implies (i). We shall show that (iv)
implies (iii). Assume that 4 is tilting-cotilting equivalent to a canonical tubular
algebra A.

Since A is simply connected and not tilting-cotilting equivalent to a hereditary
algebra of Dynkin type, there exists [4, Corollary 3.4] a v-reflection sequence of
sinks #y,..,% such that D = S ..S; 4 is representation-infinite and clearly
T(A)~T(D) (take D=4 if A is representatlon-mﬁmte) By [24], D is tilting-
cotilting equivalent to 4 and consequently by [3, Theorem 2.5] D is a branch enlar-
gement -of tame concealed algebra C with np = n,. Then by [4, Proposition 2.6]
there exists a truncated branch extension B of C such that T'(D) ~ T(B) and n, = ng.
In fact, B = S}:,..S}’;D for a v-reflection sequence of sinks j;, ..., j. in Q,. There-

fore B is a tubular algebra of type n, and T(4) ~T(B).

(iii) - (ii). Assume that B is a tubular algebra of tubular type m. We shall show
that R = B is locally support-finite, nondomestic of finite growth. Then, by Propo-
sitions 1 and 2, T'(B) is nondomestic of finite growth. Let B, = B be a tubular exten-
sion of a uniquely determined concealed algebra C; and let indCy = Py v Ty v Q,

" where P, is 2 preprojective component of C,, Oy, is a preinjective component of Cy, T,
is a stable tubular P;(X)-family of Euclidean type, and the ordering from left to
right indicates that there are non-zero maps only from any of the classes to itself
and to the module classes to its right. From [21, 5.2 Theorem 3] B, is also
a cotubular algebra, that is, a truncated branch coextension of type m of a uniquely
determined tame concealed algebra C,, say with indC, = P, v T, v Q,. Then by
[21, 5.2, Theorem 4]

indBy =Py vIgv My,  vIiv Qs

where T is obtained from T}, by a finite number of ray insertions [7], [21, 4.5], 7% is
obtained from 7; by a finite number of coray insertions [7], 121, 4.6], and
M, = \/ , for stable tubular P,(K)-families T}, y € QF, of tubular type m.
10}

Here, for any integer i, 0}, , denotes the set of all rational numbers gwithi<g<i+l.
Moreover, all indecomposable projective (resp. injective) B,-modules are contained
in Py v T (resp. T v Q,). Observe that R is obtained from B, by successive one-
point extensions using modules whose restrictions to B, belong to TS v Q, or
are zero, and successive one-point coextensions using modules whose restrictions
to BO belong to P, v T or are zero. In this process, all stable tubular families 77 s
7 e QF, remain unchanged, and consequently they form componems of the Auslan-
der—Rexten quiver I'g of R. In particular, all shifts v(T°) ye 0, of T° by the Nakay-
‘ama automorphism v, considered here as the functor mod R — modR are also
components of I'y. By [4, Lemma 2.5] there exists a v-reflection sequence of sinks
45 ey By1y Of Qp such that: In(iy), .. -+ Ip(iy1) belong to T§ and D, = Sit,....Si B,

Ti(1y *

is a tubular extension of C; of type m. Applying [21, 5.2 Theorem 3] we concludc
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again that D, is truncated branch coextension of type m of a tame concealed al-

. gebra C,. Moreover, if indC, = P, v T, v Q,, then

indD; = P,vI{vM, ,vT5v 0,

where T7 is obtained from T by a finite number of ray insertions, T% is obtained

from T, by a finite number of coray insertions and M. 2=V T for stable tubular
. veQ}

Py(K)-families of type m. Then, using [21, 4.9], we conclude that, for

Ey = Ty, Tiy By,
IndE; = PovTov My v, vM, ,vTiv Q,

where T, = Tf = T7° is a (nonstable) tubular P (K )-family of type m obtained
from T7 (resp. T7) by a finite number of ray (resp. coray) insertions. Moreover,
projective-injective indecomposable E;-modules are in T, and indecomposable
injective non-projective E;-modules are in T5 v Q,. Repeating the same arguments
we deduce that there are (uniquely determined by B) concealed algebras S/ SHN
tubular algebras Dy = By, Dy, D,, ... of the same tubular type m such that:

(1) Each D; is a tubular extension of C; and a tubular coextension of Cit1s

@D +1—S,“m) v Sitpaa Dy for

i+
> Bgjeqy 10 Op;» j=0.

(3) If indC; = P;v T;v Q;, then

a v-reflection sequence of sinks

iy+1s o

dD; =P vIiv M vTieg vV Qe

where T7 is obtained from the tubular family T; by a finite number of ray insertions,
Tiyy is obtained from Tj,, by a finite number of coray insertions, and

M ;.=\ T for stable tubular P;(K)-families 77, y € 0}, of type m.
veQi.,
@ I Ejyy = T3, - Tiy, Ey then
de:i+1=PoVToVo\/ (Mo, v T ) v M, +1]+2VT+2VQJ+2
S<s€j

where Ty, , = TS, = TS isa (nonstable) tubular P, (K)-family of type m, obtained
from T, (resp. T7;1) by a finite number of ray (resp. coray) insertions.

(5) Indecomposable projective-injective (resp. injective nonprojective) Eji -
modules are contained in T;,,;, 0<s</ (resp. in TiraV Qi)

Thus, if D, denotes the full subcategory of R formed by all objects of D
j=0,1,2,.., then

indD, =P, vTiv ¥) Mo, ee1 vTied).

For j=0, we set J;41 = {ijys1s -, heny}. Lot 1 be the least number such
that J, ., contains v(x) for some vertex x of Qg,. We shall show that D, =~ v(B,)
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and consequently E, is isomorphic to the algebra

B, 0
D(B) B,

It is known [21, 5.1] that any tube from Tyo, yeE 09, consists of sincere B-modules.
Therefore, for any two vertices y and z of Qp, there are non-zero maps

Py(y) = X — Iy(z)

which are non-isomorphisms and X belongs to Tf,z. This implies that there exists
in indR a chain of non-zero maps

(OFE Pr(v(3)) = v(Pa(3)) ~ v(X) ~ v(Is(2)) ~ Pr(v*(2))

all of them are non-isomorphisms, and v(X) belongs to the stable tubular family
v(T{;2) of ind R. Moreover, since by [21, 5.2}, indR = o/ v v(T1,2) v # and "(Tm)
is stable, there is no a finite chain of non-zero maps

(**)_ PR(VZ(Z)) =YY ».->Y= PR(V(J’))

We claim that J, u...uJ, = (Qp)o. Let z be a vertex of Qp such that v(z) belongs
to J,. ;. Suppose that y is a vertex of Qp which does not belong to J; L...uJ,.
Since every injective D, -module is projective, y belongs to some Jg, s> n+1. If
s> n+1 then there exists a finite chain (of non-zero maps) of the form (*), a con-
tradiction. If s = n+1, both Px(v*(z)) and Pg(v(»)) _belong to T.+1. Moreover,
there is no non-zero maps between different tubes of T, ;. Hence, the existence of
a chain (x) implies that Pr(v*(z)) and Pg(v(»)) belong to the same tube of the tubular
P (K)-family T, . Thus there is a chain (+*) and we have again a contradiction.
Therefore J; u...uJ, is the set of all vertices of Q. From the minimality of ,
the socle of any indecomposable injective D,-module is of the form Sg(v(x)) for
some vertex x of Qp, and hence D, ~ v(B,). Let now, for p<gq in Z, B, , denote
the full subcategory of B consisting of the objects of B,, p < r < ¢. We claim that any
indecomposable B, ,-module is actually a B, ,,,;-module for some p<r<g—1.
Indeed, B, ,;, is obtained from B, , by a sequence of one-point extensions by
modules whose restrictions to B,, are either 0 or an indecomposable injective
B, ~module. From the previous considerations, it follows that any indecomposable
B, 4+ -module is either a B, ,-module or a B, g+1-module. Dually, any indecom-

posable B, ~module is either a B,_; ,-module or 2 B, --module. This show our
claim. Henoe B is locally support-finite and

ind B = V(-M;z,s+1 v Ton)
seZ

Further, using Ringel’s description [21, 5.2] of modules in M; .1 by radical vectors
of the corresponding quadrauc forms, we infer that B is of finite growth. Moreover,
foranyse Z, v(T) = T.s,, V(M s1+1) = Myin sinv1, and by [8, Theorem] ind T'(B)
consists of the stable tubular P,(K)-families Fi(T), v€ Oy, 0<s<n=-1, and
nonstable tubular- P, (K)- families F(Tsyp), 0<s<n—1, all of tubular type m.
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(@ — (iv) We shall proceed as in [4, Sections 5 and 6] using the following (more
general) lemmas below.

LrmMA 3.1. Let B be an algebra whose bound quiver consists of a full subcat-
egory C which is hereditary of type A, and objects of a walk connecting two different
objects of C, and assume that B is bound only by zero-relations. Then T(B) is not of
polynomial growth.

Proof. Use the free closed walks u and v constructed in the proof of
[4, Lemma 5.2] and apply arguments as in the proof of [22, Lemma 1}.

LemMA 3.2. Let B = C[M] be a one-point extension of a tame concealed al-
gebra C such that T(B) is tame. Then M is a regular C-module.

Proof. Since T(B) is tame so is B. Observe that C[M] and [M]C are full
subcategories of B. Then by [20, 2.5, Lemma 3], M is regular.

LemMa 3.3. Let B = C[M] be a one-point extension of a tame concealed algebra
of type D, or Ep by a regular module M, and assume that B is of polynomial growth.
Then M is a simple regular C-module.

Proof. As in the proof of [4, Lemma 5.4] we can assume that C is hereditary.
Suppose that M is not simple regular. Then by [20, 3.5], C is of type D, and M is
regular of regular length two with non-isomorphic simple composition factors. In
this case, the vector space category Hom(M, mod C) is one of two types (D,,, '3
or (B,, (n—2) ®(n—2)) [20], and hence mod B contains a full subcategory equivalent
to the subspace category [20] of the following poset

I I
OXQ
Then, combining the arguments from the proof of [22, Lemma 1] with these in the

proof of [27, Theorem] (see also [19]), we conclude that B is not of polynomial
growth.

o] e

LeMMA 3.4. Let B = C[M] be a one-point extension of a hereditary algebra of
type A, by a regular C-module M, and assume that T(B) is of polynomial growth.
Then M is a simple regular C-module.

Proof. Since B is tame, by [20, 3.5], M is of regular length at most two with
non-isomorphic simple regular composition factors. Suppose M is not simple regular.
Then by Lemma 3.1, M is an indecomposable of regular length 2 lying in a tube
of rank at least two. Let i be the extension vertex of C[M] and P = Py(i). Observe
that B contains, as a full subcategory, the one-point coextension D = [P]B of B
by P. Consider the universal Galois covering D — D with infinite cyclic group deter-
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mined by the cycle C. A simple analysis shows that D contains a full subcategory E
obtained by identifying the extension vertex of a one-point extension C’[X] of
a tame concealed algebra C’ of type D, by a simple regular C’-module X, lying
in a tube of rank n—2, to the vertex j in a quiver of the form

oa

O/
B,

o0—,,, —O0

.0

where o—o means c—»o or o« o, Let F be the full subcategory of E formed by all
objects of E except a. Then by [21, 4.9] F is a tilted algebra of type D,,, m> n, with
a complete slice in the preinjective component. Let Uy be the slice module [14] of
a complete slice S of the preinjective component of F. Then H = End(Uy) is a heredi-
tary algebra of type D,, and ¥ = Ext}( Uy, Pr()) is an indecomposable regular H-mod-
ule of regular length 2 lying in the tube of rank m—2 (see [4, Lemma 5.6]). More-
over, E = F[Py(b)] and the vector space category Homy(Y, mod H) is equivalent to
the full subcategory of the vector space category Homg(Pr(b), mod F) whose indecom-
po:able objects are of the form Homg{(Px(8), Z) where Z belongs to the tube con-
taining M or is an indecomposable preinjective F-module and a proper predecessor
of S. From Lemma 3.3, the one-point extension H[Y]is not of polynomial growth.
Therefore, by Proposition 1, D, D, B and hence T(B) are not of polynomial growth.

LemMA 3.5. Let C be a tame concealed algebra, M a simple regular C-module
and B = C[M][M). Then T(B) is not of polynomial growth.

Proof. Let D = C[M]. We can assume that D is tame, that is, by [4, Lemma 2.3]
and Lemma 2.1, np, is either domestic or tubular. Assume first that np is domestic.
Observe that M is a regular D-module of regular length 2 (see the proof of Lemma 3.3)
and hence D is not of polynomial growth for C of type D, or E,. If D is of type 4,,
that is, C'is hereditary algebra of type 4,_,, then B contains two full subcategories
CIM]{M] and [M][M]C, and, as in the proof of Lemma 3.4, we conclude that
T(B) is not of polynomial growth. '

‘Now assume that ny, is tubular. We shall show that B is wild. Let x be the ex-
tensilc‘m Yertex in Qp corresponding to M. Then, by {7], Pp(x) = 1p(M) for some
positive integer . From [21, 5.2] D is also a tubular coextension of a tame concealed
aIgebra C’, having x in its support, and the preinjective component Q' of C’ is the
unique preinjective component of D. Then there exists an indecomposable Xe Q'
such that dimg Homp,(Py(x), X)>3 and 157X 0. Put ¥ = 15" X and observe that
I*{om,,(M » ¥) = Homy(tpM, 1Y) =~ Homy(Pp(x), X). Thus, Endy(Y) = K,
dimgHomy(M, ¥)>3 and consequently by [20, 2.4] the vector space category
Homp(M, mod D) is wild, Therefore D, and hence also T(B), is wild.

, Lemma 36 Let B= C[M] be a one-point extension of a tame concealed al-
gebra C by a simple regular module M. Let i denote the extension vertex corresponding
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to M, and A is obtained from B by identifying i to the vertex j in a quiver with underlying
graph as follows

*) ° °

5 A Jpg
Then T(A) is not of polynomial growth.

Proof. Since T'(ede) =~ eT(A4)e for any idempotent e, without loss of generality,
we can assume that the walk j, —o—...—o—j, has radical square zero. Let D be
the full subcategory of 4 consisting of all vertices except a. Then D is a truncated
branch extension of C. Assume that ny, is equal to (p, ), 1 <p <g¢. In this case 4 is
a bound quiver algebra bound by zero-relations. Let i’ be the coextension vertex
of the one-point coextension E = [Pg(i)]4. Observe that A contains a full sub-
category F obtained from E by identifying i’ to the vertex j; in a quiver of the form (¥).
Consider the universal Galois covering F — F with infinite cyclic group determined
by the cycle C. Then F contains a full subcategory G obtained by identifying the
extension vertex of a one-point extension C'[X] of a tame concealed algebra C’ of
type D, by a simple regular module X to the vertex j; in a quiver of the form (¥).
Therefore, in order to prove the lemma, it is enough to show by Proposition I that
if C is of type D, or E,, then 4 is not of polynomial growth. We can assume that
a is a source. Indeed, if @ is a sink, applying the APR-tilting module [5]
Ty =1 (S@® @ Pyj), we replace 4 by an algebra A* (see the proof of

Jj#a

Lemma 2.1) of the same form as 4 and such that a is a source in 4*, and 4 is of
polynomial growth if and only if 4* is of polynomial growth. Thus 4 = D[Y]
where Y = P,(j,). Applying, if necessary, the APR-tilting or the APR-cotilting
A-module at the vertex b, we can also assume that j, is a sink or a source in D.
If np, is neither domestic nor tubular, D is wild, by Lemma 2.1 and [4, Lemma 2.3],
and hence A4 is wild. Assume that n,, is domestic. Then D is a tilted algebra of type D,
or E,, with a complete slice in the preinjective component. Let Up be the slice module
of a complete slice in this component, H = End(Up) and Ny = Exty(U, Y). Then
the vector space category Homp(Y, mod D) contains a full subcategory % equiv-
alent to be full subcategory ¥ of the vector space category Homp(XN, mod H)
formed by indecomposable objects of the form Hompg(N, Z) for all indecomposable
preinjective H-modules Z. On the other hand, we have, by [14], the connecting
Auslander—Reiten sequence in mod H

0 - Homp(U,I) > W—-N -0

where I = Ip(i,). The middle term W is determined up to extension by the short
exact sequence

0 — Exty(U, rad ¥) — W — Homy(U, Ifsoc) - 0
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[14], [21]. A simple analysis shows that for any orientation of the quiverj,_, — j,— b,
the above connecting Auslander-Reiten sequence has two indecomposable middle
terms, and hence N is an indecomposable regular module of regular length at least
two. Then by Lemma 3.3, H[N] is not of polynomial growth. Hence ¥”, and con-
sequently 4, is not of polynomial growth. Assume now that n, is tubular. Then D
is a tubular algebra and, as in the proof of Lemma 3.5, we show that there exists
a preinjective D-module X such that Endy(X) = K and dimg Homp(Y, X) > 3.
Hence 4 = D[Y] is, by [20, 2.4], wild.

Now assume that 4 is simply connected and T(A4) is nondomestic of polynomial ’

growth. If 4 is representation-finite, then since 4 is not locally representation-finite
there exists, by [4, Corollary 3.4] a v-reflection sequence of sinks i,, ..., #, such that
S%..S% A = B is representation-infinite but S;i_;...Si 4 is representation-finite.
From [4, Lemma 3.1] B is simply connected and, by [24], tilting-cotilting equivalent
to 4. Thus we can assume that A is representation-infinite. Then, using Lemmas
3.1, ..., 3.6 and their duals, we prove in the same way as in [4, Section 6] that 4 con-
tains a tame concealed algebra C as a full convex subcategory, and is a branch enlarge-
ment of C. From [4, Proposition 2.6] there exists a truncated branch extension D
of Csuchthatn, = npand T(4) ~ T(D). Since T'(4) is nondomestic, by [4, Theorem]
and [3, Theorem 2.5], n, = n, is nondomestic and hence, by [4, Lemma 2.3], D is
nondomestic. On the other hand, D is tame since T(D)is tame. Therefore, D is a tu-
bular algebra and n, = n, is tubular. Then, by [3, Theorem 2.5] D, and thus 4, is
tilting-cotilting equivalent to a canonical tubular algebra. This finishes the proof of
Theorem 1. .

§ 4. Isomorphisms of trivial extensions. Two algebras 4 and B are said to be
reflection-equivalent if there exists a sequence of algebras 4 = Ay, 41, ..., 4,41 = B
such that 4,,, ~ S; 4, or S;, 4., 0<r<m, for a sink i, or a source j, of Q,, .

We shall ‘show the following theorem.

THEOREM 2. Let 4 and R be two simply connected algebras such that T(A) and
T(R) are nondomestic of polynomial growth. Then the following conditions are equiv-
alent:

@) T(4) =~ T(R).
(i) A=R.
(i) 4 and R are reflection-equivalent.

Proof. The implications (iii) — (ii) and (ii) — (i) are obvious. We shall show
that (i) — (iii). From Theorem 1, there are two tubular algebras B and A such that 4
is reflection-equivalent to B, R is reflection-equivalent to A, and T(B)~ T(4) ~T(R)
2= T(A). Consider the following diagram of functors

modA mod B
i Fg FB
D
mod T'(A) ——>modT(B)
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where Fj and F} are the push-down functors [6, 13] and & is induced by an isomor-
phism yr: T(A) — T(B). We know [8] that every module X of modT(4) is of the
form F7(M) for some M e modA, and hence

HOmr(A)(Fa(M ), FA(N)) =~ @z Homy(M, V' N)

where M and N belong to mod A. Similarly, every module ¥ from mod T(B) is of
the form F2(U), for some UemodB and

Homys)(FR(U), Fi(W)) = @Z Homy(U, VW).

if U and W belong to- mod B. Observe that, if P and P’ are two indecomposable
projective B-modules then Homg(P, P") # 0 if and only if Homg(v™ 1P, P) % O.
Hence, since Qz has no oriented cycles, if P and P’ are two non-isomorphic inde-
composable projective B-modules with Homg(P, P") # 0 then FP induces iso-
morphisms

® Hotmysy(F7P, F{P) = Homy(P, P,
*

Homy, (FiP, F3P) =~ Homs(P, P)®Homsz(P, v(P)) .

We have similar relations between indecomposable projective modules over T(A)
and A. Moreover,

indg = \/ (Ms,:-i-l v 7‘;«1—1)
seZ

and
indd = \/ (M si1 v Ty
seZ

where M, ;. (tesp. M, .+,)is formed by stable tubular P, (K)-families, and, for any
seZ, T, (resp. T;,) is a nonstable tubular P,(K)-family. Denote by £, the full
subcategory of indA formed by the indecomposable projective A-modules Pj(i),
ie(Qs)y where we identify A with A,. Obviously A=~End;(P), where

P= @ P;(). Letqbethe least integer such that T, u+1 contains a module from 2.
ie(Qado

Since F2(T,+ 1), 0< s< n—1, form all nonstable tubular P,(X)-families inind T(B)»
<PF,‘,‘(T,,’+1) = FJ(T,,,) for some r, 0 < r<n—1. From the proof of Theorem 1 we
deduce that 2, is the full subcategory of ind A formed by all projective 4-modules
from the tubes Ty, ..., Tysn. Observe also that F; (T}, ) = F(T,, ) forl1 <j<n.
Let 25 be the full subcategory of ind B consisting of all projective B-modules of the
tubes T., ¢, ..., Tp1n. Observe that the endomorphism algebra of the direct sum of
all projective modules from £ is isomorphic to the algebra D, ~D,,,, defined
in the proof of Theorem 1 (implication (iii) — (ii)). Let & be the category whose
objects are indecomposable projective T(B)-modules and, for P(i) = Pr(),
P(j) = Pr(i), i.j€ (Qrmyos

Homs)(P(i), P(7) if i+ jand |
N s Homg(Ps()), Ps () # 0
Homy(P(@), P()) = Endrn (POU EndraP@) I £ =]
’ 0 otherwise
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where J(Endygy(P(i))) is the Jacobson radical of Endrm(P(f). Ths
Homp{P(i), P(})) 2 K. Now, using the formulas (x), we conclude that the functors:
¢F{: modAd - modT(B) and FP: modB - modT(B) induce isomorphisms- of
categories P, ~ P and Pp~P. Consequently A=~ D,. But D, = Si:“m...S,-’: B, for
the v-reflection sequence of sinks i,,, ..., iy, constructed in the proof of Theorem 1,
and so A and B are reflection-equivalent. Hence 4 and R are reflection-equivalent,
and Theorem 2 is proved. i

The following corollary is an immediate consequence of the above proof.

CoROLLARY 1. Let A and R be two tubular algebras and the Grothendieck groups
K,(4) and K;(R) have rank n. Then the following conditions are equivalent:

0 T ~T(R)
@) A~R .

(i) Ree SF...S; A for a v-reflection sequence of sinks iy, ..., i, t<n, of Q4.

(v) A=~ S;;...S; R for a v-reflection sequence of sinks iy, ..., iy, <1, of Qg.

§ 5. Remarks. (1) It follows directly from Theorem 1 and [23] that a nondomestic
trivial extension of a simply connected algebra is stably equivalent to the trivial ex-
tension of a canonical tubular algebra.

(2) Let B be a tubular algebra and r(B) denote the rank of the Grothendieck
group Ky(B). It follows from our proof of Theorem 1 that the number 7(B) of non-
stable tubular P,(K)-families in I'yg, coincides with the number of tubular algebras
of the form S, ... 87 B for a v-reflection sequence of sinks 7, , ..., i, in Qp, t<r(B),
and hence n(B) < r(B) < 10. Moreover, using [21, Section 5], one can deduce that
3<n(B). I Bis a canonical tubular algebra then n(B) = 3 by [15]. On the other
hand, for any positive integer m, 3< m < 9, it is not difficult to find a tubular algebra B
such that n(B) = m. We do not know if there exists a tubular algebra B such that
n(B) = 10. We end the paper with an example of a tubular algebra B such that
n(B)=9. :

) Let B be the bound quiver algebra KQ/I where Q is the quiver and 1 is the ideal
in the quiver algebra KQ generated by the elements yB o0, jw—ou and g&f. Then B

e 2
°

7

pepe 2

!l 15
0 i O i O
0 ¢ 9 & g

Is a ome-point extension (resp. one-point coextension) of the tame concealed al-
gebra -CO (tesp. Cy) of type Ej, formed by all vertices of Q except 7 (resp. except 1),
Py a simple regular C,-module (resp. C;-module) lying in the tube of rank 5. Thus B
is a tubular (and cotubular) algebra of tubular type (2, 3, 6). Then, in our notations
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from the proof of Theorem 1, we have the following nine (nonisomorphic) tubular
algebras reflection-equivalent to B: D, = S{B, D, = S;D;, Ds=S;D,,
Dy=8iDs, Ds=S453Ds, Ds=SiDs, Dy=SiDs Dg=SioD; and
Dy = S7Dg = B. :
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Non-trivial homeomorphisms of AN\IV without
the continuum hypothesis

by

Saharon Shelah (Jerusalem) and J. Steprans (Toronto)

Abstract. The problem of constructing non-trivial homeomorphisms of SN\ N without assuming
the continuum hypothesis is examined.

In [3] Shelah showed that it is consistent that all automorphisms of & (w)/Finite,
or, equivalently, all autohomeomorphisms of SN\JV, are trivial in the sense that they
are induced by almost-permutations of the integers (an almost-permutation of w
is an injective function from @ to w whose domain and range are both cofinite).
In [2] W. Rudin showed that the continuum hypothesis implies thet there is a non-
trivial autohomeomorphism by showing that there are in fact 22 such homeomor-
phisms. It is the purpose of this paper to examine the question of how to construct
non-trivial autohomeomorphisms in the absence of the continuum hypothesis. The
reader should be warned that S N\JV and 2 (w)/Finite will be used almost interchange-
ably. As well, subsets of the integers will routinely be confused with clopen sets
in SNN\MV. '

At this point the reader may be wondering why the argument assuming 2*° = &,
does not generalize to M4, and make the rest of this paper pointless. The reason,
of course, is that an induction of length greater than @, may run into a Hausdorff
gap and stop. In fact it will be shown in [4] that PFA irhplies that all autohomeomor-
phisms of SN\N are trivial and so this is consistent with M.A,, . This raises the follow-
ing unanswered question:

QuesTION. Is it consistent with MA4,, that there is a non-trivial autohomeo-
morphism of SN\N?

The first result towards obtaining non-trivial autohomeomorphisms of SN\N
without the continuum hypothesis is due to Frolik [1]. He showed that the set of
fixed points of any 1-1 continuous function from an extremally disconnected space
to itself form a clopen set. To see how this can be used to construct non-trivial auto-
homeomorphisms of BN\ consider the following lemma.

LemMma 1. Suppose that f is an ideal on o generated by an =*-ascending
sequence {A,: «ex}. Suppose further that f, is an almost-permutation of A, for
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