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Rigid P-spaces
by

Kenneth Kunen (Madison, WI)

Abstract. There is a rigid Lindeldf P-space of size and weight ;. There is also a compact
space which is rigid in its Ga topology. It is consistent that there is a P-space of size o; in which all
points have different characters. ’

§ 0. Introduction. All spaces considered are Ts. A P-space is a space in which
all G, sets are open. A space is rigid iff the identity is the only homeomorphism of
the space.

Van Mill (unpublished) showed that there is a rigid (infinite) P-space. His
method (reminiscent of Watson’s [Wat]) was to construct X so that all points in X
have different characters, Note that if X is such a space and % = | X, then 2" > w,.
In particular, under GCH, % = @y, and this was true of van Mill’s space. In § 1, we
use independent sets to show that under suitable cardinal arithmetic, there isa P-space
of size e, in which all points have different characters. Obviously, this arithmetic
must include 2°* > ,,, but our construction requires some further (but consistent)
assumptions as well.

If % = w,, it is easy to modify van Mill’s construction to make our P-space
a LOTS (a totally ordered space with the order topology) of size % in which all points
have different uncountable characters; here the assumption x = @, is necessary
under any cardinal arithmetic. However, a much smaller rigid P-space LOTS will
be constructed in § 2. Note that when we are talking about a LOTS, rigidity still
refers to the topological notion, not the (weaker) statement that the order is rigid.

In § 2, we build P-spaces using trees, in the manner of Juhdsz and Weiss [JW],
and make the space rigid by making the tree rigid. We show that there is a rigid
P-space, X, of size and weight o;. Furthermore, X is Lindelsf and X is a LOTS.

A similar tree argument will give us a compact LOTS whose G topology is
rigid. This space cannot be quite so small; since points of countable character in X
become isolated in the G topology, X can. bave at most one such point, whence
|X] 2% by the Cech-Pospisil Theorem. Our space has size max((2")*,2").
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A slightly larger such space is due first to Watson [Wat], who constructs a com-
pact LOTS in which all points have different characters. The cardinality of such
a space must be at least as large as the first weakly Mahlo cardinal (see [G] and [M]),
and some form of <> seems to be required for its construction. This space is rigid
in its G; topology because in a LOTS, points of uncountable character keep their
same character in the G; topology.

§ 1. An independent set construction. In this section, we prove,

1.1. THEOREM. Suppose that 2°* > w,,, , and that for cach & < @y, Oy 1 = Weyy.
Then there is a P-space topology on the set w, such that each point, £, has character
D410 . ‘

Proof. Since our hypotheses imply CH, there is a family, # =% (w,) of size 2!
which is o-independent; that is, every countable intersection of sets in & and com-
plemients of such sets is uncountable. Since 2 > w,,, we may fix disjoint subsets
Fio F, for £ < wy, where each |F,| = we, . Since modifying each member of &
on a countable set preserves independence, we may assume also that for each ¢ < w;y,

(*) VXeF(+1cX) A Yn>EAYeF (¢ Y).

Our topology will be generated by certain Boolean combinations of our inde-
pendent sets. For each ¢, let &/, 2 (w,) be the set of all countable Boolean combi-

nations of the sets in U {&#,: p < &}. By recursion on £, define &, to be the set of
all Be &/, such that for all p<¢,

) (e B—IXeB e XS B)) A (u ¢B—AXecB(ne X (a)l\B))) .

Then, %, = o, since for £ = 0, condition (1) is vacuous, By induction on &, & is
a o-algebra. If £ <, then #,= %,; this is proved by induction on #; note that for
B e B, condition (f) is trivial for £ < <#, since #, =%, by the inductive hypo-
thesis. By induction on 7 and condition (¥), any set of the form U {4,: p<n},
where each 4, € #,, is in 48,; by independence, this set is not in %, (or even ;)
when & <n. Let B = U {#,: £ <w,}. & is a o-~algebra, since each B, is. Thus, 4 is
a base for a P-space topology, 7, on ©,, and J is 0-dimensional (i.e., set in & are
clopen in 7). Furthermore, J separates points (and is thus Hausdorfl); to see this,
note that if £ < 7, then, by (%), ¢ has a basic neighborhood of the form U {4,: p < &}
(where each 4, € #,) which excludes 7.

Finally, we must compute the character of each point, £. By (1), 4, is a local
base at £, s0 x(£) € wgyy = w41 1 (€) < 0y, we derive a contradiction as follows.
For p <&, fix 4, e #, such that & ¢ d,, For Xe &F,, let Ny = Xu U {4,: p< &}
By x(£) < wy, we may fix a Be % such that £ e B and ¢ = {X: B Ny} has size
®y41. By independence of %, the fact that & is uncountable implies that
B< U {4,: k<¢}. But this is impossible, since £eB and ¢ {4, u<&) M

§ 2 Tree constructions. We plan to build a rigid P-space as the space of paths
through a tree. It will be sufficient to consider only trees of binary sequences, 50 we
make all our definitions only for this case to simplify-hotation. A binary sequence
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is a function, s, from an ordinal, & = Ii(s) into 2 = {0, 1}. A treeis a set, T, of binary

sequences such that whenever se T and o < Ih(s), sjeeT. The tree order on T is

just &, and the ath level of Tis Tn2" If se T, let T, = {te T: sc1}. The height

of T is sup{/h(s)+1: s ¢ T}, We will be considering trees whose height is a regular
uncountable cardinal.

A path through a tree T of height % is an f: % —2 such that floe Tforall o< .
The path space, P(T) is the set of all paths through T. We will consider two topologies
on P(T). One, is the order topology, induced by the lexical order on P(T). The other
is the tree topology. This has as basic open (actually, clopen) sets all sets of the
form

N, = {fEP(T) scf}

for each s e 7. Equivalently, the tree topology is the topology that P(T) inheri'fs
as a subspace of 2* in the < x box topology. Bvery set open in the order topology is
open in the tree topology, but not conversely in general. Since the trcfz topolog)f does
not depend on the ordering, it is a little simpler to deal with, but since we wish to
construct 2 LOTS, we obviously want to use the order topology. Fortunate}y, we
need only consider trees on which the two topologies agree. Call a tree, T, of height %,
agreeable iff for each fe P(T), f ~1({0}) and f~*({1}) are both cofinal in %, and for
each seT, N, # @.

LemmA 1. If Tis agreeable, then the order topology and the tree topology agree
on P(T). W v . .

Call a space %-compact iff every open cover has a subcover of size less than ;
thus, ,Lindelvbf is the same as ¢;-compact. For any regular uncoun.table x, P(T)
is clearly a P-space in the tree topology. We shall show that for a suitable T, P(T)

ill also be rigid and x-compact.

v ;111 the treegtopology, P(T)pand all its subspaces are u-.metrizable (Sf}e [IW], [S]
and [Wan]), and we recall some facts about these sp.ac’cs in our notation. I.’(T) is
paracompact; in fact, every open cover, %, has a disjoim refinement of basic sets,

namel;
- o N N, Q¥ A 13 < Ih(s)(sls QU)}

(<1 means “refines”). Thus, if P(T) fails to be »-compact, T has an a'nt-ichain,’A, of
size at least % such that {N,: s& 4} covers P(T). The subtree conmstmg.of. nodes
below a member of A would then have no paths, and hence be Aronszajn if ez_a,ch
level of T has size less than x. This proves the following result of Juhdsz and Weiss:

Lemva 2 ([JW1). Let T be a tree of height x, where % Is regular. Assume that
Y,eT (N, # @). Assume also that:

(i) Al levels of T have size less than x.

(ii) T has no w-Aronszajn subtrees.
Then P(T) is %~compact in the treé topology. B

[JW]also shows that (i) and (ii) are necessary for %-compactness, but we do not
need that fact here.
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Carrying this idea further, we can represent open sets and continuous functions
on P(T) (in. the tree topology) directly in terms of T. If U is any open, set, let

R(U) = {N,: N,s Un "13a< Ih(s)(slasU)} .

Then R(U) is an antichain in T'and U = {J {N,: se R(U)}. If U is clopen and P(T)
is x-compact, then R(U) has size less than ». Suppose F: N,— N, is continuous.

Define its representing function, Rep(F) to be the function mapping T, into subsets
of T, defined by:

Rep(F)(s) = R(F™'(N,).

Assuming the hypotheses of Lemma 2, Rep (F) is non-increasing in levels on a club
(closed unbounded subset) of s:

Levva 3. If T satisfies the hypotheses of Lemma 2, and Fi N,~ N, is conti-
nuous, then there is a club C'< % such that for each y e C and s € T, 2", all members
of Rep(F)(s) have length <+y.

Proof. By the usual Lowenheim-Skolem argument, we may choose C to be
aclub of limit ordinals such that for each y € C and each s € T, 2<%, Rep (F)(s) = 27
Now fix ye C, s€T,n2", and re Rep(F)(s). For each a<y, N, F™ (Nya), 50
Nyy s F7Y(N,). Thus, Nyy S FTHN), so tly =1, s0 Ih()<y. B

Actually, we can: get all members of Rep (F)(s) to have length equal to 9 unless F
1s constant on some open. set.

Lemma 4. If T, F are as in Lemma 3 and F is not constant on any non-empty open

set, then there is a club D< x such that for each y € D and s & T,n2", all members of
Rep(F)(s) have length 4. ‘

Proof. Fix C as in the proof of Lemma 3. If no club D < C satisfies 2.3, then
there is a stationary 4< C such that for each o €4, there is an s,e Tn2* and
a t,e Rep(F)(s,) with Th(z) <o. Then, by the pressing-down lemma, there is
a teT and a'stationary B< 4 such that #, = ¢ for all x e B. Thus, for all x e B,
N, s FY(N,), so F'(N,) S N,,. Thus, the s, for aeB cohere; that is
g = U {s: we B} is a function, and F'(N) = {¢g}. @ -

If we forget about'making the space rigid, it is quite easy to find a 7" satisfying
the Bypotheses of Lemma 2. Fix any function A: »-2, Following Kurepa, let

]

Ty = {se2™*: [{u<In(s): s(x) # h@)} < o).

It is easy to verify that the hypotheses to Lemma 2 hold. Also, assuming » is un-
countable,

P(To) = {fe 2 [{u<x: f(o) # h(@)}] < ©} .

Thus, if ¥ = w,, we have a Lindelsf P-space of size and weight w,, It is also easy
to sce that neither the tree topology nor the order topology are rigid. We will get
a rigid example by using a slightly larger tree. See § 4 of Todorevi¢ [T] for some
other ways to make T, larger and still have no Aronszajn subtrees.
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Obviously, the choice of 4 does not affect the tree topology on P(T,). So, from
now on, consider # fixed for all time, and to be neither eventually O nor eventually 1.
This will guarantee that T, (and the Jarger tree that we build) will be agreeable, so
that the tree and order topologies coincide. ,

If < f <p¢ and s € 27, we define the h-extension of s, ext(s, f) to be the te2 A
such that #|o = s and #(&) = A(&) whenever <& < f. Sequences of the form
ext(s, f) where B is a limit ordinal and lh(s) < § are called h-tails.

The following three conditions describe a tree T'e 2°* slightly larger than T.

I VseT(s"0eTAs Let)

2. Vse TV > Ih(s)(ext(s, B e T). . o

3. For all w-limits § <%, there is exactly one node, e; & T2, which is not
an A-tail.

Such a T is a superset of To. T, satisfies (1) and (2), but in Ty, all nodes at
limit levels are h-tails.

Lovma 5. Suppose that > o is regular and T satisfies (1-3). Then:

a. For all limits § < x, there is at most orie node in T\ 28 which is not an h-tail.

b. Each level of T has size less than x.

c. |[P(T)] = x.

d. P(T) is %-compact in the tree topology.

Proof. For (a), if cf(f)> w and se T 2% is not an A-tail, 'thcn there must be
a club C B such that for all co-limits, y € C, s}y is not an h‘-ta.11, so that sly = e,.
Hence, for cach such f3, there can be at most one such. 5. For (b), induct on the levels,
using (a) for levels of uncountable cofinality. For (c), observe that by th; sall:rlxc
argument as in (a), P(T) contains at most one element other than all the h-tails,

f eT. .

cm(s’i‘l?e);t .IF"O(EI‘;is %-compact will follow immediately from Lernm?. 2 if we can sh;y
that Thas no % - Aronszajn subtrees. Let S be any subtree of T of height x. Assgmc is
Aronszajn. Then for each s € S, ext(s, ) is not a path through S, s0 the}:lre is solmz
limit ordinal ¢(s) with Ih(s) < @ (s) < and ext(s, () ¢ S. There is then a ;:hu
of limit ordinals, C< % such that for each feC and es‘xch‘ se S, if lh(sl) <p beer;
¢ (8) < B (and hence ext(s, f) ¢ S). But the:%, for f§ an. c.o-11m1t in C,’the only mem
of §n2" is e;, which is impossible if S is Aronszajn. [ ]

To guarantee rigidity, we introduce a fourth condition:

4. For cach seT, the set W, = {f: scep} is stationary in . '

Note that if s and # are incompatible in T then 7 and W, are dlS_].Ol.nt stz.t'lotnary
sets. Conversely, using the fact that the w-limits in % can b_c partltlo_n.e ini ;) _Z)
disjoint stationary sets, it is easy to construct a tree satisfying condltmn(s1 ( D
Before we prove rigidity, we note, asa trivial application of (4), that the tree and or

. .

topologies agree.

LEMMA 6. Suppose that x> o is regular and T satisfies (1-4). Then
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a. T is agreeable.

b. No collection of % of the e, can form a chain,

Proof. BEvery element in P(T) is an A-tail, since, as we saw in the proof of
Lemma 5, the only other possible element would arise from an @-club of the €
which form a chain, which is ruled out by (4). By our assumption on A, every path
through T takes values 0 and 1 cofinally often, proving (a). For (b), a chain consisting
«of any % of the e; would yield an element of P(T) which is not an A-tail. B

Levma 7. Suppose that x> w is regular and T satisfies (1-4). Then P(T) is
rigid. In fact, if F: P(T)~P(T) is continuous, then

» U {N.: FIN, is constant or is the identity}
ds dense in P(T).

Proof. It is sufficient to fix incompatible # and v in T such that F maps N,
into N, and show that F is constant on some non-empty open subset of &,, If this
is not the case, then by Lemma 4 applied to G = F|N,, there is a club D such that
for all ye D and s T,n2%, Rep(G)(s) <2". In particular, for y € Dn W,, choose
an element of Rep(G)(e,); since y ¢ W,, this element is of the form ext(t,, y), where
1h(#,) <. Then, by the pressing-down lemma, there is a fixed # and a stationary
A< DnW, such that t, = ¢ for all ye 4. Then Gext(t, %)) € N, for each ye d,
so {e,: y € 4} forms a chain, contradicting Lemma 6, W

Taking »% = w,, we have

2.1. THEOREM. There is a rigid P-space, X, of size and weight wy. Furthermore,
X is a Lindelsf LOTS. B

A somewhat larger tree will give us:

2.2. THEOREM. There is a compact LOTS, X, of size max((2°)*, 2%, which
is rigid in its G5 topology.

Proof. For a suitable % and subtree T'< 2% X will be the set of all maximal
<hains in T} i.e.,

X=P(T)uf{se2: s¢Th Ya<lih(s)(slae T)} .

Order X lexicographically and give it the order topology; this is always compact,
Unfortunately, if we use our previous construction verbatim, then X will not be
rigid in its Gy topology, since X will contain many elements of character w, which
will become isolated in the G, topology. To avoid this, make T countably closed.
Thus, we keep conditions (1-2) the same, but replace (3) by:

. 3. T'is countably closed and for all limit B < x of cofinality w,, there is exactly
one node, ez levy(T) which is not an h-tail.

Condition (4) is the same; now all ordinals in W, have uncountable cofinality,
$0 x obviously can no longer be @y; in fact, since our argument needed that each
lewel of the tree had size less than %, we need that 1° < x for all A < x; the least %
with this property is (2%)*. With these modifications, the argument that P(T) is
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rigid goes through as before, Furthermore, P(T) is dense in X (with the G, topology)
and is defined topologically in X (with the G, topology) as the set of points of charac-
ter ». It follows that X is rigid in its G, topology.

We now must compute |X|. As before, P(T) has size x, since its only elements
are of the form, ext(s, »). Now, for each y < of uncountable cofinality, consider
the possible s € 2 1 X. Note that no such s is an A-tail. If cf(y) > w,, then s must
be formed by the e, cohering on a club subset of y, so there is at most one such .
If cf(y) = @y, there are |y|** such s. Thus, [X] is the larger of » and sup {A**: 1 <x},
which is as advertised if x = (2°)*. W

This leaves open the question of whether, in ZFC, one can produce an X as in
Theorem 2.2 which has size 2°*. Even better, can all points in X have character w, ?
Under V = L, this is easy. Just replace the T of 2.2 with a suitable countably (_:losed
w,-Suslin. tree. Then P(T) = @, but one can use & instead, when constructing T,
to kill all potential homeomorphisms.
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