

Certaines propriétés des opérateurs de Riesz

าวล

PETER VOLKMANN et HANS-DIETER WACKER (Karlsruhe)

Résumé. Soit R(E) la classe des opérateurs de Riesz sur un espace de Banach complexe E. Nous donnons des caractérisations de ces opérateurs, et nous introduisons deux classes d'opérateurs $\Delta(E)$, $\Gamma(E)$, telles que $\Delta(E) \subseteq R(E) \subseteq \Gamma(E)$.

1. Introduction et résultats. Soient E un espace de Banach complexe et L(E) l'espace des opérateurs linéaires continus $A: E \to E$. Nous désignons par E^* l'espace des fonctionnelles linéaires continues sur E et par $A^*: E^* \to E^*$ l'opérateur conjugué de $A \in L(E)$. Si M est un sous-espace de E (non nécessairement fermé, c.-à-d. non nécessairement $M = \overline{M}$), nous écrivons brièvement $M \subseteq_{\mathbb{R}} E$.

La classe R(E) des opérateurs de Riesz peut être donnée par

(1)
$$R(E) = \{A \in L(E) \mid \operatorname{codim}(A - \lambda I)(E) < \infty \ (\lambda \neq 0)\}$$

(voir p.ex. Heuser [2]; $I: E \to E$ désigne l'opérateur identique). En cherchant des caractérisations de ces opérateurs, Aiena [1] a introduit la classe

(2)
$$\Omega(E) = \{ A \in L(E) \mid [M \subseteq_{sc} E, A(M) \subseteq M, A \mid M : M \to E \text{ injectif,}$$

$$(A \mid M)^{-1} \text{ continu}] \Rightarrow \dim M < \infty \}$$

(où $A \mid M$ signifie la restriction de l'opérateur A à l'espace M), et il a démontré l'inclusion

$$(3) R(E) \subseteq \Omega(E).$$

Dans la présente note nous considérons les classes

$$(4) \qquad \Delta(E) = \{A \in L(E) \mid [M \subseteq_{sc} E, A(M) \subseteq M,$$

$$E = M + A(E)$$
 \Rightarrow codim $M < \infty$,

(5)
$$\Gamma(E) = \{ A \in L(E) \mid [M = \overline{M} \subseteq_{se} E,$$

$$A(M) \subseteq M, E = M + A(E) \implies \operatorname{codim} M < \infty \}.$$

THÉORÈME 1. On a les relations suivantes:

(6)
$$\Delta(E) \subseteq R(E) \subseteq \Gamma(E),$$

(7)
$$A^* \in \Gamma(E^*) \implies A \in \Omega(E),$$

(8)
$$A^* \in \Omega(E^*) \implies A \in \Gamma(E).$$

Remarques. 1. En vertu de $A \in R(E) \Rightarrow A^* \in R(E^*)$, l'inclusion (3) est une conséquence de (6), (7):

$$A \in R(E) \Rightarrow A^* \in R(E^*) \Rightarrow A^* \in \Gamma(E^*) \Rightarrow A \in \Omega(E).$$

2. Les classes S(E), T(E) des opérateurs de Kato et de Pelczyński, respectivement (voir Pietsch [3]), peuvent être données par

$$S(E) = \{ A \in L(E) \mid [M \subseteq_{sc} E, A \mid M: M \to E \text{ injectif, } (A \mid M)^{-1} \text{ continu} \}$$

$$\Rightarrow \dim M < \infty \},$$

$$T(E) = \{A \in L(E) \mid \lceil M = \overline{M} \subseteq_{\mathbb{R}} E, \ E = M + A(E)\} \Rightarrow \text{codim } M < \infty\}.$$

Les rapports de ces classes aux classes $\Omega(E)$ et $\Gamma(E)$, respectivement, sont évidents, et (7), (8) sont analogues aux formules connues de Pelczyński

$$A^* \in T(E^*) \Rightarrow A \in S(E), \quad A^* \in S(E^*) \Rightarrow A \in T(E).$$

3. Quant aux inclusions (6), nous montrerons que les situations $\Delta(E) \neq R(E)$, $R(E) \neq \Gamma(E)$ peuvent arriver (voir le paragraphe 2).

THEOREME 2. Pour $A \in L(E)$, les conditions suivantes sont équivalentes:

- (A) $A \in R(E)$.
- (B) Si $M \subseteq_{sc} E$, $A(M) \subseteq M$, E = M + A(E), alors $M = \overline{M} \Leftrightarrow \operatorname{codim} M < \infty$.
 - (C) $[M \subseteq_{se} E, M \neq \bar{M} = E, A(M) \subseteq M, E = M + A(E)] \Rightarrow \operatorname{codim} M = \infty.$
 - (D) $[M \subseteq_{se} E, \ \overline{M} = E, \ A(M) \subseteq M, \ E = M + A(E)] \Rightarrow \operatorname{codim} M \neq 1.$

THEOREME 3. Soit V un espace vectoriel sur un corps Λ . Pour un opérateur linéaire $A: V \rightarrow V$ les conditions suivantes sont équivalentes:

- (A) Si $\lambda \in \Lambda$, $\lambda \neq 0$, alors $\operatorname{codim}(A \lambda I)(V) < \infty$.
- (B) Si M est un sous-espace de V tel que

(9)
$$V = M + A(V), \quad Ax \in Ax + M \quad (x \in V),$$

alors codim $M < \infty$.

Remarque. En vertu de (1), le théorème 3 aussi fournit une caractérisation des opérateurs de Riesz.

2. Exemples d'inégalités dans les inclusions (6). 1. Read [4] a donné un opérateur $A \in L(l_1)$ qui n'est pas un opérateur de Riesz et pour lequel il n'existe aucun sous-espace fermé $M \subseteq l_1$, $\{0\} \neq M \neq l_1$, tel que $A(M) \subseteq M$. De plus A n'est pas surjectif. On a donc $A \in \Gamma(l_1)$, mais $A \notin R(l_1)$, d'où $R(l_1) \neq \Gamma(l_1)$.

2. Soient $E = l_2$ et $A: E \to E$ donné par

$$A(x_1, x_2, x_3, ...) = (x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, ...) = \sum_{k=1}^{\infty} \frac{1}{k} x_k e_k.$$

Cet opérateur est compact et injectif. Les formules

$$Ae_k = \frac{1}{k}e_k, \quad A^2e_k = \frac{1}{k^2}e_k, \quad \dots \quad (k = 1, 2, \dots)$$

entraînent $e_k \in A^n(E)$ (k, n = 1, 2, ...), et l'enveloppe linéaire $N = [e_1, e_2, ...]$ satisfait donc aux relations

(10)
$$\dim N = \infty, \quad N \subseteq A^n(E) \quad (n = 1, 2, \ldots).$$

Soit R un complément algébrique de A(E),

$$(11) E = A(E) \oplus R.$$

A étant injectif, il en résulte $A(E) = A^{2}(E) \oplus A(R)$, donc

$$E = A^{2}(E) \oplus R \oplus A(R),$$

et par récurrence

(12)
$$E = A^{n}(E) \oplus R \oplus A(R) \oplus \ldots \oplus A^{n-1}(R).$$

La somme directe algébrique

(13)
$$M = R \oplus A(R) \oplus A^{2}(R) \oplus \dots$$

est un sous-espace de E tel que

(14)
$$A(M) \subseteq M, \quad E = A(E) + M$$

(voir (11)). Montrons

$$(15) N \cap M = \{0\}.$$

Soit donc $x \in N \cap M$. D'après (10), (13) il existe n tel que

$$x \in A^n(E) \cap (R \oplus A(R) \oplus \ldots \oplus A^{n-1}(R)),$$

d'où x=0 (en vertu de (12)). Les formules (10), (15) entraı̂nent codim $M=\infty$, et en tenant compte de (14), il en résulte $A \notin \Delta(l_2)$. D'autre part A est compact, donc $A \in R(l_2)$, d'où finalement $\Delta(l_2) \neq R(l_2)$.

3. Un lemme. Pour la démonstration de nos théorèmes nous utiliserons le lemme suivant.

LEMME. Soient V un espace vectoriel sur un corps Λ , $\lambda \in \Lambda$, $\lambda \neq 0$, A: $V \rightarrow V$ un opérateur linéaire et M un sous-espace de V tel que

$$(A-\lambda I)(V)\subseteq M$$
.

Alors $A(M) \subseteq M$, V = M + A(V).

Démonstration. 1. Si $x \in M$, alors

$$Ax = (A - \lambda I) x + \lambda x \in M + M = M.$$

2. Si $x \in V$, alors

$$x = (A - \lambda I)((-1/\lambda)x) + A((1/\lambda)x) \in M + A(V).$$

- 4. Démonstration de (6). 1. Soit $A \in \Delta(E)$. Pour λ complexe, $\neq 0$, posons $M = (A \lambda I)(E)$. Il découle du lemme et de (4) que $\operatorname{codim}(A \lambda I)(E) < \infty$, l'inclusion $\Delta(E) \subseteq R(E)$ est donc établie.
- 2. Pour démontrer $R(E) \subseteq \Gamma(E)$, soient $A \in R(E)$ et $M = \overline{M} \subseteq_{sc} E$ tels que

$$(16) A(M) \subseteq M, E = M + A(E).$$

Selon (5) il suffit de vérifier que

(17)
$$\operatorname{codim} M < \infty$$
.

Pour expliquer la signification de (16), considérons l'espace quotient $\tilde{E} = E/M$, et désignons par $\pi \colon E \to \tilde{E}$ l'homomorphisme canonique. La relation $A(M) \subseteq M$ nous permet de définir l'opérateur (linéaire, continu) $\tilde{A} \colon \tilde{E} \to \tilde{E}$, en posant

(18)
$$\tilde{A}(x+M) = Ax + M.$$

et d'après E = M + A(E), c'est un opérateur surjectif. Soient $\lambda \neq 0$ et N un complément algébrique de $(A - \lambda I)(E)$,

$$E = (A - \lambda I)(E) \oplus N.$$

Il en résulte

$$\tilde{E} = (\tilde{A} - \lambda \tilde{I})(\tilde{E}) + \pi(N)$$

 $(\tilde{I}$ désignant l'opérateur identique de \tilde{E}), donc

$$\operatorname{codim}(\tilde{A} - \lambda \tilde{I})(\tilde{E}) \leq \dim \pi(N) \leq \dim N = \operatorname{codim}(A - \lambda I)(E) < \infty$$
.

Par conséquent, $\tilde{A} \colon \tilde{E} \to \tilde{E}$ est un opérateur de Riesz surjectif, et il est bien connu que dans ces circonstances l'espace de Banach \tilde{E} doit être de dimension finie. L'inégalité (17) est donc établie.

5. Démonstration de (7). Soit $A \in L(E)$, $A \notin \Omega(E)$, et montrons

$$A^* \notin \Gamma(E^*).$$

D'après l'hypothèse il existe un sous-espace $M \subseteq E$ tel que

$$A(M) \subseteq M$$
, $A \mid M$: $M \to E$ injectif, $(A \mid M)^{-1}$ continu, dim $M = \infty$

(voir (2)). L'ensemble $M^{\perp} = \{ \varphi \in E^* | \varphi | M = 0 \}$ est un sous-espace fermé de

E*, et (19) sera une conséquence des formules

$$(20) A^*(M^{\perp}) \subseteq M^{\perp},$$

(21)
$$E^* = M^{\perp} + A^*(E^*),$$

$$(22) codim M^{\perp} = \infty.$$

L'inclusion (20) découle de $A(M) \subseteq M$. Quant à (21), observons que la continuité de $(A \mid M)^{-1}$ entraîne la surjectivité de l'opérateur $(A \mid M)^*$: $E^* \to M^*$ (voir p.ex. [2], théorème 57.3). Si $\psi \in E^*$, alors $\psi \mid M \in M^*$, et il existe donc $\varphi \in E^*$ telle que $(A \mid M)^* \varphi = \psi \mid M$, c.-à-d. $\varphi(A \mid M) = \psi \mid M$, donc $\psi - \varphi A \in M^1$, d'où

$$\psi = \psi - \varphi A + A^* \varphi \in M^{\perp} + A^* (E^*).$$

Pour établir (22), partons de dim $M=\infty$. Soient x_1, x_2, \ldots des éléments linéairement indépendants de M. Si $J : E \to E^{**}$ désigne l'isomorphisme canonique, on voit facilement que

$$M^{\perp} \subseteq \bigcap_{n=1}^{\infty} \ker(Jx_n).$$

Les Jx_1, Jx_2, \dots étant linéairement indépendants, il en résulte (22).

6. Démonstration de (8). Soit $A \in L(E)$, $A \notin \Gamma(E)$, et montrons

$$(23) A^* \notin \Omega(E^*).$$

D'après l'hypothèse il existe un sous-espace fermé $M \subseteq E$ tel que $A(M) \subseteq M$, E = M + A(E), codim $M = \infty$. Comme dans le paragraphe précédent nous avons $A^*(M^{\perp}) \subseteq M^{\perp}$, et (23) sera donc une conséquence des formules

(24)
$$A^* \mid M^{\perp}: M^{\perp} \rightarrow E^* \text{ injectif}, \quad (A^* \mid M^{\perp})^{-1} \text{ continu},$$

$$\dim M^{\perp} = \infty.$$

D'après le paragraphe 4, \widetilde{A} : $E/M \to E/M$, $\widetilde{A}(x+M) = Ax+M$ est un opérateur surjectif, ce qui entraîne que \widetilde{A}^* : $(E/M)^* \to (E/M)^*$ est injectif et $(\widetilde{A}^*)^{-1}$ est continu (voir [2], exercice 55.3). L'application j: $(E/M)^* \to M^{\perp}$ définie par

$$j(f)(x) = f(x+M) \quad (f \in (E/M)^*, x \in E)$$

est un isomorphisme surjectif (voir [2], exercice 54.2). Si $x \in E$, $\varphi \in M^{\perp}$, alors

$$(A^* \varphi)(x) = \varphi(Ax) = j^{-1}(\varphi)(Ax + M) = j^{-1}(\varphi)(\tilde{A}(x + M))$$
$$= \tilde{A}^*(j^{-1}(\varphi))(x + M) = ((j\tilde{A}^*j^{-1})(\varphi))(x),$$

donc $A^* \mid M^{\perp} = j\tilde{A}^* j^{-1}$. Cette formule et les propriétés de \tilde{A}^* entraînent (24).

99

Preuve de (25):

$$\operatorname{codim} M = \infty \Rightarrow \operatorname{dim} E/M = \infty \Rightarrow \operatorname{dim} M^{\perp} = \operatorname{dim} j ((E/M)^*)$$
$$= \operatorname{dim} (E/M)^* = \infty.$$

- 7. Démonstration du théorème 2. Dans ce paragraphe nous supposons toujours que $A \in L(E)$.
- 1. Montrons d'abord que pour deux polynômes p, q sans diviseurs communs on a

(26)
$$p(A)(E) \cap q(A)(E) = p(A) q(A)(E).$$

En effet, il existe des polynômes r, s tels que

$$r(\lambda) p(\lambda) + s(\lambda) q(\lambda) \equiv 1$$
,

et pour $z \in p(A)(E) \cap q(A)(E)$, z = p(A)x = q(A)y, il résulte

$$z = p(A)(r(A) p(A) x + s(A) q(A) x)$$

= $p(A)(r(A) q(A) y + s(A) q(A) x) = p(A) q(A)(r(A) y + s(A) x),$

d'où $p(A)(E) \cap q(A)(E) \subseteq p(A)q(A)(E)$. L'inclusion inverse est évidente.

2. (A) \Rightarrow (B). Soient $A \in R(E)$, $M \subseteq_{sc} E$, $A(M) \subseteq M$ et E = M + A(E). L'implication $M = \overline{M} \Rightarrow \operatorname{codim} M < \infty$ étant une conséquence de $R(E) \subseteq \Gamma(E)$, il reste à démontrer que codim $M < \infty \Rightarrow M = \overline{M}$.

Soit donc codim $M < \infty$. Alors $\tilde{E} = E/M$ est de dimension finie, et à cause de cela l'opérateur surjectif \tilde{A} : $\tilde{E} \to \tilde{E}$, donné par (18), est bijectif. Par conséquent, si

$$m(\lambda) = \prod_{k=1}^{n} (\lambda - \lambda_k)^{p_k}$$

est un polynôme de degré minimum tel que

$$m(\tilde{A}) = 0,$$

ses racines $\lambda_1, \ldots, \lambda_n$ sont différentes de zero. De (26), (27) il résulte que

$$\bigcap_{k=1}^{n} (A - \lambda_k I)^{p_k}(E) = m(A)(E) \subseteq M.$$

A étant un opérateur de Riesz, l'espace m(A)(E) est donc fermé et de codimension finie, et les mêmes propriétés sont vraies pour M.

- 3. (B) \Rightarrow (C), (C) \Rightarrow (D). Évident.
- 4. (D) \Rightarrow (A). Soit $A \notin R(E)$. Alors il existe $\lambda \neq 0$ tel que codim $(A \lambda I)(E)$ = ∞ , et on peut trouver un sous-espace M de E satisfaisant aux conditions

(28)
$$(A - \lambda I)(E) \subseteq M \subseteq \overline{M} = E, \quad \operatorname{codim} M = 1.$$

D'après notre lemme il en résulte $A(M) \subseteq M$, E = M + A(E). Ces formules et (28) entraînent que A ne satisfait pas à (D).

8. Démonstration du théorème 3. 1. (A) \Rightarrow (B). Supposons que (A) soit satisfaite et que M soit un sous-espace de V tel que (9) ait lieu. Observons que la deuxième condition de (9) entraı̂ne

$$(29) A(M) \subseteq M,$$

(30)
$$Ax = \lambda(x) x + m(x) \quad (x \in V \setminus M),$$

où les scalaires $\lambda(x)$ et les vecteurs m(x) de M sont uniquement déterminés. Montrons que

(31)
$$\lambda(x) = \lambda(y) \quad (x, y \in V \setminus M).$$

En effet, si x, y sont linéairement dépendants par rapport à M, disons $y = \mu x + u$, où $u \in M$, alors $Ay = \mu Ax + Au = \mu(\lambda(x)x + m(x)) + Au = \lambda(x)y + \widetilde{m}$, où $\widetilde{m} = \mu m(x) + Au - \lambda(x)u \in M$, donc $\lambda(x) = \lambda(y)$. Si x, y sont linéairement indépendants par rapport à M, alors la relation

$$\lambda(x+y)(x+y) + m(x+y) = A(x+y) = Ax + Ay = \lambda(x)x + \lambda(y)y + m(x) + m(y)$$
fournit

$$(\lambda(x+y)-\lambda(x))x+(\lambda(x+y)-\lambda(y))y\in M,$$

d'où $\lambda(x) = \lambda(x+y) = \lambda(y)$. La formule (31) est donc établie: $\lambda(x) \equiv \lambda$ = const, et de (29), (30) il découle $Ax - \lambda x \in M$ $(x \in V)$, c.-à-d.

$$(32) (A - \lambda I)(V) \subseteq M.$$

Dans le cas $\lambda \neq 0$, la condition (A) et (32) entraînent la relation désirée codim $M < \infty$. Dans le cas $\lambda = 0$, il résulte de (32) que $A(V) \subseteq M$, et la première condition de (9) n'est autre que V = M, on a donc codim M = 0 $< \infty$.

2. (B) \Rightarrow (A). Soit $\lambda \in \Lambda$, $\lambda \neq 0$. Il suffit de montrer que $M = (A - \lambda I)(V)$ satisfait à (9). En effet, notre lemme fournit V = M + A(V), et $Ax \in \Lambda x + M$ est une conséquence de $Ax = \lambda x + (A - \lambda I)x$ $(x \in V)$.

Bibliographie

- [1] P. Aiena, An internal characterization of Riesz operators, conférence donnée à l'Université de Karlsruhe le 11 décembre 1986.
- [2] H. Heuser, Funktionalanalysis, 2ème éd., Teubner, Stuttgart 1986.
- [3] A. Pietsch, Operator Ideals, North-Holland, Amsterdam 1980.
- [4] C. J. Read, A short proof concerning the invariant subspace problem, J. London Math. Soc. 34 (1986), 335-348.

MATHEMATISCHES INSTITUT I UNIVERSITÄT KARLSRUHE Postfach 6980, D-7500 Karlsruhe 1, F.R.G.

> Received June 29, 1987 Revised version July 27, 1987

(2331)