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Sacks reals and Martin’s axiom
by

Tim Carlson* (Columbus, 0.) and Richard Laver { (Boulder, Colo.)

Abstract, It is shown that adding a Sacks real does not necessarily add a Souslin tree, in fact:
280 = Ry--MA can hold in the extension. On the other hand, if the ground model satisfies CH.
then the extension satisfies $ey -

If x is a generic real over ¥, how much of MA,, can hold in ¥[x]? If x is a Cohen
or a random real, then MA, fails in ¥[x] ([6]). If x is Cohen, then in fact there is
a Souslin tree in ¥[x] (8]). For x random, however, no Souslin trees exist in ¥[x]:
assuming ¥ satisfies MAy,([5]).

_ The results in this paper are about the case where x is a Sacks real (an & -generic
real, where & is the set of perfect downwards closed subtrees of (2) ([7]). We
prove that if ¥ satisfies CH, then V[x] satisfies ,,, (Section 1). In Section 3 it is.
proved that if V satisfics a strengthening of Martin’s axiom, then ¥/[x] satisfies MA,, .
In. the proof Sacks amoeba forcing « is used - the original use of it was Shelah’s.
proof that consistenily 2% >, and forcing with & does not collapse cardinals.
The strengthening of Martin’s axiom that we use (MAy, (% * ccc, o * cco)) is a con--
sequence, for cxample, of PFA ([9]). In Section 4 we outline that MAy,
(& * cee, of # cec) is consistent relative to ZFC.

Notation. For g, te &, & extends #(s< ) if and only if s ¢ The nth level
of tis t,, and for xet, t, = {yet: y<,x or x<,y}. Let s ~ f mean that s is com~-
patible with ¢. G, is a generic subset of &.

Scetion 1.

TunowEMm. If CH holds in V, then V¥ satisfies o, -

Proof. Suppose & (w)” and £ (1) > n, all n, Then say s € & is f~thin if for every n,.
Card sy < Cards, +1. And call e f-thick if there are infinitely many »n such
that for each x &1, Card{y e tuy: x<,y} 24

Lemma 1. If ¢ is f-thick, then every maximal antichain in {u: u<t} consisting:
of f-thin trees is uncountable.

* Supported by NSF grant.
+ Supported by NSF grant.
§ — I'undamenta Mathematicae 138/2


Artur


162 T. Carlson and R. Laver

Proof. Suppose {s': i < »} is a set of /-thin trees. To define an s <4, s + cach s".
Suppose s, S #, has been defined and i< w. Then by f-thickness of ¢ there is an
mzn and an Spy S {x € 14, 3y €5,y <,x} such that for each z & sy,

Card{x e s;y: z<,x} 22,

With $pem O () sem = . In w-many such steps all i < » are handled, thus giving s.

LeMMA 2. (CH) For each fe o®(f(n)>n all n), there’s an antichain A; <%
consisting of f-thin trees such that any f-thick tree is compatible with 2*° many members
of 4. '

Proof. Let <{t,: a <w,» be the f~thick trees, enumerated with &, -repetitions.
Let 4, = {s,: «< w,} where, by Lemma 1, 5, may be chosen to be an f-thin extension
of t,, incompatible with each 5; (8 <«).

Proof of the Theorem. For f, g € 0 let f<g mean that g eventually dome=
inates f. By CH pick a scale {f;: e« <w,} in @®. For ¢ < w,, let Z, be the set of
canonical terms for subsets of « which are labeled f,-thick trees; a member of Z, is
a {t, W, V), where t is f-thick, W: ¢—w is 1—1, and ¥: ) ¢,—2. Thus,

n erangeW
for f <o, and dassuming 7€ Gy, B is in the G, -denotation of (tg, W, V> just in
case V(x) = 1, where x is the member of ty; determined by Gg.

Assign to each se 4, an H,(s) = {t, W, V') € Z, such that ¢t ~ 5. By Lemma 2,
we may make this assignment such that H, is onto Z,. Now in V¥ define the ath
member D, S o of the > -sequence as follows. Let s be the member of Gy A,,,
assuming there is one. Then H,(s) is of the form <z, W, V). Suppose snte Gy.
Then let D, be the subset of a. determined by the term {snt, W, V}sntd. If the
above conditions aren’t satisfied, let D, = @.

Now suppose ue & forces that X cw, and Xna # D,, all limit o< .
For s,te & let s<,1if 5<t and s, = 1,. Note that, since {f;: f<o,} is a scale,
every te & is fg-thick for eventually all § < ,. Take a countable elementary sub-
model of the forcing, giving an & < w,, a countable ¥ < {te &: t<u}, with ue ¥,
so that for each 7€ % thére is a f <o such that 7 is Ja-thick. Moreover, if 1€,
h <, B <, then there is an s € ¥ with s <, such that for each xes,, 5, decides
whether or not fe X.

Let a = {y,: n<w}. Construct a sequence u® 3>, u' >,u*>,, ...
u’ =u, each W' e %, and n, <n,<n, <.. Suppose #* and ny, have been chosen.
Then " is f;, -thick, some f, < «, and S <Je» S0 thereisanm 2 ny, with fy,(m) < f(m),
such that for each ye(u"),, (Card{zed") o Y <uz} 24 Lot nyq = 1y (m)
fvr;i :ﬁéruky: ;s ;ﬁ}?e such that #*** <, v* and for each x € (u**1),, ., ,(u**?), decides

i . . .
Let t = O u. Then by construction # is an f,-thick member of & extending u,

ancll, Ie.tting W(yo = n , there is a function ¥ such that (¢, W, V> €Z, is a term
which is forced by ¢ to equal xne. So pick se Ay, such that H(s) = (¢, W, V.
Then st is a condition, extending », which forces that xna = D,. A

«

£l

such that .
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Under the hypothesis, weaker than the continuum, hypothesis, of the existence
of a scale on (w)® of length-w,, does V¥ satisfy CH or even o, ?That V can satisfy
~1CH and V¥ satisfy CH was proved by Baumgartner ([2]), where the model ¥ has
a scale. An alternate model ¥ having those properties, except not having a scale, is
obtained by addjng 2% many Cohen reals to a ground model of "ICH: in such a ¥
there are antichains 4, €& and functions F,: 4,—2", for each a < ;, such that
for each te & there is a f<w, so that for all a2 f, {F(s): s<t,5e4,} = 2%,

Section 2. Sacks amoeba forcing is the partial ordering .« consisting of all pairs
(t,n) where te & and new, given by (f, W) < (s, m) iff t<s, n=m and ¢, = s,.
Forcing with & gives rise to a perfect set of Sacks reals,

Suppose & € V¥ is a name for an object in V. A condition (¢, n) determines % if
there is some p in V such that (¢, n) - X = y. Say that (7, n) weakly determines % if
whenever (s, m)<(t,n) and y have the property that (s, m)i- % =y, then
(t',m) - X = y where t’ consists of all the elements of ¢ which are compatible with
some element of s of length m. One easily checks that given (¢, ) € & and a name
% e V¥ for an element of ¥V there is a (s, n) < (¢, n) which weakly determines %. In
particular, the collection of conditions which weakly determine % are dense.

Corresponding definitions can be made for Sacks forcing. Suppose % e d
is a name for an element of V. Say that ¢ determines % if ¢ }- X = y for some y in V.
t weakly determines % at n if for every element z of ¢ of length n, 2, determines .
Clearly, for any ¢ and » there is a (', n) < (¢, n) (in &) such that ¢ weakly deter-
mines X at n.

The following lemma is useful in showing that & is proper and will be used
later in Section 3.

LeMMA. Assume M is an inner model of ZFC, o™ is Sacks amoeba forcing in the
sense of M and M*™ & % e M. If (t, ) weakly determines % in M, then the collection
of (s, m) e of™ which determine % is predense below (t,n) in o, i.e. if (r, k) e and
(r, k)< (t, n), then there is some (s, m)e ™ which determines . % such that
(s, m) < (t, n) and (s, m) is compatible with (r, k).

Proof. By absoluteness. Since (¢, n) weakly determines X in M, the statement
“for all (r, k) < (t, n) there is an (s, m) which determines % and js compatible with
(r, k)" can be coded as a IT{ statement.

The corresponding lemma for Sacks forcing is obvious.

Section 3. The purpose of this section is to show that MA, can be preservssd
when adding a Sacks real. For a partial ordering P let P » ccc be the class of partial

orderings P * O where ¥* F“Q is c.c.c.”.

THEOREM, MAy, (& * ccc, o » coo) implies that MAy, holds in Ve,

For the proof of this theorem the following two lemmas are needed. Note that
MA,, (P » cee) implies MA, (P). .

1]
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Levaia 1. Assume MAG (P xcco). If PPE“Q is cce” and VP E“g,e O
Jor a'€ w,, then there is a subset X of w; of size ¥, such that VFy<*g, is incompatible
with G, for all o, fe X. :

Proof. By the remark preceding the lemma, MA,(P) holds. Therefore there
is ¢ such that ¥ k “every element of O below § is compatible with 8; many of the
dlo € ;). By MAy, (P % cce) there is a filter' G on P* O such that for cofinally
many o€ w; there is a pe P with (p, 4,) € G. Let X be the collection of such o,

Lemma 2. Assume MAy,(£). Then V™ E “every subset of V of size %, has
a subset of size Ry in V.

Proof. Suppose (¢, n) - “X is a subset of ¥ of size ¥,”. Choose %, € V¥ for
e€wy, such that (7, n) k- “%(x € w,) are distinct elements of X”. By MA,,(«)
there is a filter G on A4 containing (¢, #) such that

(@) for a e w, there are y, and (1, m,) With (i, m,) - %, = Ve

(i) t, = () 1, is in &.

aEwy
Th;:x'e is a subset 7 of @, of size ¥, on which m, is constant. Let this constant value
~ bem and let Y be the set of y, for w e I. Then (z,,, m) is compatible with (¢, n) and
(o> M) - “Y is & subset of X of size w,”.

A similar argument shows that assuming MA,,(##), the conclusion of the lemma
holds with @ replaced by &. This fact will not be needed in what follows.

Proor oF THEOREM. Assume MA, (& * cce, & * cco).

Suppose ¥ F “0 is a c.c.c partial ordering” and ¥¥ k “ B is a dense open
subset of @” for @ e w,. Let T be the st of all terms ¢ in V¥ such that V¥ §- “g is
an element of §”. Define §/G,, to be the partial ordering in ¥ which is defined by

2 Efor g1, 46T, g1 < ¢y in QG iff t1-"g; < g, in O for some (t,m)e Gy,

Cram. V2 k4Q/Gy, is cec”.

Assume to the contrary that (¢, n) k- “4 is an uncountable antichain in 8/G,”.
Choose ¢, for o € oy such that (¢, n) k- 2, € 4 and (z, n) - a, # a; if o # f. Since
MA,,(#) holds, Lemma 2 implies there is no loss of generality in assuming there
is §, €T for e w, such that (¢, n) - G, = da- If z is an element of ¢ of length n,
Lemma 1 implies there is an uncountable subset X of oy such that for all a, fe X
k<4, is incompatible with 4" Even more, by applying Lemma. 1 successively to
each element of ¢ of length » one obtains an uncountable subset X of w, such that
foralla, fe X and allzin ¢ of length », t,%“g, is incompatible with d,”. Fix distinet o
and f in X and for each z in ¢ of length 1 choose 1z < 1, such that #]§-“q, and ¢ p are
compatible”. Let ¢ be the union of the #. Clearly (¢, n) < (1, n). Moreover,
(#', m) -4, and d, are compatible (in 0/G )" which is a contradiction. This proves
the claim. )

Now to show that ¥ k MA,, suppose V¥ k “Q is cec” and V¥ k “B, is a dense
'subset of O for ae ;. Let T, be the collection of all § such that V¥ k de b,.
One easily checks that ¥ k “T, is a dense subset of 0/G... Define E, to be the set
of all ((t, n), §) € o * (8/G.,) such that §eT,, and for ie w let C; be the set of all
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(@, m), f}) e o * (Q/G,;) such that i < nand every element of 7 of length 7 has a branch-
ing node above it in ¢ of length less than n. E, and C, are dense in o * (Q/G,).

To conclude the proof of ¥ £ MA,, by showing V¥ k “there is a filter on O
which intersects each D,”, assume f& &. Let F be a filter on o  (J/G,) which
contains ((, 0), 1) and meets each E, and C;. Let #* be the intersection of all the ¢’
such that (¢, n), p) € G for some n and p. t* is in & since F meets each C;. Let F*
be the collection of all § & T such that {(t',n), §) e F for some ¢’ and n. Define F
in V7 so that ¥ k I consists of the interpretations of the elements of F*”. One
easily checks that * < ¢ and ¢* |- “¥ is a filter on. O which meets each D,”.

COROLLARY. PFA implies V7 |- MA,, .

Proof. The clements of & * cce and o * cce are all proper partial orderings so
PFA implies MA, (& * cec, of * ccc).

Section 4. The following theorem establishes the consistency of ZFC+MA,
(& % cee, s * ceo) relative to that of ZFC.

TurorREM. There is a partial ordering which forces MAy (& * cce, o * ccc).

The rest of this section is devoted to proving this theorem. By a preliminary
forcing we may assume the ground model satisfies CH and ,,(cofw;).

The argument is an iteration of length w, with countable supports in which
generic objects are added stage by stage for all possible elements of & % ccc and
o * cee. Since the & and & of the final model will not be available at earlier stages,
areflection argument will be needed to see that the factors used provide the necessary
filters to witness MA, (& * cec, o * ccc). The Oyy(cofw,)-sequence w.ill be used
to guess the factors so it will be necessary to code names of partial orderings as sets
of ordinals.

Let g: ONx ON-ON be Godel’s pairing function.

LeMMA 1. Assume % is a regular cardinal and S,(0 € E) is a $,(E)-sequence.
If P is a partial ordering which is x-c.c. and D = {d,: y ex} is dense in f, l:‘hen
VP E“R, (e E) is a O (E)-sequence” where R, e V¥ is defined so that V* F “for
any B, pe R, iff there is some d, e Gp with g(y, p)e S.”

Proof. Suppose #”* k “& s a club subset of x and X is a subset of %”. An ae E
can be found such that V¥ k“Xna = R, and ue &” as followi. ‘

Without loss of generality ¥¥ k “if a e & and f < u, then § & Xiff thereis y <:¢
such that d, e Gp and d, I f & X7 and V7 I “each element of €& is closed unde'r g,
Let C be the set of a @ » such that ¥¥ e e & Cis a club subset of x. There is an
& C such that for all f,yeq, g(B,7)eS, iff dyi- fe X. By definition of Ry,

VPR “R, = Xra”, giving the lemma. :

So we will view a o,(cofw,) sequence as a name for a O y,(cof ©y) sequence.
We also need to code an ordering in & * cce or of % ccc by a set of ordinals.

Fix a coding of triples (p, @, f), where pe ¥ n o and o, f € wy, by subsets of ;.
More specifically, this is a function which maps #(w,) onto (.9"u.o.¢)>'<a>1><w1
which is absolute between models of ZFC.
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Suppose V¥ k “( is a partial ordering of @;”. A subset X of an ordinal @ = w, +f
is said to code & % Q if for all e & and a, few,

_ t“a<f in 07
iff
one of the f many w,-blocks of X codes (t,c, f).

Note that whether X codes & % ( apparently depends on a.

Similarly, define when a subset of an ordinal of the form w, -8 codes o * O
for some @ with ¥ | “0 is a partial ordering of ;.

Fixa {,(cofw,)-sequence S (« € E) and assume CH for the rest of this section.

Define an iteration P,(« < w,) with countable supports with factors Q,(x < ;)
along with an enumeration 6, of a dense subset of P, for « < w, such that

(1) If ¢ <w,, then the domain of &, is an ordinal less than ;.

(2) If a< B < w,, then &, extends §,. :

(3) If A< w, has uncountable cofinality, then &, is the union of the &, with
o< A

(4) Assume @ < w, has cofinality ;. Let R, e V™ be such that V7« F “R, is
the subset of  satisfying f e R, iff there is some 3,(&) e Gp, with g(&, B)e S,”.
O, is given by

() "k “if R, codes an element of & * ccc or of * ccc, then @, is this ord-
ering”.

(b) ¥P=E “if R, codes some & * Q not in & x ccc, then O, is o restricted
to (¢, 0) where ¢ forces that Q is not c.c.c.”.

(©) ¥PE “if R, codes some o/ % O not in o  cce, then 0, is o restricted
to (¢, m) where (¢, n) forces that Q is not c.c.c.”.

(d) VP E «if R, does not code some & % Q or o * Q, then O, is trivial”.

(5) If < w, does not have cofinality w,, @, is trivial.

Facts. Assume CH. If P(¢ < ) is any iteration with countable supports such
that the ath factor Q, satisfies V™ k « O, is proper and has size N,” for o< 4, then

(1) P, preserves w;.

(2) If A< w,; then P, has a dense subset of size Ny

(3) If A< w,, then P, is R,-c.c.

Note that from (1) and (2) (and CH), if 1 < w,, then ¥** k CH, Also, if X is
a subset of w, which codes an element Q of & * ccc or o * cee, then @ has a dense
subset of size N,.

Since elements of &  ccc and o * cec are proper, the facts above imply that P,
preserves both w; and o, and 72 F 2% = x,. By the lemma V701 k “R (x & cofw,)
is a Oy cofwy)-sequence™.

. LeMMA 2. (ZFC) Assume P is a partial ordering, x is an infinite cardinal and let €
be the collection of all P* O such that V7 & “Q is a c.c.c. partial ordering of x”.
MA(¥) implies MA, (P * ccc).
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Proof. The proof is a modification of the corresponding statement for MA, .
Assume MA,(%). Note P preserves all cardinals <.

Suppose ¥¥ k “Q is c.c.c” and D, is a dense subset of P * { for « € x. Define
E, e V" for w e so that V¥ k “E, is the subset of ( determined by g e £, iff there
is some (p, d) & D, such that p e Gp and the interpretation of 4 is ¢” VFE«“k, is
dense in O for a € ,”. By a Lowenheim-Skolem argument in V? there is some Q.
such that VP F “@B, is a c.c.c. subordering of O of size < and E, is dense in Oy
foroaex”. Let D} = D, P O, for o & x. By MA(%) there is a filter G’ on P « O
which meets each Dy. If G is the filter on P % O generated by G' then G meets
each D,.

Fix a generic filtler G on P, for the rest of this section.

CLAIM. V[G] E MA, (& * cce).

Proof. Work in V[G]. Let G,= GNP, and &, = & nVI[G,], the version of
Sacks forcing in V[G,].

Suppose V[G}” E “) is a c.c.c partial ordering” and Dy is dense in & * 0 for
¢ e w,. There is no loss of generality in assuming VIG) k “Q has universe ©,”, by
the previous lemma, and that the elements of the Dy are of the form (¢, «) where
@€ w,. Choose a subset X of w, which codes & * d.

 Since & , is the union of the &, with « < 4 whenever 4 has uncountable cofinality,
there is a club set of A’s in w, such that when A in the set has cofinality wy,

(2) XN is in V[G,] and codes &, » Oy in V[G;] for some Q.

(b) for all te &, and a, fewy, ¢ “a<f in 07 iff th“u<fin Oy,

(c) for all £ewy, DNy » O4(= Den& ) x ) is in V[G,] and is dense in
Lo qu : :

Fix such a A so that the interpretation of R; is X A.

We first suppose V[G,] E “%, * O, is in & % ccc”. By condition (iv) on the
jteration there is a V[G;]-generic filter F on &, * 0, in V[G]. Fn&; x v, generates
a filter on & % O which meets each Dy.

Suppose now that V[G,] k “&; * O, is not in & x cce”. By condition (4)(b) on
‘the' iteration there is a ¥[G,]-generic filter F on o, = & nV[Gy], the version of
Sacks amoeba forcing in V'[G,], which contains a condition (¢, 0) »{vhere t forces (with
respect to &7, over V[G;]) that O, is not c.c.c. Fix §;& VG .fo‘r Eew; sych
that ¢ - “dy & Q' and ¢y is incompatible with ¢,” if &,ne ®, are distinct. ”I_‘he idea
now is that the ¢, should provide an antichain in '@ contradicting that it is c.c.c.
However, 4, comes from V[G,1¥* and even if it is interpreted as an element.of
V[G]” there is no guarantee that V[G]” k “dyisin w,”. This problem can be re’medled
by restricting to the condition t* which is the intersection of all ¢’ such that (', m) e F
for some n. )

For € € , there is a condition (¢, ng) € F such that # weakly determines g
at ng, i.e. for all z in #; of length 5, there is an « € o, such that (¢;), - d; = a. Choose
rn‘, € V[G]” such that }4-r; = o whenever aew;, zZ€1; has length n,, and
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(#: k- ;= o. One easily verifies that 1* |- “r4( & w,) is an antichain in Q" contra.
dicting V[GI” £ “Q is c.c.c.” This completes the proof of the claim. Y

Likewise, we have that V'[G] F MA, (o x cce). The proof is analogous to that
for MA,(& * cce) and is left to the reader.

As to the problem of getting ¥'[x], with x ¢ Va real, to satisfy stronger versions
of Martin’s axiom than MA,,, Velickovic and Todorcevic have negative results,
Velickovic derives that if w5™ = w}, then PFA* and SPFA fail in V[x]. Namely,
by Baumgartner ([1]), Foreman, Magidor and Shelah ([3]), and Shelah ([10]), each
of PFA* and SPFA implies that for every stationary S < [w,]™ there is an o < w,
such that §n [a]™ is stationary in [o]*. However, since wh = w3™, it follows from
Gitik ([4]) that [w,]%  (V[x]— V) is a stationary subset of [w,]* in Vx], which
clearly doesn’t reflect as above to any o < w,. See [11]for related results, Todorcevie
has shown that if x is a Sacks real, then PFA fails in Vix], in fact V[x]k not

MA, (279 % cec), where 291 is the usual poset for adding a subset of w, with
«countable conditions.
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