

Sacks reals and Martin's axiom

bv

Tim Carlson* (Columbus, O.) and Richard Layer † (Boulder, Colo.)

Abstract. It is shown that adding a Sacks real does not necessarily add a Souslin tree, in fact $2^{80} = \aleph_n + MA$ can hold in the extension. On the other hand, if the ground model satisfies CH then the extension satisfies \diamondsuit_{ω_1} .

If x is a generic real over V, how much of MA_{\aleph_1} can hold in V[x]? If x is a Cohen or a random real, then MA_{\aleph_1} fails in V[x] ([6]). If x is Cohen, then in fact there is a Souslin tree in V[x] ([8]). For x random, however, no Souslin trees exist in V[x] assuming V satisfies MA_{\aleph_1} ([5]).

The results in this paper are about the case where x is a Sacks real (an \mathscr{S} -generic real, where \mathscr{S} is the set of perfect downwards closed subtrees of (2)^{<\infty\$} ([7]). We prove that if V satisfies CH, then V[x] satisfies \diamondsuit_{ω_1} (Section 1). In Section 3 it is proved that if V satisfies a strengthening of Martin's axiom, then V[x] satisfies MA_{\aleph_1} . In the proof Sacks amoeba forcing \mathscr{A} is used – the original use of it was Shelah's proof that consistently $2^{\aleph_0} > \aleph_1$ and forcing with \mathscr{S} does not collapse cardinals. The strengthening of Martin's axiom that we use $(MA_{\aleph_1}(\mathscr{S} * ccc, \mathscr{A} * ccc))$ is a consequence, for example, of PFA ([9]). In Section 4 we outline that $MA_{\aleph_1}(\mathscr{S} * ccc, \mathscr{A} * ccc)$ is consistent relative to ZFC.

Notation. For $s, t \in \mathcal{S}$, s extends $t'(s \le t)$ if and only if $s \subseteq t$. The *n*th level of t is t_n , and for $x \in t$, $t_x = \{y \in t: y <_t x \text{ or } x \le_t y\}$. Let $s \sim t$ mean that s is compatible with t. $G_{\mathcal{S}}$ is a generic subset of \mathcal{S} .

Section 1.

THEOREM. If CH holds in V, then V^g satisfies \diamondsuit_{m_1} .

Proof. Suppose $f \in (\omega)^{\omega}$ and f(n) > n, all n. Then say $s \in \mathcal{S}$ is f-thin if for every n, Card $s_{f(n)} \leq \operatorname{Card} s_n + 1$. And call $t \in \mathcal{S}$ f-thick if there are infinitely many n such that for each $x \in t_n$, $\operatorname{Card} \{ y \in t_{f(n)} : x \leq_t y \} \geqslant 4$.

LEMMA 1. If t is f-thick, then every maximal antichain in $\{u: u \leq t\}$ consisting of f-thin trees is uncountable.

^{*} Supported by NSF grant.

[†] Supported by NSF grant.

^{5 -} Fundamenta Mathematicae 133/2

Proof. Suppose $\{s^i : i < \omega\}$ is a set of f-thin trees. To define an $s \le t$, $s \sim \text{ each } s^i$. Suppose $s_n \subseteq t_n$ has been defined and $i < \omega$. Then by f-thickness of t there is an $m \ge n$ and an $s_{f(n)} \subseteq \{x \in t_{f(m)} : \exists y \in s_n y <_t x\}$ such that for each $z \in s_n$,

Card
$$\{x \in s_{\ell(m)}: z < x\} \ge 2$$
,

with $s_{f(m)} \cap (s^i)_{f(m)} = \emptyset$. In ω -many such steps all $i < \omega$ are handled, thus giving s.

LEMMA 2. (CH) For each $f \in \omega^{\omega}(f(n) > n \text{ all } n)$, there's an antichain $A_f \subseteq \mathcal{S}$ consisting of f-thin trees such that any f-thick tree is compatible with 2^{\aleph_0} many members of A_f .

Proof. Let $\langle t_{\alpha}: \alpha < \omega_1 \rangle$ be the f-thick trees, enumerated with \aleph_1 -repetitions. Let $A_f = \{s_{\alpha}: \alpha < \omega_1\}$ where, by Lemma 1, s_{α} may be chosen to be an f-thin extension of t_{α} , incompatible with each s_{β} ($\beta < \alpha$).

Proof of the Theorem. For $f, g \in \omega^{\omega}$ let f < g mean that g eventually dominates f. By CH pick a scale $\{f_{\alpha} : \alpha < \omega_1\}$ in ω^{ω} . For $\alpha < \omega_1$, let Z_{α} be the set of canonical terms for subsets of α which are labeled f_{α} -thick trees; a member of Z_{α} is a $\langle t, W, V \rangle$, where t is f_{α} -thick, $W: \alpha \to \omega$ is 1-1, and $V: \bigcup_{\substack{n \text{ errange}W \\ n \text{ errange}W}} t_n \to 2$. Thus, for $\beta < \alpha$, and assuming $t \in G_{\mathcal{F}}$, β is in the $G_{\mathcal{F}}$ -denotation of $\langle t, W, V \rangle$ just in case V(x) = 1, where x is the member of $t_{W(\beta)}$ determined by G_{α} .

Assign to each $s \in A_{f_{\alpha}}$ an $H_{\alpha}(s) = \langle t, W, V \rangle \in Z_{\alpha}$ such that $t \sim s$. By Lemma 2, we may make this assignment such that H_{α} is onto Z_{α} . Now in $V^{\mathscr{S}}$ define the α th member $D_{\alpha} \subseteq \alpha$ of the $\langle \cdot \rangle$ -sequence as follows. Let s be the member of $G_{\mathscr{S}} \cap A_{f_{\alpha}}$, assuming there is one. Then $H_{\alpha}(s)$ is of the form $\langle t, W, V \rangle$. Suppose $s \cap t \in G_{\mathscr{S}}$. Then let D_{α} be the subset of α determined by the term $\langle s \cap t, W, V | s \cap t \rangle$. If the above conditions aren't satisfied, let $D_{\alpha} = \varnothing$.

Now suppose $u \in \mathcal{S}$ forces that $\dot{X} \subseteq \omega_1$ and $\dot{X} \cap \alpha \neq \dot{D}_{\alpha}$, all limit $\alpha < \omega_1$. For $s, t \in \mathcal{S}$ let $s \leqslant_n t$ if $s \leqslant t$ and $s_n = t_n$. Note that, since $\{f_{\beta} \colon \beta < \omega_1\}$ is a scale, every $t \in \mathcal{S}$ is f_{β} -thick for eventually all $\beta < \omega_1$. Take a countable elementary submodel of the forcing, giving an $\alpha < \omega_1$, a countable $\mathscr{C} \subseteq \{t \in \mathcal{S} \colon t \leqslant u\}$, with $u \in \mathscr{C}$, so that for each $t \in \mathscr{C}$ there is a $\beta < \alpha$ such that t is f_{β} -thick. Moreover, if $t \in \mathscr{C}$, $n < \omega$, $\beta < \alpha$, then there is an $s \in \mathscr{C}$ with $s \leqslant_n t$ such that for each $x \in s_n$, s_x decides whether or not $\beta \in \dot{X}$.

Let $\alpha = \{\gamma_n \colon n < \omega\}$. Construct a sequence $u^0 \geqslant_{n_1} u^1 \geqslant_{n_2} u^2 \geqslant_{n_3} \dots$ such that $u^0 = u$, each $u^i \in \mathcal{C}$, and $n_1 < n_2 < n_3 < \dots$ Suppose u^k and n_k have been chosen. Then u^k is f_{β_k} -thick, some $\beta_k < \alpha$, and $f_{\beta_k} < f_{\alpha}$, so there is an $m \geqslant n_k$, with $f_{\beta_k}(m) < f_{\alpha}(m)$, such that for each $y \in (u^k)_m$, (Card $\{z \in u^k\}_{f_{\beta_k}(m)} \colon y <_{u^k} z\} \geqslant 4$. Let $n_{k+1} = f_{\beta_k}(m)$ and let $u^{k+1} \in \mathcal{C}$ be such that $u^{k+1} \leqslant_{n_{k+1}} u^k$ and for each $x \in (u^{k+1})_{n_{k+1}}, (u^{k+1})_x$ decides whether $\gamma_{k+1} \in \dot{X}$.

Let $t = \bigcap_i u^i$. Then by construction t is an f_α -thick member of $\mathcal S$ extending u, and, letting $W(\gamma_k) = n$, there is a function V such that $\langle t, W, V \rangle \in Z_\alpha$ is a term which is forced by t to equal $\dot x \cap \alpha$. So pick $s \in A_{f_\alpha}$ such that $H_\alpha(s) = \langle t, W, V \rangle$. Then $s \cap t$ is a condition, extending u, which forces that $\dot x \cap \alpha = \dot D_\alpha$.

Under the hypothesis, weaker than the continuum hypothesis, of the existence of a scale on $(\omega)^{\omega}$ of length ω_1 , does $V^{\mathscr{S}}$ satisfy CH or even \diamondsuit_{ω_1} ? That V can satisfy \neg CH and $V^{\mathscr{S}}$ satisfy CH was proved by Baumgartner ([2]), where the model V has a scale. An alternate model V having those properties, except not having a scale, is obtained by adding 2^{\aleph_0} many Cohen reals to a ground model of \neg CH: in such a V there are antichains $A_{\alpha} \subseteq \mathscr{S}$ and functions F_{α} : $A_{\alpha} \to 2^{\aleph_0}$, for each $\alpha < \omega_1$, such that for each $t \in \mathscr{S}$ there is a $\beta < \omega_1$ so that for all $\alpha \geqslant \beta$, $\{F_{\alpha}(s): s \leqslant t, s \in A_{\alpha}\} = 2^{\aleph_0}$.

Section 2. Sacks amoeba forcing is the partial ordering $\mathscr A$ consisting of all pairs (t,n) where $t \in \mathscr S$ and $n \in \omega$, given by $(t,n) \leqslant (s,m)$ iff $t \subseteq s$, $n \geqslant m$ and $t_m = s_m$. Forcing with $\mathscr A$ gives rise to a perfect set of Sacks reals.

Suppose $\hat{x} \in V^{\mathscr{A}}$ is a name for an object in V. A condition (t, n) determines \hat{x} if there is some y in V such that $(t, n) \Vdash \hat{x} = y$. Say that (t, n) weakly determines \hat{x} if whenever $(s, m) \leq (t, n)$ and y have the property that $(s, m) \Vdash \hat{x} = y$, then $(t', m) \Vdash \hat{x} = y$ where t' consists of all the elements of t which are compatible with some element of s of length m. One easily checks that given $(t, n) \in \mathscr{A}$ and a name $\hat{x} \in V^{\mathscr{A}}$ for an element of V there is a $(s, n) \leq (t, n)$ which weakly determines \hat{x} . In particular, the collection of conditions which weakly determine \hat{x} are dense.

Corresponding definitions can be made for Sacks forcing. Suppose $\mathring{x} \in V^{\mathscr{A}}$ is a name for an element of V. Say that t determines \mathring{x} if $t \models \mathring{x} = y$ for some y in V. t weakly determines \mathring{x} at n if for every element z of t of length n, t_z determines \mathring{x} . Clearly, for any t and n there is a $(t', n) \leq (t, n)$ (in \mathscr{A}) such that t' weakly determines \mathring{x} at n.

The following lemma is useful in showing that \mathcal{A} is proper and will be used later in Section 3.

LEMMA. Assume M is an inner model of ZFC, \mathcal{A}^M is Sacks amoeba forcing in the sense of M and $M^{\mathcal{A}_M} \models \mathring{x} \in M$. If (t,n) weakly determines \mathring{x} in M, then the collection of $(s,m) \in \mathcal{A}^M$ which determine \mathring{x} is predense below (t,n) in \mathcal{A} , i.e. if $(r,k) \in \mathcal{A}$ and $(r,k) \leqslant (t,n)$, then there is some $(s,m) \in \mathcal{A}^M$ which determines \mathring{x} such that $(s,m) \leqslant (t,n)$ and (s,m) is compatible with (r,k).

Proof. By absoluteness. Since (t, n) weakly determines \dot{x} in M, the statement "for all $(r, k) \leq (t, n)$ there is an (s, m) which determines \dot{x} and is compatible with (r, k)" can be coded as a Π_1^1 statement.

The corresponding lemma for Sacks forcing is obvious.

Section 3. The purpose of this section is to show that MA_{\aleph_1} can be preserved when adding a Sacks real. For a partial ordering P let P * ccc be the class of partial orderings $P * \ddot{Q}$ where $V^P \models "\ddot{Q}$ is c.c.c.".

THEOREM. $MA_{R_1}(\mathscr{S}*ccc, \mathscr{A}*cco)$ implies that MA_{R_1} holds in $V^{\mathscr{S}}$.

For the proof of this theorem the following two lemmas are needed. Note that $MA_{\aleph_1}(P*ccc)$ implies $MA_{\aleph_1}(P)$.

LEMMA 1. Assume $MA_{\aleph_1}(P*ccc)$. If $V^P \models "\mathring{Q}$ is c.c.c." and $V^P \models "\mathring{q}_\alpha \in \mathring{Q}$ " for $\alpha \in \omega_1$, then there is a subset X of ω_1 of size \aleph_1 such that $V^P \not\models "\mathring{q}_\alpha$ is incompatible with \mathring{q}_B " for all α , $\beta \in X$.

Proof. By the remark preceding the lemma, $MA_{\aleph_1}(P)$ holds. Therefore there is \mathring{q} such that $V^P \models$ "every element of \mathring{Q} below \mathring{q} is compatible with \aleph_1 many of the $\mathring{q}_{\alpha}(\alpha \in \omega_1)$ ". By $MA_{\aleph_1}(P*cc)$ there is a filter G on $P*\mathring{Q}$ such that for cofinally many $\alpha \in \omega_1$ there is a $p \in P$ with $(p, \mathring{q}_{\alpha}) \in G$. Let X be the collection of such α .

LEMMA 2. Assume $MA_{\aleph_1}(\mathscr{A})$. Then $V^{\mathscr{A}} \models$ "every subset of V of size \aleph_1 has a subset of size \aleph_1 in V".

Proof. Suppose $(t, n) \vdash$ " \dot{X} is a subset of V of size \aleph_1 ". Choose $\dot{x}_\alpha \in V^{\mathscr{A}}$ for $\alpha \in \omega_1$, such that $(t, n) \vdash$ " $\dot{x}_\alpha(\alpha \in \omega_1)$ are distinct elements of \dot{X} ". By $MA_{\aleph_1}(\mathscr{A})$ there is a filter G on A containing (t, n) such that

- (i) for $\alpha \in \omega_1$ there are y_α and (t_α, m_α) with $(t_\alpha, m_\alpha) \Vdash \mathring{x}_\alpha = y_\alpha$;
- (ii) $t_{\infty} = \bigcap t_{\alpha}$ is in \mathscr{G} .

There is a subset I of ω_1 of size \aleph_1 on which m_α is constant. Let this constant value be m and let Y be the set of y_σ for $\alpha \in I$. Then (t_∞, m) is compatible with (t, n) and $(t_\infty, m) \vdash "Y$ is a subset of \mathring{X} of size \aleph_1 ".

A similar argument shows that assuming $MA_{\aleph_1}(\mathscr{A})$, the conclusion of the lemma holds with \mathscr{A} replaced by \mathscr{S} . This fact will not be needed in what follows,

PROOF OF THEOREM. Assume $MA_{s_1}(\mathscr{S} * ccc, \mathscr{A} * ccc)$.

Suppose $V^{\mathscr{G}} \models "\mathring{Q}$ is a c.c.c partial ordering" and $V^{\mathscr{G}} \models "\mathring{D}$ is a dense open subset of \mathring{Q} " for $\alpha \in \omega_1$. Let T be the set of all terms \mathring{q} in $V^{\mathscr{G}}$ such that $V^{\mathscr{G}} \models "\mathring{q}$ is an element of \mathring{Q} ". Define $\mathring{Q}/G_{\mathscr{A}}$ to be the partial ordering in $V^{\mathscr{G}}$ which is defined by $V^{\mathscr{G}} \models "$ for $q_1, q_2 \in T$, $q_1 \leq q_2$ in $\mathring{Q}/G_{\mathscr{A}}$ iff $t \models "q_1 \leq q_2$ in \mathring{Q} for some $(t, n) \in G_{\mathscr{A}}$ ".

CLAIM. $V^{\mathscr{A}} \models "\mathring{Q}/G_{\mathscr{A}}$ is ccc".

Now to show that $V^{\mathscr{A}} \models \mathrm{MA}_{\aleph_1}$ suppose $V^{\mathscr{A}} \models "\mathring{Q}$ is ccc" and $V^{\mathscr{A}} \models "\mathring{D}_{\alpha}$ is a dense subset of \mathring{Q} " for $\alpha \in \omega_1$. Let T_{α} be the collection of all \mathring{q} such that $V^{\mathscr{A}} \models \mathring{q} \in \mathring{D}_{\alpha}$. One easily checks that $V^{\mathscr{A}} \models "T_{\alpha}$ is a dense subset of $\mathring{Q}/G_{\mathscr{A}}$ ". Define E_{α} to be the set of all $((t,n),\mathring{q}) \in \mathscr{A} * (\mathring{Q}/G_{\mathscr{A}})$ such that $\mathring{q} \in T_{\alpha}$, and for $i \in \omega$ let C_i be the set of all

 $((t,n),\mathring{p}) \in \mathscr{A} * (\mathring{Q}/G_{\mathscr{A}})$ such that i < n and every element of t of length i has a branching node above it in t of length less than n. E_{α} and C_i are dense in $\mathscr{A} * (\mathring{Q}/G_{\mathscr{A}})$.

To conclude the proof of $V^{\mathcal{G}} \models \operatorname{MA}_{\aleph_1}$ by showing $V^{\mathcal{G}} \models$ "there is a filter on $\mathring{\mathcal{Q}}$ which intersects each $\mathring{\mathcal{D}}_{\alpha}$ ", assume $t \in \mathcal{G}$. Let F be a filter on $\mathscr{A} * (\mathring{\mathcal{Q}}/G_{\mathscr{A}})$ which contains ((t,0),1) and meets each E_{α} and C_i . Let t^* be the intersection of all the t' such that $((t',n),\mathring{p}) \in G$ for some n and \mathring{p} . t^* is in \mathscr{S} since F meets each C_i . Let F^* be the collection of all $\mathring{q} \in T$ such that $((t',n),\mathring{q}) \in F$ for some t' and n. Define \mathring{F} in $V^{\mathscr{G}}$ so that $V^{\mathscr{G}} \models \mathring{F}$ " consists of the interpretations of the elements of F^* ". One easily checks that $t^* \not\in t$ and $t^* \models$ " \mathring{F} is a filter on \mathring{Q} which meets each $\mathring{\mathcal{D}}_{\alpha}$ ".

COROLLARY. PFA implies $V^{g} \Vdash MA_{\aleph_1}$.

Proof. The elements of \mathscr{S} * ccc and \mathscr{A} * ccc are all proper partial orderings so PFA implies $MA_{N}(\mathscr{S} * ccc)$, $\mathscr{A} * ccc)$.

Section 4. The following theorem establishes the consistency of $ZFC+MA_{R_1}$ ($\mathscr{S}*ccc$, $\mathscr{A}*ccc$) relative to that of ZFC.

THEOREM. There is a partial ordering which forces $MA_{\aleph_1}(\mathscr{G}*ccc,\mathscr{A}*ccc)$.

The rest of this section is devoted to proving this theorem. By a preliminary forcing we may assume the ground model satisfies CH and $\diamondsuit_{\omega_2}(\cos \omega_1)$.

The argument is an iteration of length ω_2 with countable supports in which generic objects are added stage by stage for all possible elements of $\mathscr{S}*$ ccc and $\mathscr{A}*$ ccc. Since the \mathscr{S} and \mathscr{A} of the final model will not be available at earlier stages, a reflection argument will be needed to see that the factors used provide the necessary filters to witness $MA_{\aleph_1}(\mathscr{S}*$ ccc, $\mathscr{A}*$ ccc). The $\diamondsuit_{\omega_2}(cof\omega_1)$ -sequence will be used to guess the factors so it will be necessary to code names of partial orderings as sets of ordinals.

Let $g: ON \times ON \rightarrow ON$ be Gödel's pairing function.

LEMMA 1. Assume \varkappa is a regular cardinal and $S_c(\alpha \in E)$ is a $\diamondsuit_{\varkappa}(E)$ -sequence. If P is a partial ordering which is \varkappa -c.c. and $D = \{d_\gamma \colon \gamma \in \varkappa\}$ is dense in P, then $V^P \models \text{``}R_\alpha \ (\alpha \in E)$ is a $\diamondsuit_{\varkappa}(E)$ -sequence'' where $R_\alpha \in V^P$ is defined so that $V^P \models \text{``for any } \beta, \beta \in R_\alpha \text{ iff there is some } d_\gamma \in G_P \text{ with } g(\gamma, \beta) \in S_\alpha''$.

Proof. Suppose $V^P \models$ " \mathring{C} is a club subset of \varkappa and \mathring{X} is a subset of \varkappa ". An $\alpha \in E$ can be found such that $V^P \models$ " $\mathring{X} \cap \alpha = \mathring{R}_{\alpha}$ and $\alpha \in \mathring{C}$ " as follows.

Without loss of generality $V^P \models$ "if $\alpha \in \mathring{C}$ and $\beta < \alpha$, then $\beta \in \mathring{X}$ iff there is $\gamma < \alpha$ such that $d_{\gamma} \in G_P$ and $d_{\gamma} \Vdash \beta \in \mathring{X}$ " and $V^P \models$ "each element of \mathring{C} is closed under g". Let C be the set of $\alpha \in \varkappa$ such that $V^P \models \alpha \in \mathring{C}$. C is a club subset of \varkappa . There is an $\alpha \in C$ such that for all $\beta, \gamma \in \alpha$, $g(\beta, \gamma) \in S_\alpha$ iff $d_{\gamma} \Vdash \beta \in \mathring{X}$. By definition of \mathring{R}_{α} , $V^P \models "\mathring{R}_{\alpha} = \mathring{X} \cap \alpha$ ", giving the lemma.

So we will view a $\diamondsuit_{\omega_2}(\cos \omega_1)$ sequence as a name for a $\diamondsuit_{\omega_2}(\cos \omega_1)$ sequence. We also need to code an ordering in $\mathscr{S}* ccc$ or $\mathscr{A}* ccc$ by a set of ordinals.

Fix a coding of triples (p, α, β) , where $p \in \mathcal{S} \cap \mathcal{A}$ and $\alpha, \beta \in \omega_1$, by subsets of ω_1 . More specifically, this is a function which maps $\mathscr{P}(\omega_1)$ onto $(\mathscr{S} \cup \mathscr{A}) \times \omega_1 \times \omega_1$ which is absolute between models of ZFC.

Sacks reals and Martin's axiom

167

Suppose $V^{\mathscr{G}} \models "\mathring{Q}$ is a partial ordering of ω_1 ". A subset X of an ordinal $\alpha = \omega_1 \cdot \beta$ is said to code $\mathscr{G} * \mathring{Q}$ if for all $t \in \mathscr{G}$ and $\alpha, \beta \in \omega_1$

$$t \Vdash "\alpha \leq \beta \text{ in } \mathring{Q}"$$

iff

one of the β many ω_1 -blocks of X codes (t, α, β) .

Note that whether X codes $\mathscr{S} * \mathring{Q}$ apparently depends on α .

Similarly, define when a subset of an ordinal of the form $\omega_1 \cdot \beta$ codes $\mathscr{A} * \mathring{Q}$ for some \mathring{Q} with $V^{\mathscr{A}} \models "\mathring{Q}$ is a partial ordering of ω_1 ".

Fix a $\diamondsuit_{\omega_2}(\cos \omega_1)$ -sequence S ($\alpha \in E$) and assume CH for the rest of this section. Define an iteration $P_{\alpha}(\alpha \leq \omega_2)$ with countable supports with factors $\mathring{Q}_{\alpha}(\alpha < \omega_2)$ along with an enumeration δ_{α} of a dense subset of P_{α} for $\alpha \leq \omega_2$ such that

- (1) If $\alpha < \omega_2$, then the domain of δ_{α} is an ordinal less than ω_2 .
- (2) If $\alpha < \beta \leq \omega_2$, then δ_{β} extends δ_{α} .
- (3) If $\lambda \leqslant \omega_2$ has uncountable cofinality, then δ_{γ} is the union of the δ_{α} with $\alpha < \lambda$.
- (4) Assume $\alpha < \omega_2$ has cofinality ω_1 . Let $\mathring{R}_{\alpha} \in V^{P_{\alpha}}$ be such that $V^{P_{\alpha}} \models "\mathring{R}_{\alpha}$ is the subset of α satisfying $\beta \in \mathring{R}_{\alpha}$ iff there is some $\delta_{\alpha}(\xi) \in G_{P_{\alpha}}$ with $g(\xi, \beta) \in S_{\alpha}$. \mathring{Q}_{α} is given by
- (a) $V^{P_{\alpha}} \models$ "if \mathring{R}_{α} codes an element of $\mathscr{S} * ccc$ or $\mathscr{A} * ccc$, then \mathring{Q}_{α} is this ordering".
- (b) $V^{P_{\alpha}} \models$ "if \mathring{R}_{α} codes some $\mathscr{S} * Q$ not in $\mathscr{S} * \mathrm{ccc}$, then \mathring{Q}_{α} is \mathscr{A} restricted to (t,0) where t forces that Q is not c.c.c.".
- (c) $V^{P_{\alpha}} \models$ "if \mathring{R}_{α} codes some $\mathscr{A} * Q$ not in $\mathscr{A} * \text{ccc}$, then \mathring{Q}_{α} is \mathscr{A} restricted to (t, n) where (t, n) forces that Q is not c.c.c.".
 - (d) $V^{P_{\alpha}} \models$ "if \mathring{R}_{α} does not code some $\mathscr{S} * Q$ or $\mathscr{A} * Q$, then \mathring{Q}_{α} is trivial".
 - (5) If $\alpha < \omega_2$ does not have cofinality ω_1 , \mathring{Q}_{α} is trivial.

FACTS. Assume CH. If $P_{\alpha}(\alpha \leq \lambda)$ is any iteration with countable supports such that the α th factor \mathring{Q}_{α} satisfies $V^{P_{\alpha}} \models "\mathring{Q}_{\alpha}$ is proper and has size \aleph_1 " for $\alpha < \lambda$, then

- (1) P_{λ} preserves ω_1 .
- (2) If $\lambda < \omega_2$, then P_{λ} has a dense subset of size \aleph_1 .
- (3) If $\lambda \leq \omega_2$, then P_{λ} is \aleph_2 -c.c.

Note that from (1) and (2) (and CH), if $\lambda < \omega_2$, then $V^{P_{\lambda}} \models \text{CH}$. Also, if X is a subset of ω_1 which codes an element Q of $\mathscr{S} * \text{ccc}$ or $\mathscr{A} * \text{ccc}$, then Q has a dense subset of size \aleph_1 .

Since elements of \mathscr{S} * ccc and \mathscr{A} * ccc are proper, the facts above imply that P_{ω_2} preserves both ω_1 and ω_2 and $V^{P_{\omega_2}} \models 2^{\aleph_0} = \aleph_2$. By the lemma $V^{P_{\omega_2}} \models \text{``R_{α}}(\alpha \in \text{cof}\omega_1)$ is a $\diamondsuit_{\omega_2}(\text{cof}\omega_1)$ -sequence".

LEMMA 2. (ZFC) Assume P is a partial ordering, \varkappa is an infinite cardinal and let $\mathscr E$ be the collection of all $P * \mathring Q$ such that $V^P \models ``\mathring Q$ is a c.c.c. partial ordering of \varkappa ". $MA_\varkappa(\mathscr E)$ implies $MA_\varkappa(P \ast ccc)$.

Proof. The proof is a modification of the corresponding statement for MA_{\varkappa} . Assume $MA_{\varkappa}(\mathscr{C})$. Note P preserves all cardinals $\leq \varkappa$.

Suppose $V^P \models "\mathring{Q}$ is c.c.c" and D_{α} is a dense subset of $P * \mathring{Q}$ for $\alpha \in \varkappa$. Define $\mathring{E}_{\alpha} \in V^P$ for $\alpha \in \varkappa$ so that $V^P \models "\mathring{E}_{\alpha}$ is the subset of \mathring{Q} determined by $q \in \mathring{E}_{\alpha}$ iff there is some $(p,d) \in D_{\alpha}$ such that $p \in G_P$ and the interpretation of d is q" $V^P \models "\mathring{E}_{\alpha}$ is dense in \mathring{Q} for $\alpha \in \omega_1$ ". By a Lowenheim-Skolem argument in V^P there is some \mathring{Q}_* such that $V^P \models "\mathring{Q}_*$ is a c.c.c. subordering of \mathring{Q} of size $\leqslant \varkappa$ and \mathring{E}_{α} is dense in \mathring{Q}_* for $\alpha \in \varkappa$ ". Let $D'_{\alpha} = D_{\alpha} \cap P * \mathring{Q}_*$ for $\alpha \in \varkappa$. By $MA_{\varkappa}(\mathscr{C})$ there is a filter G' on $P * \mathring{Q}_*$ which meets each D'_{α} . If G is the filter on $P * \mathring{Q}$ generated by G' then G meets each D_{α} .

Fix a generic filter G on $P_{\alpha\alpha}$ for the rest of this section.

CLAIM. $V[G] \models MA_{\aleph_1}(\mathscr{S} * ccc)$.

Proof. Work in V[G]. Let $G_{\alpha} = G \cap P_{\alpha}$ and $\mathscr{S}_{\alpha} = \mathscr{S} \cap V[G_{\alpha}]$, the version of Sacks forcing in $V[G_{\alpha}]$.

Suppose $V[G]^{\mathscr{G}} \models ``\mathring{Q}$ is a c.c.c partial ordering" and D_{ξ} is dense in $\mathscr{G} * \mathring{Q}$ for $\xi \in \omega_1$. There is no loss of generality in assuming $V[G]^{\mathscr{G}} \models ``\mathring{Q}$ has universe ω_1 ", by the previous lemma, and that the elements of the D_{ξ} are of the form (t, α) where $\alpha \in \omega_1$. Choose a subset X of ω_2 which codes $\mathscr{G} * \mathring{Q}$.

Since \mathcal{S}_{λ} is the union of the \mathcal{S}_{α} with $\alpha < \lambda$ whenever λ has uncountable cofinality, there is a club set of λ 's in ω_2 such that when λ in the set has cofinality ω_1 ,

- (a) $X \cap \lambda$ is in $V[G_{\lambda}]$ and codes $\mathcal{G}_{\lambda} * \mathring{Q}_{*}$ in $V[G_{\lambda}]$ for some Q_{*} .
- (b) for all $t \in \mathcal{S}_{\lambda}$ and $\alpha, \beta \in \omega_1, t \Vdash "\alpha \leq \beta \text{ in } \mathring{Q}" \text{ iff } t \Vdash "\alpha \leq \beta \text{ in } \mathring{Q}_*"$,
- (c) for all $\xi \in \omega_1$, $D_{\xi} \cap \mathcal{S}_{\lambda} * \mathring{Q}_{*} (= D_{\xi} \cap \mathcal{S}_{\lambda} \times \omega_1)$ is in $V[G_{\lambda}]$ and is dense in $\mathcal{S}_1 * \mathring{O}_{*}$.

Fix such a λ so that the interpretation of \hat{R}_{λ} is $X \cap \lambda$.

We first suppose $V[G_{\lambda}] \models "\mathcal{G}_{\lambda} * \mathring{\mathcal{Q}}_{*}$ is in $\mathscr{S} * \operatorname{ccc}"$. By condition (iv) on the iteration there is a $V[G_{\lambda}]$ -generic filter F on $\mathscr{G}_{\lambda} * \mathring{\mathcal{Q}}_{*}$ in V[G]. $F \cap \mathscr{G}_{\lambda} \times \omega_{1}$ generates a filter on $\mathscr{S} * \mathring{\mathcal{Q}}$ which meets each D_{ξ} .

Suppose now that $V[G_{\lambda}] \models "\mathcal{G}_{\lambda} * \mathring{\mathcal{O}}_{*}$ is not in $\mathcal{G} * \operatorname{ccc}"$. By condition (4)(b) on the iteration there is a $V[G_{\lambda}]$ -generic filter F on $\mathscr{A}_{\lambda} = \mathscr{A} \cap V[G_{\lambda}]$, the version of Sacks amoeba forcing in $V[G_{\lambda}]$, which contains a condition (t, 0) where t forces (with respect to \mathscr{G}_{λ} over $V[G_{\lambda}]$) that $\mathring{\mathcal{O}}_{*}$ is not c.c.c. Fix $\mathring{q}_{\xi} \in V[G_{\lambda}]^{\mathscr{I}_{\lambda}}$ for $\xi \in \mathscr{O}_{1}$ such that $t \models "\mathring{q}_{\xi} \in \mathcal{Q}'$ and \mathring{q}_{ξ} is incompatible with \mathring{q}_{η} " if $\xi, \eta \in \mathscr{O}_{1}$ are distinct. The idea now is that the \mathring{q}_{ξ} should provide an antichain in $\mathring{\mathcal{O}}$ contradicting that it is c.c.c. However, \mathring{q}_{ξ} comes from $V[G_{\lambda}]^{\mathscr{I}_{\lambda}}$ and even if it is interpreted as an element of $V[G]^{\mathscr{I}}$ there is no guarantee that $V[G]^{\mathscr{I}} \models "\mathring{q}_{\xi} \operatorname{is in } \mathscr{O}_{1}$ ". This problem can be remedied by restricting to the condition t^{*} which is the intersection of all t' such that $(t', \eta) \in F$ for some η .

For $\xi \in \omega_1$ there is a condition $(t_{\xi}, n_{\xi}) \in F$ such that t_{ξ} weakly determines \mathring{q}_{ξ} at n_{ξ} , i.e. for all z in t_{ξ} of length n_{ξ} there is an $\alpha \in \omega_1$ such that $(t_{\xi})_z \Vdash \mathring{q}_{\xi} = \alpha$. Choose $r_{\xi}^{\circ} \in V[G]^{\mathscr{O}}$ such that $t_{\xi}^{*} \Vdash \mathring{r}_{\xi} = \alpha$ whenever $\alpha \in \omega_1$, $z \in t_{\xi}$ has length n_{ξ} , and

 $(t_s)_* \Vdash \dot{a}_s = \alpha$. One easily verifies that $t^* \Vdash "\mathring{r}_s(\xi \in \omega_s)$ is an antichain in \mathring{O} " contradicting VIGI = "O is c.c.c." This completes the proof of the claim.

Likewise, we have that $V[G] \models MA_{\aleph_1}(\mathscr{A} * ccc)$. The proof is analogous to that for MA. (9 * ccc) and is left to the reader.

As to the problem of getting V[x], with $x \notin V$ a real, to satisfy stronger versions of Martin's axiom than MA_N, Velickovic and Todorcevic have negative results Velickovic derives that if $\omega_2^{V[x]} = \omega_2^V$, then PFA⁺ and SPFA fail in V[x]. Namely, by Baumgartner ([1]), Foreman, Magidor and Shelah ([3]), and Shelah ([10]), each of PFA⁺ and SPFA implies that for every stationary $S \subseteq [\omega_2]^{\aleph_0}$ there is an $\alpha < \omega_1$ such that $S \cap [\alpha]^{\aleph_0}$ is stationary in $[\alpha]^{\aleph_0}$. However, since $\omega_2^V = \omega_2^{V[x]}$, it follows from Gitik ([4]) that $[\omega_2]^{\aleph_0} \cap (V[x] - V)$ is a stationary subset of $[\omega_2]^{\aleph_0}$ in V[x], which clearly doesn't reflect as above to any $\alpha < \omega_2$. See [11] for related results. Todorcevic has shown that if x is a Sacks real, then PFA fails in V[x], in fact $V[x] \models \text{not}$ $MA_{81}(2^{<\omega_1}*ccc)$, where $2^{<\omega_1}$ is the usual poset for adding a subset of ω_1 with countable conditions.

References

- [1] J. Baumgartner, Applications of the proper forcing axiom, in Handbook of Set Theoretic Topology. Elsevier. 1984, 913-959.
- [2] R. Laver, Iterated perfect set forcing, Annals of Math. Logic 17 (1979), 271-288.
- [3] M. Foreman, M. Magidor and S. Shelah, Martin's maximum, saturated ideals and nonregular ultrafilters I, Ann. of Math., to appear,
- [4] M. Gitik, Nonsplitting subsets of $\mathcal{P}_{\kappa}(\kappa^{+})$, J. Symbolic Logic 50 (1985), 881-894,
- [5] R. Laver, Random reals and Souslin trees, Proc. Amer. Math. Soc. 100 (1987), 531-534.
- [6] J. Roitman, Adding a random or a Cohen real: Topological consequences and the effects on Martin's axiom, Fund. Math. 103 (1979), 47-60.
- [7] G. E. Sacks, Forcing with perfect closed sets, in Axiomatic Set Theory Proc. Symp. Pure Math. XIII. Part I. AMS. Providence, 1971. 331-355.
- [8] S. Shelah, Can you take Solovay's inaccessible away?, Israel J. Math. 48 (1984), 1-47.
- [9] Proper Forcing, Lecture Notes in Math. 940, Springer-Verlag, 1982.
- [10] Semiproper forcing axiom implies Martin Maximum but not PFA+, J. Symb. Logic 52 (1987), *360-367.
- [11] B. Velickovic, Semi-proper forcing axiom and stationary sets.

OHIO STATE UNIVERSITY UNIVERSITY OF COLORADO

Received 30 September 1987

ROOKS PUBLISHED BY THE POLISH ACADEMY OF SCIENCES, INSTITUTE OF MATHEMATICS

- S. Banach, Oeuvres, Vol. II, 1979, 470 pp.
- S. Mazurkiewicz, Trayaux de tonologie et ses applications, 1969, 380 pp.
- W. Sierpiński, Oeuvres choisies, Vol. I. 1974, 300 pp.; Vol. II. 1975, 780 pp.; Vol. III. 1976, 688 pp.
- I P. Schauder, Ocuvres, 1978, 487 pp.
- K. Borsuk, Collected papers. Parts I. II. 1983. xxiv+1357 nn.
- H. Steinhaus, Selected papers, 1985, 899 pp.
- W. Orlicz, Collected papers. Parts I. II, 1988. Liv+viii+1688 pp.
- K. Kuratowski, Selected papers, 1988, Lii+610 pp.
- T Ważewski Selected papers, 1990, xx+572 pp.

MONOGRAFIE MATEMATYCZNE

- 43. J. Szarski, Differential inequalities, 2nd ed., 1967, 356 pp.
- 51. R. Sikorski, Advanced calculus. Functions of several variables, 1969, 460 pp.
- 58. C. Bessaga and A. Pełczyński, Selected topics in infinite-dimensional topology, 1975. 353 pp.
- 59. K. Borsuk, Theory of shape, 1975, 379 pp.
- 62. W. Narkiewicz, Classical problems in number theory, 1986, 363 pp.

DISSERTATIONES MATHEMATICAE

CCXCII. E. Horst, Global solutions of the relativistic Vlasov-Maxwell system of plasma physics.

CCXCIII. J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, 1990.

BANACH CENTER PUBLICATIONS

- 10. Partial differential equations, 1983, 422 pp.
- 11. Complex analysis, 1983, 362 pp.
- 12. Differential geometry, 1984, 288 pp.
- 13. Computational mathematics, 1984, 792 pp.
- 14. Mathematical control theory, 1985, 643 pp.
- 15. Mathematical models and methods in mechanics. 1985. 725 DD.
- 16. Sequential methods in statistics, 1985, 554 pp.
- 17. Elementary and analytic theory of numbers, 1985, 498 pp.
- 19. Partial differential equations, 1987, 397 pp.
- 20. Singularities, 1988, 498 pp.
- 21. Mathematical problems in computation theory, 1988, 597 pp.
- 22. Approximation and function spaces, 1989, 486 pp.
- 23. Dynamical systems and ergodic theory, 1989, 479 pp.
- 24. Numerical analysis and mathematical modelling, 1990, 566 pp.
- 25. Combinatorics and graph theory, 1989, 251 pp.
- 26. Topics in algebra, Parts 1 and 2, to appear.