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the proof of Theorem 2.2. With a minor modification of the arguments used there
we prove the following claims:

CLAM 1. There exists a set Z, =Z such that

0 Z, ¢7,

(i) YA<Z; VgeG (g[d] cZ, —+ AAg[A] €J):

CLAM 2. There exist a set Z<=Z, and a family F< G such that
(i) Z¢J and [F| <),

(i) VA<Z Vge G (g [A]r\fUFf[Z] =@-del)

This can be regarded as a satisfactory outline of the proof of Theorem 3.4,
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Locally ‘connected curves viewed as inverse limits
by

Jacek Nikiel (Wroctaw)

Absiract. Every locally connected curve is the limit of an inverse sequence of regular continua
with monotone bonding surjections. Moreover, any space which is the limit of an inverse sequence
of connected graphs with monotone bonding surjections is a rather small continuum.

1. Introduction. All spaces considered in this paper are assumed to be metric,
all maps are continuous, d always denotes a distance function, and ‘continunm’
means ‘compact connected (metric) space’.

We will say that a space X is:

() a graph provided X is a one-dimensional (compact) polyhedron;

(b) a completely regular continuum provided X is a continuum such that
int(Y) # 0 for each nondegenerate subcontinuum Y of X;

(¢) a regular continuum if X is a continuum such that for any &> 0 and each
x € X there exists an open neighbourhood U of x in X such that bd (U) is finite and
diam U < & (regular continua are often called ‘“rim-finite continua’);

(d) a curve provided X is a continuum of dimension 1.

Clearly, every connected graph is a completely regular continuum and every
regular continuum is a locally connected curve. Moreover, each completely regular
continuum, is regular (see for example Proposition 3.2 below).

Recall that a (continuous) map f: X— Y is said to be monotone if f~'(y) is
connected for each ye Y.

It is well-known that every curve X is the limit of some inverse sequence (X, f,)
of (connected) graphs (see e.g. [2], Theorem 1.13.2, p. 145; it is not difficult to see
that the sequence can be chosen in such a manner that all the bonding maps,
fot X, X,, are surjections). If X is locally connected, one can use the general
method of S. Marde$ié to produce an inverse sequence (Y, g,) of locally connected
continua Y, with monotone bonding surjections g,: ¥,.;— Y, such that
X = liminv(¥,,g,) ((¥;, g, is obtained as a ‘modification’ of (X,,£,); see [8],
p. 164 — the proof of Theorem 2). However, in general, almost nothing can be
proved about (¥,, g,). In particular, ¥,’s need not (and often they can not) be graphs;
they are simply locally connected continua. The only essential infofmation on
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Y,'s is a consequence of the elementary fact that all ‘the projections A, X — Y,
are monotone surjections ([1], Lemma 4.2, p. 241). For example: if X is a connected
graph (resp. a regular continuum, ...) then each ¥, is also a connected graph (resp.
a regular continuum, ...; see e.g. [7], p. 85). On the other hand, recall that if (X,, /)
is an inverse sequence of locally connected continua with monotone bonding surjec-
tions, then liminv(X;,, f,) is again a locally connected continuum ([1], Theorem 4.3,
p. 241). Moreover, the limit of an inverse sequence of curves is again a curve
([2], Theorem 1.13.4, p. 149).

This consideration leads to some natural questions which motivate the research
reported in this paper. In Chapter 2 we prove that every locally connected curve
is the limit of some inverge sequence of regular continua with monotone bonding
surjections. In Chapter 3, we show that limits of inverse sequences of connected
graphs. with monotone bonding surjections are ‘very small’ continua.

Let X be a space and A a family of subsets of X. We write

mesh A4 = sup{diam ¥: Ye A}.
A is said to be a null-family if for any &> 0 the collection {Y e 4: diam Y > s} is
finite. :
Now, we give an example of a ‘large” locally connected curve X, homeomorphic
to the limit of an inverse sequence of regular continua with monotone bonding surjec-

tions. Appropriately geperalized ideas of the construction given in Example 1.1
below will give the proof of the main Theorem. 2.2.

1.1. ExaMPLE. Let C denote (in this section only) the Cantor ternary set con-
structed as usual in [0, 1] For each nonnegative integer n, let 4, be the unique
family such that:

(a) A, consists of exactly 2" elements which are pairwise disjoint closed intervals;
1
(b) the length of each member of A4, is equal to 7 ; and

) Ccl 4,.

Then the family 4 = {InC: Ie A;,, n=20,1,..} is a basis for C and 4 consists

o0
of (nonempty) closed-open subsets of C. Moreover, C = () () 4,.

n=0

k
For each n=0,1,.., put D,,={I>< {5;}:IeA,,,k=O,'l,...,2"} and

[-<]
E, = Uky D,.
Let X = (Cx[0, 1)U E,. Clearly, X is a locally connected curve in the plane.

Moreover, X is not regular; in fact, X is rather ‘Jarge’ — because it contains an
uncountable family {{c}x[O, 1]: ce C} of pairwise disjoint nondegenerate sub-
continua.

Forn=0,1,.., let F, denote the decomposition of X into the components

of E, and points; put X, = X/[F, and let g,: X— X, be the projection. Note that
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each F, is upper semicontinuous (because the family of components of E, is a null-
family). Since F,., is a refinement of F,,, there is a (unique) map f,: X,+1—> X,
such that g, == f, o g,4+4, for n=0,1,... Observe that each f, is a (continuous)
monotone surjection. Hence, there is an induced surjection g: X—liminv(X,,f,).
Since the maps g,, n = 0,1, ..., separate points of X, g is one-to-one. Thus g is
a homeomorphism. It is not dxfﬁcult to check that each X, is a (planable) regular
continuum,

2. Ynverse limits of regular continua.

2.1. LemMA. If A is a closed zero-dimensional subset of a locally connected
continuum X, then for any &> 0 there exists a finite collection K of pairwise disjoint
subcontinua of X such that meshK<¢ and A=) K.

Proof. Since 4 is compact zero-dimensional, there exists a (finite) family L
of pairwise disjoint nonempty closed-open subsets of 4 such that meshL < /3 and
A= L Let r=min{d(B,C): B,CeL,B # C}. For each xe X let U, be
an open neighbourhood of x such that U, is connected and diam U, < min {r/2, &/3}.
Since A is compact, there are x,, ..., X, € A such that 4 = U, u...u U,,. It suffices
to let K be the family of all components of ¢l(Uy,)... ucl(U,,). In fact, then each
De X is contained in some set

Ep = U {(U,): l(U,)nB# @}, Bel.
Clearly, diamEg < ¢ and

EznE; =0 ifB,CeL,B#C.

2.2. THEOREM. If X is a locally connected curve, then there exists an inverse
sequence (X, f,) such that:
(i) each X, is a regular continuum;
(ii) each f,: X, — X, is a monotone surjection;
(iii) X = liminv(X,, f,).
Proof. Since dim X =1, there exists a sequence Py, Py, ... such that, for each n,
P is a covering of X, which consists of finitely many open sets, meshP, < 1/n and
= |J {bd(VU): UeP,} is zero-dimensional.
Put ¢, = 1and let K; = L, , be a finite collection of paitwise disjoint subcon-
tinua of X such that meshK, < and 4; <) K; (see Lemma 2.1).
Suppose that for a positive integer 7, a positive real number &, and families
Ly, 1<k<n, are already defined such that:

(1) each L, , is a finite collection of pairwise disjoint subcontinua of X,
@ . Ayu..ud,cUL,,, foreachk,

and .
(3) if 1<k<I<nand BeL,, then there is a Ce L, such that B< C.
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For any k, 1<k<n, let r; = min{d(B,C): B,CeL,,, B# C}. By (1)
rl>0. Put g, = }min{e,, 7, ..., 7a} and let K, be a finite collection of pairwise
disjoint subcontinua of X such that meshkK,.; <8,y and A,., U K,y (see
Lemma 2.1). Put L, ,4; = K,y and let L,  be the family of all components
of the set | (K, +1 UL, ) fork = 1, ..., n. Obviously, conditions (1)(3) are satisfied,
with n replaced by n+1.

Observe that, by the choice of ry ~ and e,,

(4 if BeL,,, 1<k<n, then either Be K, and Bn{ L,~,,, = @, or there
is a B'€L,_; , such that B = B'U|J {CeK,: CnB # B}.
Moreover,

&) Err1 S48,

- For each positive integer k and any sequence B,,, B, +1, ... With the properties:

n~1

6) k<m; BynULy-yx=90 for k<m,
and
) B,eL,, and B,cB,,, for n=mm+l,..,

let Ci(B,,, Bysy, ...) = cl(B,UB,,U..). Hence
8) each Cy(B,, B,+1,..-) is a continuum,

For any positive integer klet M, = {C\(B,,, Bp+y, --.): the sequence B, By,
satisfies conditions (6) and (7)}. We show that
() if C(Bn,, Byt ), CBy, Bory,...) €M, and either m # n or m = n and
Bm #B:n, then Ck('Bm, ‘Bm+15 )ﬂ Ck(Br,u -BP’H-!.’ "‘) =0
and

5 5

(10) diam Ck( m3 Bm+1# )< '—F < 4k~ 4

To prove (9) first consider the case m # n. We may assume that k<n<m.
By (6), B,nB,_; = & — because B,eL, , and B;,_; €L, , By (4, B, ek,
and B, n B, = 3. By the choice of rj’, d(B,,, By) > 1" 2 4+ &y 4. Since diam B < g,,4 1,
for Be K,,..4, it follows (by (4)) that d(B,s1, Blis1) > =2 8mey = 2" 8ys 1. NOW,
an easy inductive proof shows that, for each positive integer i,

! m
A(Brsis Bua ) > 15 =281~ 2 Bg2— 0o =2 Big

Z2 812 gy e =2

1 1 4
22'8m+1*2'3m+1 Z+...+? >§8m+1.

Therefore,
d(ck(Bm: Bm+1: )3 Ck(Bill, Br’l+1: )) >~?5:'51'1+1. >0.
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Suppose that m = n and B, # B;,. Then
d(—Bms B;n) > I‘;:" 2 4'6m+1 )
and just as above,
d(ck(Bm: -Bm L3 ER -)9 Ck(Br’m rln+13 . ))

Now, we estimate diam C(B,,, B4 15 -..). Observe that B, € X, (because of (4)
and (6)) Hence diam.B, < &,. An inductive proof shows that, by (4) and (5),

m+1>0

dlam(BmUBm-l 1Y UBm-H)

1 1
Lyt 2 2 Bt o+ 2 By S 8y 20 8"’(1 +...+Z,~)

5
S

<3z eSS P

Wi

This establishes (10).

By (8) and (9), we see that
(11) each M, consists of pairwise disjoint continua.
Moreover, by (10) and the fact that each L,, ,, is finite (see (1)), we infer that
(12) each M, is a null-family.

For each k let N, = M, u{{x}: x e X—-U M,}. By (11) and (12), N is a mono-~
tone upper semi-continuous decomposition of X. Let X, denote the quotient space,

= X/Ny, and let g,: X— X, be the quotient map, for £ =1, 2, ... Clearly,
(13)  ‘each g, is a monotone surjection. =
We show that
(14) X, is regular for k= 1,2, ..

Let x be a point of X; and U an open neighbourhood of x in. X,. There is a posi-
tive real number & such that

g )= {yeX: dy,g: (%) < 8} CgEl(U)
1
Let n be an integer such that nxk and meshP, < . Put

Q=U{4: 4eP, and dng;'(x) # O} .

Then g; 1(x) <int(Q) = Q =gy }(U). Since P, is finite, bd(Q) = 4,,. By (2), there
are finitely many sets Cj,.., C;eé M, such that bd(Q)=C u..uC, and
bd(QnC, # @ fori=1,..,1 Put

W= Q—(Ciu..u(C).

Obviously, W is open in X. Observe that, by (11), if Ce M, and CnQ # @, then
either C< Q or C = C, for some i€ {l,..,I}. Hence W= {deN;: 4=0}.

3 — Fundamenta Mathematicae 133/2
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Since g5 1(x) < Q, it follows that g '(x) = W and g; "(x)nC, =B fori=1,..,1L
Put V = g,(W). Then xe V< U, V is open in X, and bd(¥) = {gx(Cy), ..., g(CD)}
is finite.

Note that, for each k = 1, 2, ..., there is a unique map f;: Xy~ X such that

@5 gk = JSeoGrer -

In fact, (3) implies that for each Ce M, , there is a (unique) D e M, such that
C < D. Obviously, by (13),
(16) each f is a (continuous) monotone surjection.

According to (15), there is the induced map g: X —liminv(X,, f;). Since all
g,’s are surjections, g is also a surjection, By (10), the maps g, , g3, ... separate points
of X. Hence g is one-to-one. In view of (14) and (16), the proof of Theorem 2.2 is
complete.

2.3. Remark. (i) Recall that the limit of an inverse sequence of curves is again
a curve ([2], Theorem 1.13.4, p. 149) and the limit of an inverse sequence of locally
connected continua with monotone bonding surjections is again a locally connected
continuum ([1], Theorem 4.3, p. 241). Thus Theorem 2.2 gives a characterization of
locally connected curves, v

(ii) It can be shown that if a continuum X of Theorem 2.2 is planable, then all
X,’s can be chosen to be planable regular continua. .

3. Totally regular continua and their inverse limits. We will say that X is a rorally
regular continuum if X is a continuum such that, for any countable subset Q of X,
each x € X, and each &> 0, there exists an open neighbourhood U of x in X such
that diam U < ¢, bd(U) is finite and bd(U)Yn Q = @.

3.1, Lemma ([4], Lemma 2, p. 605; see also [5], Theorem 1.3, p. 202), If X
is a nondegenerate completely regular continuum, then there exist subsets C and P,,
n=1,2,.. of X such that:

(a) C is homeomorphic to the Cantor set;

(b) for each n = 1,2, ..., P, is an arc with end-points a,, b,;

© P,—{a,, b,} isopen in X, forn=1,2,..;

@ {P,, Py, ...} is a null-family;

& P.nC={a, b}, for n=1,2,..; ‘ )

) P,nP, = D, for any positive integers m, n such that m # n;

(&) X=CuUP,UP,uL...

3.2. PROPOSITION. (i) Every completely regular continuum is a totally regular
continuum. !

(i) Every totally regular continuum is a regular continuum.
Proof. (i) is an easy corollary to Lemma 3.1, and (ii) is obvious.

3.3. PROPOSITION. A subcontinuum of a totally regular continuum is also a iotally
regular continuum.
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3.4, ExampLE. Note that the triangular Sierpinski cutve (see e.g. [6], p. 276)
X has the following properties: (a) X is a regular continuum — in fact, for each.
x € X, the order of x in X does not exceed 4; however, (b) X is not a totally regular
continuum. ‘

Another example of a regular but not totally regular curve is the Knaster dyadic
continuum

Y = ([0, 11x {0} v {(x, y) e R*: (x—- 2k2:1

k=1,2,., 27 n=1,2,.}.

2 1
2
) +y —4",y>0,

Moreover, Y has the following interesting property: each connected subset of Y is
arcwise connected (see [9], Example on p. 232).

3.5. LeMMA. If Y is a hereditarily locally connected continuum, Z a continuum
ond h: Y—Z a monotone map, then the set P = {zeZ: h™'(z) is nondegenerate}
is countable.

Proof. Indeed, since Y is hereditarily locally comnected, the collection
{h~1(2): z € P} of subcontinua of Y is easily seen to be a null-family.

3.6. THEOREM. If (X,,f.) is an inverse sequence such that all the spaces X,
are totally regular continua and dll the bonding maps f,: X,.,—X, are monotone
surjections, then X = liminv(X,,f,) is a totally regular continuum.

Proof. By [1), Theorem 4.3, p. 241, X is a locally connected continuum. Let O
be a countable subset of X. For n = 1,2, ... let g,» X— X, denote the projection.
Then g, is a continuous and monotone surjection, and g, = f o gy, forn =1,2, ..
For cach n let P, = {y € X, g, () is nondegenerate}.

Suppose that P, is uncountable for some positive integer n. Hence, there is
an ¢>0 such that the set 4 = {yeP,: diamg, '(y) > ¢} is uncountable. There
exists' an integer m such that m>n and diamg,'(z) <e, for each ze X,,. Put
f=fyofiw1 0o fyu—y Hence fi X, — X, is a monotone surjection, By Lemma 3.5,
B = {ye X,: f~'(y) is nondegenerate} is countable (because every regular con-
tipuum is hereditarily locally connected). Hence the set 4—B is uncountable. Let
yeA—B. Since y ¢ B, () = {z} for some z€ X,,. Recall that diamg,, }(z) < &.
However, g5(z) = (fogm) ™ 2(») = gn'(y). Since ye 4, we get diamg, '(3) > s,
a contradiction. We have proved that the sets P,, n=1,2,.., are countable.

Let x e X and U be an open neighbourhood of x in X, There exist a positive

‘integer k and an open subset I of X, such that x e gi; W)cU. Let P = g(QUPy;

s0 P is a countable subset of X,. Since W is a neighbourhood of g4(x) and X; is totally
regular, there exists an open set W’ such that g,(x) e W' < W, bd(W’) = {¥1s s 01}
is finite and bd(W)AP = @. Put ¥ = gi *(W’). Hence ¥ is open and xe Ve U.
Note that bd(¥)<gp (bd(W") = g '(P1) V. Vgi (7). Simee Py, .o, Y1 € P
the sets gy '(¥y)s -, g% (») are singletons. Therefore bd(V) is finite. Since
P1s s V& gu(0Q), it follows that bd(F)n Q = @.

3
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3.7. COROLLARY. If X is the inverse limit of an inverse sequence of connected
graphs (completely regular continua) with monotone bonding surjections, then X is
a totally reguldr continuum.

3.8. TuEOREM. If X is @ completély regular continuum, then there exists an
inverse sequence (X, f,) such that:

(i) each' X, is a connected graph;

(ii) each f,: X,+1— X, is a monotone surjection;

(iti) X = liminv(X,, f,)-

Proof. Let Cand P,, n = 1,2, ..., be subsets of X as in Lemma 3.1, For each
positive integer n, let A, denote the family of all componenis of the set

n
Y, = X— ) (Pe—{&, b}). Observe that ¥, is locally connected and compact for
k=1

n=1,2,.. Hence, each family A, is finite. Let B, denote the decomposition of X
into pojnts and the members of 4,. Let X, denote the quotient space, X, = X/B,,
and let g,: X— X, be the quotient map, for n =1, 2, ... Observe that each X, is
a connected graph and each g, is a monotone surjection. Moreover, forn = 1, 2, ...
B,,, is a refinement of B,. Hence there are (unique) monotone surjections

fut X,,H—»X,,' such that g, = f, © gnsq, for n.= 1,2, ... In order to prove that X is
homeomorphic to liminv(X,, f,), it suffices to show that ‘ '

"(+)  the maps g,,,‘h =1,2, ..., separate points of X.

o3
By the properties of C and P,’s stated in Lemma 3.1, it follows that C = () ) 4,.

. .. ns=1
Hence 4 = 4, U A4,0... is a null-family. This implies that (+) holds. The proof is
complete.

3.9. ExaMpLE. There exists a continuum X such that:

(i) X is the limit of an inverse sequence of (connected) graphs with monotone
bonding surjections (then, by Corollary 3.7, X is a totally regular continuum; this
can also be derived from the fact that X is a dendrite), and

(i) X is not a completely regular continuum. ‘

Let {ry, ry, ...} be an enumeration of all rational numbers from the open

"n
x {0})ul,u..ul,. Moreover, put X = ([0, I]x{0huTjuu...= X, UX,U..
and, for n ='1,2, ..., let f;: X,.1— X, be defined by the formula

f;‘(x)={x if xe X,,

Fory  if xely.

interval ]0; 1[. For each posiﬁve integer n, let I, = {r,} x[O 1] and X, = ([0, 1]x

Observe that each X, is a graph, each f, is a monotone retraction, X is a dendrite
which is not a completely regular continuum (because [0, 1]1x {0} is a nowhere
dense subcontinuum of X), and X is homeomorphic to liminv(X,, f;).

3.10. Remarks. (i) Observe that, for any completely regular continuum X,
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the inverse sequence (X,,f,) which was constructed in'the proof of Theorem
3.8 has the following additional property: :

(4) there exist triangulations K, of X, such that f,: (Xp41: Ky41)—=(Xs K,)
is a simplicial map for n = 1,2, ... )

Furthermore, it is casy to give a straightforward proof that if a continuum X is
the limit of an inverse sequence (X, , f,) of connected graphs with monotone bonding
maps which fulfil the condition (), then X is completely regular.

(ii) Recall that limits of inverse sequences of connected graphs with ‘monotone
simplicial bonding maps® have been considered in [3]; but: (X, £.) was called there
an inverse sequence of graphs with monotone simplicial bonding maps provided,
for every n, there exist triangulations X, and K, of X, such that f,: (X,41> Kns1)
—(X,, K,) is simplicial. It follows that each dendrite is the limit of the inverse se-
quence of finite dendrites with monotone simplicial bonding maps. Now, recall
that there exist dendrites which are not completely regular continua (Example 3.9,
above). = . ‘

(iify Recall that a continuum X is strongly regular [3]; see also Theorem 2 of [9]
if there exists a sequence S, S5, ... of finite subsets of X such that, for each.n, X—5,
has finitely many components and each component of X—S§, has diameter less
than 1/n. It follows that every strongly regular continuwum is regular and, moreover,
each totally regular continuum is strongly regular (sce [9], Theorem 2, p.-230),

In [3], p. 219, it was stated (without ‘proof’) that the limit of an inverse se-
quence of strongly regular continua with monotone bonding maps is again a strongly
regular continuum. Unfortunately, this is not true. In fact, since any regular con-
tinuum without cutpoints is strongly regular ([9], Corollary 2, p. 231), it follows that
each space X, n = 1,2, ..., of Example 1.1 is strongly regular. However, the in-
verse limit X of Example 1.1 is not even a rational continvum.

(iv) I X is a regular continuum (resp. a connected graph, a dendrite), ¥ a con-
tinuum and f: X— Y a monotone surjection, then ¥ is again a regular continuum
(resp. a connected graph, a dendrite) — see for example [7], p. 85. In [9], Remark
on p. 232, it was noted that the proof of Theorem 5 of [3], p. 225, can be modified
to show that each regular continuum is the monotone image of some completely
regular continuum.

3.11. PrOBLEM. Characterize continua which are the limits of an inverse
sequence of (connected) graphs (resp. completely regular continua) with monotone
bonding surjections. In particular, is every totally regulax continuum such an inverse
limit?

3.12. PropLEM. Let Y be a connected subset of a totally regular continuum.
Does it follow that Y is arcwise connected? .

3.13. ProBLEM. Does there exist a universal totally regular continuum?

Acknowledgement. The author is very much indebted to Professor A. Lelek for
calling attention to .papers [3] and [9].
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Added in proof. Problems 3.11 and 3.12 are already answered in the recent paper: R. D. Bus-
kirk, J. Nikiel and B. D. Tymchatyn, Totally regular curves as inverse limits, preprint, Namely:

1) each totally regular continuum is the limit of an inverse sequence of connected graphs with
monotone bonding surjections;

2) there exist totally (even: completely) regular continua with connected subsets which are
not arcwise connected.
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Separating collections
by

Alan D. Taylor (Schenectady, NY)

Abstract. A collection &' of sets is said to be a separating collection if it satisfies the following:
whenever f and ¢ are two functions. defined on a set X e % so that f(x) # g(x) for every x€ X,
there is a set Y& &, YS X such that f/¥ n ¢"'Y = 0. We characterize separating collections in
terms of a weak version of the partition relation & - (%, 3)* and we show this new partition relation
holds for every countable indecomposable ordinal (although it can fail for indecomposable ordinals
of cardinality ). We also characterize one-one separating collections (i.e., those where we only
consider functions fand g that are one-to-one) and derive from this some known and new results.

1. Introduction. If 7 is a collection of subsets of an infinite cardinal %, then I
is said to be an ideal on  if I is closed under subset formation and finite unions
G.e, if X, Yeland Z< XUY, then Ze ). A subset of % not in I is said to have
positive I-measure and the collection of such sets is denoted by I*; a subset of %
whose complement belongs to I is said to have I-measure one and the collection of
such sets is denoted by I'*. The following definitions generalize some ideal theoretic
notions from [MPT].

DeraTioN 1.1, A collection % of infinite sets is said to be:

(i) a separating collection if for every pail: of functions f and g defined on a set
Xe & so that f(x) # g(x) for every x € X, there is a set Ye & such that Ye X
and f'Yng"'Y = 0.

(i) a ome-one separating collection if for every pair of one-to-one functions f
and g defined on a set Xe & so that f (%) # g(x) for every xe€ X, there is a set
Yed such that Y= X and f"Yng" 'Y = 0.

If I'is an ideal on % and It is a separating collection (or a one-one separating
collection), then we will refer to I as a separating ideal (or a one-one separating ideal).
A uniform ultrafilter U on x that is a separating collection is referred to as a separating
ultrafilter. The following easy proposition shows that although Definition 1.1 suggests
that “separating” is a property that pertains to very general collections of sets, it
really is a notion that belongs in the context of ideals.

PROPOSITION 1.2. Suppose that % is a separating collection and let Iy be given by

Yelp if 2(Y)nZ =0.
Then Iy is an ideal.
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