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A characterization of bi-invariant Schwartz space
multipliers on nilpotent Lie groups

by
JOE W. JENKINS (Albany, N. Y)

Abstract. A simply connected nilpotent Lie group, N, has a naturally defined Schwartz
space, #(N). A continuous endomorphism on &{N) that commutes with both the right and left
action of N on $(N) is called a bi-invariant Schwartz multiptier. It is shown that a bi-invariant
Schwartz multiplier is given as convolution by a tempered distribution whose Fourier transform
is a smooth, Ad*-invariant function on the dual of the Lig¢ algebra of N, all of whose derivatives
have polynomial bounds. This characterization is used to discuss summability methods for the
eigenfunction expansion of certain hypoelliptic differential operators on nilmanifolds, and to give

a criterion for local solvability of invariant differential operators on N.

We recall some well-known facts from the Schwartz theory on Euclidean
spaces. Let X denote a finite-dimensional vector space with a fixed positive-
definite inner product, and let & (X) denote the Schwartz space on X. We let
M F(X) denote the space of continuous endomorphisms of (X} that
commute with the action of X on #(X), ie. Eec AL (X) if f - Ef is
continuous from ¥(X) to #(X) and if for each xeX, fe¥#(X), L.(Ef)
= E(l.f), where L.f(y) =f{y—x). It follows from the continuity that for
Ee#5(X) the functional Dy defined on S(X) by Dg(f) =Ef(0) is an

" element of &*(X), the space of tempered distributions. The group invariance

implies that Ef(x)=I/_,Ef(0)= E(I.D)(0) = (Dg, I.f>:=Dg*f(x), where
J () =f(—y). Conversely, if De%*(X), then one can easily see that Ep: f
— D »f is a mapping of &(X) into the smooth functions on X that commutes
with translation. A natural question arises: For which D is Ep e #F (XY
The answer is given in terms of the Fourier transform.

For f e#(X), f is the function defined on X*, the dual space of X, by

70 = [fe9e e

The mapping f —f establishes an isomorphism between #(X) and SP(X*),
and allows one to define, for D e #*(X), the element B in % (X*) by D, 1>

=D, f > In {Sc], Schwartz proves that for D e#™(X), Ep e AF(X) if, and
only if, D is a smooth function on X* which has polynonual bounds for all
derivatives. Furthermore, in this case (D »f) ©= D& f (&). In this note we
announce analogues of these results for nilpotent Lie groups.

This research was supported in part by 2 grant from the National Science Foundation.
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Let N denote a connected, simply connected nilpotent Lie group, with
Lie algebra n. The exponential mapping exp: n— N is a difftomorphism, and
in terms of the corresponding coordinates the left and right translations on
N are polynomial mappings. Thus, if %(N) denotes the image under compo-
sition with exp of &(n), the right and left actions of N on &(N) are
continuous endomorphisms. ¥ (N) is topologized so that composition with
exp is an isomorphism from ¥ (n) to & (N). We denote by %*(N) the dual of
S (N), the space of tempered distributions on N.

For /&% (N), the Fourier transform of f| £, is defined on n*, the dual of
n, by

f‘(g) = _ff(EXp (X))e“Z"‘(C-X)dX.

One has thgt f—f is an isomorphism Ffrom =9”(1\7)‘011t() F(n*). For
DeS*(N), D is defined on &(n*) by (D, F>= (D, Folog), where log
denotes the inversc of exp and, for Fes(n*) and X en,

F(X) = [F(Q)e7 ™ ®0de,

¥

Let Ad* denote the coadjoint representation of N on n*. A tempered
distribution D on w* is said to be Ad*-invariant if (D, FoAd*> = (D, F> for
all FeS{n*). A tempered distribution D on N is said to be bi-invariant if
D, r 1 f>=1<D, LS for all feF(N), where r.f(y) =f(yx) and Lf{y)
=f (x'1 y) for all x,yeN. A straightforward computauon shows that an
element D €%*(N) is bi<invariant if, and only if, D is Ad*-invariant,

Let .#% (N} denote the space of continuous endomorphisms on & (N)
that commute with both right and left translations by elements of N, As in
the Euclidean case, for each E e .#5(N) there is a Dy e*(N) such that Ef
= Dp+f, where, as before, Dy #f(x) = Dg, Lf> F(¥) =f (™). If DeY*(N)
we denote by E, the mapping defined on ¥ (N) by Epf =D #f.

TreoreM A. For D in ¥*(N), Epe. #57(N) if, and only if, D is a smooth
Ad*-invariant function on 1* with polynomial bounds on all derivatives.

Let. PBF (n*) denote the space of smooth Ad¥-invariant functions de-
fined on n* with polynomial bounds on all derivatives. For integers
I, j 20, we define seminorms v; on PBF(1n*) by

v {6) = f}lp,« s§up|.6°‘9(<§)l/(l+ilr§||2)",
o) € § Een”
where d = dim(n), 8* = 8" ... &9, &, ..., 8, are directional derivatives with
respect to some basis of n*, and || || is a norm on w*. The topology on
PB3 (n*) is (-fletermined by saying the sequence {6,} converges to zero if for
each j there is an i such that v;(6;,) —0. The space .#5(N) is topologized by

saying ‘a sequence {E,} converges to zero if for each fe#(N), E.f =0 in

F(N).
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TueoREM B. The mapping .#%{(N) —=PBF(n¥): E — Dy is a homeomor-
phism and an algebra isomorphism, the products being composition in 4. ¥ (N)
and pointwise wuitiplication in PBF (n*).

For £en*, let m, denote the irreducible unitary representation of N
corresponding to the Ad*-orbit of ¢ by the Kirillov theory. For § e PBF (n*),
let D, be the tempered distribution on N with Fourier transform 6.

Tueorem C. For 8 PBy(nY), f e (N), and &en*,
n:(Da xf) = H(f)ng(f)

As an application of these results, we consider the question of local
solvability. Recall that a left-invariant differential operator L on N is said
to be locally solvable if there is an open set U =N such that
cr(U) = LIC™W).

Let o(f) denote the Ad*-orbit in w* that contains &, and, having fixed
a norm on w*, set {o(£)| =inf!||&]: &' €o(§)]. There is a linear subspace

" Ven* and a Zariski open subset V, =V such that the elements in Vj

parametrize an open dense set of orbits in n*. Representations corresponding
to elements of V, are said to be in general position.

Suppose that N contains a discrete cocompact subgroup I. Then
I?(F'\N) is a direct sum of subspaces 3’ such that the restriction to #% of
right translation is a finite multiple of z;. We denote by (I \ N}, the elements
of N appearing in this decomposition that are in general position.

.Trueorem D. Let L be a left-invariant differential operator on N. Suppose
that for each mge(l’ \N)o, m:(L) has a bounded right inverse Az on ', and
that the norm of Ag is bounded by a polynomial in {o(&). Then Lis locally
solvable.

Although Theorems A and B are stated in terms of convolution between
elements of (N} and *(N), their proofs require the introduction of
somewhat more general spaces. Let b be a subspace of the center of 1, and
let A el*. We define the unitary character x; on H = exp(h) by x;,(eXp(X))
= ¢2"@X> and denote by &(N/H, y;) the space of all smooth functions f
defined on N such that f(xy) =y, () f(x) for all xeN, y€H, and such that
foexples(D, where T is a complement to h in n The topology of
SF(N/H, x,) is defined by requiring that the mapping f -»f oexpl, be a
homeomorphism. Define P;: #{N) =S (N/H, x,) by

P, flexp(X)) = [ fexp(X + Y)) xa (exp (= V))dY.
b

P, is an open surjection and thus its adjoint P¥ is an isomorphism of
S*(N/H, 3;) into &*(N).

Let h* be the anmihilator of § in n* For lel* (identified with a
subspace of n*), there is a natural Schwartz space on b+, L(ht+4), given
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by composing elements of (h') with translation by —A. Considering
S (N/H, 1;) and F(h*+1) as subspaces of &*(N) and &*(n*) respectively,
the Fourier transform is defined on these spaces and f —f is an isomorphism
of #(N/H, ;) onto #(ht+ 1) and of ¥ (h*+1) onto F(N/H, x_,). Also, for
DeS*(N/H, 1), (P¥D) = R*,D, where R,: #(n*) =Z(h*+1) is restric-
tion. Thus (P*D) is supported on h*—. and has no normal derivatives.

For fes(N/H, y;) and De¥™*(N/H, x_,), the convolution D xf is de-
fined by setting Df(x) = (D, I.f> for each xeN. Suppose now that
De¥*(N) and f e#(N). One can use Abelian Fourier analysis to study the
mapping defined on 3, the center of i, by Y —Daf (exp(X+Y)). If this
mapping is in (3, then

D+ f (exp(X)) = [ Po(D»f)(exp())dA
6*

for appropriately normalized Lebesgne measure di. Furthermore, P, (D xf)
=D, P, f, where D; is the element of %*(N/H, y.,) whose Fourier trans-
form is the restriction to h*+ A of D. Thus, convolution between elements of
S*(N) and ¥ (N) decomposes into convolution between elements of
% (N/H, x-3) and %(N/H, ) in such a way that smoothness and growth
conditions on D, D e%*(N), are inherited by D;, D, e5*(N/H, x_,). One
then proceeds by induction on the dimension of N/H, Of course, this requires
maintaining considerable control of the various seminorm estimates that
appear in the decompositions,

Remarks. The sufficiency of the condition in Theorem A was first
proved by R. Howe in [Ho], and indeed, the ideas presented there are the
foundation of this work. Theorem C was proved for the case where 6 is a
polynomial by A. Kirillov in [K]. In [CG], L. Corwin and F. Greenleaf
proved Theorem D with the additional assumption that all the representa-
tions in general position were induced from a common normal subgroup.
One-sided Schwartz multipliers have been studied by L. Corwin in [C].

Acknowledgements. The author is partlcular!y indebted to R. Howe for
many discussions and suggestions concermng this work. Thanks are also due
to C. Benson and G. Ratcliff for thelr many contributions improving an
earlier version of this paper. :

L. Preliminaries. Let N denote a connected, simply connected nilpotent
Lie group with Lie algebra n. Let [X, Y] denote the Lie bracket of elements
X, Yen Denote by ad the adjoint representation of n on n, ie. ad(X)(Y)
=[X, Y]. The rank of n, r, is the smallcst integer s such that (ad (X)) =0
for all Xen.:

The exponentlal mapping, denoted by-exp, is a dLﬂ'comorp}usm of n

onto N. For X, Y en, define C(X. Y) by exn(C(X, Y)) = exp(X)exp(¥). The
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Scihwartz space multipliers 105

Campbell-Haunsdorff formula (cf. [S]) gives

L X ¥

-3 Pns )

0 with p,+g; =

(X7, Y4, .
Alpy, 4y, -

where the second sum runs over the integers p;, q; =
=1,...,n and

CiX,Y) = Z _Z

1fori

«s Pns Qn) Z (pl+qu1 QI Pn' Qn!9

i=1

X7 1) = (L. (X", YO X217 .

APy a5 -

T(Xpl, Y‘Tl’ s Xpn] Yqﬂ],

where, by definition,

[x*?, ¥4 =[[...[1IX, X], X] ..
where X occurs p times and Y occurs g times, and t(X)
clear that the coefficient of ¢ in C(Y, tX) is given by

r—1

{1y )
=1
where the ¢; are universal constants. Since the matrix representation of E
with respect to a Jordan—Hglder basis is upper triangular with ones on thc
diagonal, E is an invertible endomorphism on n.
Given X en, define the differential operator &, on n by

X1, YL ... Y],
—X,7(¥) = ¥ It is

¢;(2d (M) (X) = E(Y)(X),

d
oxf (Y) =;i;f(Y+tX)LO

The mapping X — &y extends to an isomorphism from the symmetric algebra
of n, S(n), to the algebra of constant coefficient differential operators on n.
Recall that S(n) is a graded algebra with grading :

S = ® S,

where §/(n) is the span of products of j elements from n. There is also the
associated filtration given by

Sty é NA
I=0
Given X en, define the differential operator gx on N by

oxf (exp(Y)) = ;?;f (exp(Y)exp (tX))L=0

The mapping X — oy lifts to an isomorphism between the universal envelo-
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ping algebra of n, #(w), and the algebra of differential operators on N that
are invariant under left translation by elements from N.
The algebra % (n) is a filtered algebra '
' M=) %%,
) k30

where 49 (1) is the span of products of k or fewer elements from . The
symmetnzatfon mapping a: #(W) —S{1) is a linear isomorphism that pre-
serves the filtrations of the two algebras and induces the isomorphism

A pE=1 = gk

given by the Poincaré-Birkhofl-Witt theorem.

Let #(n) denote the space of polynomials on n, and let 2% denote the
subspace of polynomials of degree at most k. Similarly, denote by % (n) the
space of constant coefficient differential operators on n, and by @™ the
operators of degree at most k. Since [V, %] is contained in the scalars,

the algebra of polynomial coefficient differential operators on n, 22 (n), has
a natural filtration

P (n) = (—% 2GR ()

Jk=1

where 2ZYM () is the image of 29 (M)@P™ (n) under the mapping pRD
— pD. One has similar bifiltrations, and similar notation, for the algebras of
p;)lynomiz:‘l coefficient differential operators defined on arbitrary subspaces
oI nmor nv.
Denote by log the inverse of exp. For Le®%(n), composition with log
defines a differential operator on m, g olog, ie. if fis defined on n, then
(erolog)f (¥} = gr(f olog) (exp(Y)). '

‘ Lemma 1.2. For X en, giologf(Y) = Opascrnon S (Y), where E is given
in (L1). Thus, gyologes#&® YV, It follows that if Le#™(v), then

pr.olog e k=M (1 4 =
f;r "VES“‘) " (). Also, 8xf (Y) = 0y sy - 10r O108F (Y). It follows that

by € KD =341 (1) @o (UM () clog.

Proof. gyologf(Y) = %f(log(exp(Y)exp(tX)))

it =

d
~—r(c(, zX))[

=0

d
= (Y+tE(N) X)

t=0
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The other observations follow from the commutation relations
[o(r)clog, 2™ ()] = #**7~2 (n).

Henceforth in this section, b, t and m will denote subspaces of n such
that the center of 1, 3 is the direct sum of b and % and such that n = m®
t@h. Let ¢ , ) be a positive-definite inner product on n for which m, f and
h) are mutually orthogonal, and let ||| denote the corresponding Euclidean
norm. Pick an orthonormal basis {X,,..., X,} of m such that
{Xus Xna1r o-or Xg} is @ basis for B {Xe, Xes1s 00 X,_1) is a basis for §
and with {X,, ..., X4} & basis for m. Let {X7},..., XJ} be the dual basis
in w* There is a unique morm on n* for which (X*, ..., X3} is an
orthonormal set. -

By restriction, { , > defines an innet product on any subspace of n. If p
is an ideal in n, we define an inner product on n/p by requiring that the
projection from g the orthogonal complement to p in w, to wp be an
isometry. In this manner, the inner product on n can be used to define inner
products on any subquotient of t.

Given the inner product {, > on nor n*, thereis a natural extension of
{, >to S(V), again denoted by (, ), for any subspace Vof n or n*. It is
obtained by requiring that the homogeneous components of §/(V) be ortho-
gonal and that, for X,YeV, it satisfy (X', Y'y = (<X, Y. By using the
symmetrization mapping ¢, the inner product on S(n) pulls back to an inner
product on %(n), ie. for L, Le #(n), set (L, Iy = {a{l), 6 (L)

For X en, ad(X) is an endomorphism on 1, and hence has an operator
porm, |lad (X)|. Also, the mapping X —ad(X) of n into End(n) has an
operator norm |lad||. : :

LemMa 1.3. Ler p be an ideal of v and let q be the orthogonal complement
to pin . There is a constant C that bounds the function M defined on qxp by
M(X, Y) = (1 HIXIDA+HITIAL+HIC X, ).

It follows that for any nonnegative integers r, § there is an integer t and a
constant C such that for X €q and Y €p,

(XY (LI Y13 < CL+IICX, Y.

Proof. Assume there exist {X,} < q and {¥,} = p such that M(X,, Y)
—oo. Then s, =X,/ »co and t,=|YH—o0. Let p,i=1,...,m be
orthogonal subspaces of p such that p =@ p’' and

. 91 3 9
k=i
Let ¥, =Y ¥ and C(X,, ¥,) = X,+2.C(X,, Y,), where Yl and CHX,, ¥)
are elements of p'. _ :
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Since  (1+IX DAY/ satn) =1, [IC(X,, lAsyz) »0.  Thus
X,/(s,t,)"* =0, which implies that z,/s, —>o. Now C*(X,, ¥) = ¥} and for
iz 2, C(X,, ¥)is a sum of terms involving ¥! and Lie products of X,,
Yl ..., Y71, with constants depending on n. Since ||[C'(X,, Y)li/(s,t) 2 =0
for each i, by induction one sees that ||%)|/(s,¢)"* —0. This implies that s,/t,
— 00, a contradiction.

Similarly, as one can show very easily, for each r >0 there is a
constant C and an integer s such that

(L+ICX, NP < CU+IXN L+ i

2. Schwartz spaces, Although one can define the Schwartz space on N in
terms of the Schwartz space on n and exp, or even go further, suppress N
altogether by introducing a second group structure on n via the Campbell-
Hausdorff formula, for our purposes it is necessary to make estimates that
involve the action of N on Schwartz functions. Thus, it is more convenient to
define the Schwartz space explicitly in terms of N.

The Schwartz space on N, denoted by &(N), is the space of all smooth
functions defined on N for which the seminorm

(J@+1X12pmewf (exp (0) dx)

is finite for each p> 0, for each 1 € 4 < 0, and for each Ledr(n). The
topology on %(N) is generated by these seminorms.

Recall that wy, f and b are orthogonal subspaces of n such that n = m@®
I®bh, and 3 the center of n, is given by @ For each Aeh*, define the
unitary character y; on H =exp(h) by

1 (exp (X)) = &2m¢hX,

Define % (N/H, z;) to be the space of smooth functions defined on N that
satisfy .

(2.1) flexp(X+ Y =1 (exp(Y))f(exp(X)), -~ Xen, Yeb,
and for which the seminorm

2.2 ( Ji(l+I'lelz)‘“’eLf(e.xp(X))I’dX)”"

. wWh

is finite for each p>0, all 1<g< oo, and all Le®@(w). (It should be
noted that the measures on n and n/} are the Lebesgue measures induced by
the inner products, and that they are carried by the exponential map to Haar
measures on the groups N and N/H. It should also be noted that becasue b

is a central ideal, if f is a smooth function that satisfies (21) and Le#(n

then ¢, f again satisfies (2.1).)
The space ¥(N/H, r,) has the topology generated by the seminorms
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given in (2.2). There are three different generating families of these seminorms
that we will use. They are denoted by || ||,,, where s =1,2, co, and p, q
are nonnegative integers, and ar¢ defined by

(23) NS lpq = (X [ A+IXID oz f (exp X)) dX)"”
Wh
for s = 1,2, and where the suin is over an orthonormal basis of %@ (w/h), and
(24 wllfllng = SuD  SUP (1) X]1%P]o, £ (exp (XIN/ILY.
Xewh Leaddloy
The seminorms in (2.3) do, of course, depend on the choice of orthonormal
basis, but only up to equivalence.

If Vis a subspace of n or n* the Schwartz space of ¥, #(V), is defined
as usual, i.e. #(V) is the space of all smooth functions defined on ¥ for which
the seminorms

(JA+IXIPy718, £ (X)) dX)"

v
are finite, for each p > 0, r 2 1, and each YeS“®(V), and the topology is
generated by these seminorms. Similarly to the above, theré are analogous
families of seminorms | [f,,.

The following lemma shows that the exponential mapping induces an
isomorphism between &(N) and % (n).

Lemma 2.5. For p2 0 and q 2 1, there is a constant C,, such that for
each feF(N),

sl llpg € Cp gl f XDyt gir— 1).0
and for f e (n),
Ao € Coydllf 008l s - 132 3) 47— 1,g-
The proof is an immediate consequence of Lemma 1.2.

If fe#(n) and p =0, g > 1, there exist constants 4, B, C, and p;, g, i
=1, 2, 3, such that ‘

(2'6) 00”f“p,q s A 1”f|!pi.q1 "<- BZ“f”pz,qz s C noflf”pg.qg'

The first inequality is a Sobolev inequality, while the second and third
inequalities are established using the Schwarz inequality, Using Lemma 2.5,
one can prove analogous inequelities on Y'(N). By restricting to exp(m@l),
one gets an 1sometry from ¥(N/H, y;) to &(N/H). This, combined with the
mappings between .’ (1/l) and ¥ (N/H) induced by the exponential, estab-
lishes (2.6) for the spaces #(N/H, x,).

Let h' denote the annihilator of b in n* For Aeh*, £(h*+ 1) is the
space of functions f defined on h*+ A such that the function f; given by f, (1)
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= f{n+74) is in Z (). The seminorms on ¥ (h 4 are pulled back to . (h+4)
by the mapping f —f; and generate the topology.
For f =% (N), define fon w* by

F& = [flexp(X))em?"¢®rdx.

it

Since, by Lemma 2.5, the mapping f — f oexp is an isomorphism from $(N)
to .%(n), the usual theory establishes that f — {is an isomorphism from .#(N)
to & (). Likewise, for F % (n¥), Fologe#(N), where, for X en,

F(X) — -‘v"F(é)e*ZTtiklfaX) dé.

Note that for F e (n*)

2.7) ((Fclogyoexp) (&) = F(—§) = F (&),
while for f €% (N) 7
2.8) (/) olog(exp(X)) = f (exp(— X)) = [ (exp{X)}.

Let %*(N) denote the dual space of #(N). For D e¥*(N), D is defined
in &*(n*) by (D Fy=<D, Folog). Similarly, for D es* (n*), . D is defined
on ¥(N) by D, f>= (D, f>. From (2.7) and (2.8) one has (D) = D, where
B.1y= <D, 1>

The spaces & (N/H, y,) and & (hy*+ /) may be considered as subspaces
of %*(N) and &*(n*) respectively, and thus the above definition of Fourier
transform applies. We have

LemMA 2.9. For f e#(N/H, 1,), the distribution f is absolutely continuous
with respect to the Lebesgue measure on Y +1, and has density given by

(210 FE+ = [ flexp(Y))e &+ gy,
wh
For FeS(h*+7),
2.11) Fexp(X)) = JF(C+1) = WETLX) g

bt
It follows that

(2.12) e (NJH, 1)) = (04 A),

(2.13) F: Fes (W +A)) = 2(N/H, x-,).
Proof. Let fe¥(N/H, x;) and ¢ €% (n). Then
(. o) = [f(exp(X)) @ (exp (X)) dX

=[[Flexp(X) p(Eye =P dt ax

icm
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|f(cxp(Y+Z))qo(n+u) — 28>+ WIN 4 dpdZ Y

Fid

m@i b (i
=1 fexp(Y)) @n+ ) e WD+ w22 gy dn dZ dY
b b

= 1 S (exp(Y)) e 2 dY] o(n+ ) dy.
bt
This establishes (2.10). Since foexp|,e % (m®i), it follows that fesmt
+ A).
The proof of 2.11 is immediate from the definitions, as well as the fact
that F e #(N/H, y_,). This and the previous inclusion establish the equalities
{2.12) and (2.13).

For Aeh*, define P;: & (N) > % (N/H, y;) by

P.f (exp(X)) = [ f{exp (X + V) e~ 24 Y.

b}
Let f e (N/H, z,) and define f; e#(m®Y by £ (X) =f(exp(X)) for X eme®
t. Let f, €(ly) such that f,() = 1. Then [ = f; ® f, clog e&(N) and Pxf
=f. Note that if f, = f in & (N/H, x,), this construction yields a sequence f,
- fin %(N) such that f = P, f =lim P, f,.

Let %*(N/H, x,} denote the dual space of F(N/H, y,). Then P}, the
adjoint of P, is a continuous injection of &*(N/H, x,) into #* (N). Further-
more, the range of P¥ is the annihilator of the kernel of P,.

For Dey*(N), fe#(N), and xeN, define I f(y)=f(x"'y), and
A.D,f>= (D, I.f>. Let ¥%(N)={De¥*(N): [,D=y,(x)D for xeH].

Lemma 2.14. PY&*(N/H, y2)) = FE(N).

Procf It is easy to see that for D e%*(N/H, x,), P¥(D)e¥%(N). For
the other inclusion, we recall some facts from the Schwartz theory on R"
Specifically, if D e%*(n) and f €% (n) then D * f is defined on n by D+ f(X)
=D, Iy Y, where Iy f(Y)=f(X—Y). Dxf is again a tempered distribu-
tion on n

Suppose now that D €%%(N) and define D oexp €.*(n) by (Doexp, [>
= (D, foexp). One easily checks that ((Doexp)xf)ologes¥(N). Thus, if
g eker(P;)

{Doexp)* f, goexp) = | [{Doexp, lysy(foexp)” >g(exp(X+ Y)dYdX

wWh !

= | (Doexp, Ix(f cexp) )\g(exp(X+Y))xi(exp(Y))deX 0.
wh

Since f was arbitrary in 5"(N), this implies that <{D, g>=0.
For Aeb*, let R;: #(n*) >F(h*+4) be the restriction mapping. Then
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R¥, the adjoint of R;, is an injection of %*(h*+4) into the tempered
distributions supported on h*+4, and without normal derivatives,

Lemma 2.15. For D e (N/H, 1), (P¥D)” = R*, D, where D is defined
by the adjoint of the Fourier transform mapping % (h*—2) =S (N/H, x;).

Proof Let Fe#(n*) and X em®t Then
Py(F olog)(exp(X)) = [F(X +¥)e™ 2% 40 dy
1]

= [ [ [Flr+p)em w0 Sont dudy dy

b bt

[ Fln=Qyem 2@ dy = (R2F)(X).
h '

An element D es*(N/H, y,) is said to be bi-nvariant if (D, Lf>
=(D,r —1f> for all xeN and fe¥(N/H, x;), where r.f(y) = f(yx). An
element De%*(ht+1) is said to be Ad*-invariant if for all f e (h'+A),

D, foAd*>= D, .
Lemma 2.16. D e (N/H, x,) is bi-invariant if, and only if, D e5* (h*~— )
is Ad*-invariant.
Proof. Let f &% (N/H, x;) and xeN. Then
(e /) =D = ‘ f(x_lexp()’) Xje~HG-A0) gy
wh
= j f(CXp(Adx(Y)))e'2"‘<f*1»">dy
-
= | flexp(¥))em2mee=AD gy
wh .
= f(Ad*x(¢ ).

The following lemmas are needed in the proof of Theorem A.

Lemma 2.17. Let f be a smooth function on N and suppose that for each
pair of nonnegative integers p,q there are canstants | = b, and CM' such that
for Xem®t Yeb and Le?(n),

® | o fexp(X + V)| < Cp,q LI L+ XY AL+ Y122,
(i) JwllPronfllpo0dd < Cp,IILIJ.

[iid )
Then f e (N). . '

Proof We will show that ||f}},, is finite for all p,g > 0.
7_ Note that by (i), for each fixed X and L, the mapping ¥ — ¢, f (exp(X
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+Y))e# (). Thus the usual Fourier inversion gives
oo f(exp(X+Y)) = j;PA o f (exp (X +Y))di.
Thus, h
(L+1X10n f (exp (X + V)| < [(L+IXIPY| Ps o f (exp (X + Y))| dA

b*

< JwllPir fllp0dh < CpgllLll.
h*

Therefore,
L+ X+ YIPPlew f (exp(X + V)
< (LHIXIPP (LHIYIPPlow f (exp (X + V)

< Cpg ILIA+IXIP orf (exp (X + 1)) € Cpg Cprg LI

Lemma 2.18. Given integers p,g = 0, there exist integers p',g' 20 and a
constant C such thar for all f €Y (N),

‘ s!lpif“p,q di < Cs”f!lp',q"

i

Proof. For s=1,
[P fllpedh = {3 § A+ 1X11% o Ps f (exp (X)) dX di

R

B o wh
(the sum is over an orthonormal basis of %9 (n/h))
< 2 JAO+UXNDPA+IAD (1 — 4 or f (exp(X + Y))| dY dX dA
i wWhh ‘ .
"~<- C1|lf||p+2,q+2ka
for k sufficiently large.

3. Convolution. Recall that for a function f defined on N and for x and y
in N, Lfp)=f(x""y) and f(x)=f(x""). Thus, if fe%(N/H, 1)
f e (N/H, x_;). For Dey™*(N/H, x_,;) and f €% (N/H, ;) the function D xf
is defined on N by

Dxf(x)= <D, L[>
Note that if |y = {0} and D = g e%*(N), this definition agrees with the usual

one, ie.

gxf (9 =g, LT>= fglexp(Y))f(exp(—Y)x)dY.
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Since convolution (on the leftf) by D commutes with right translation,
D« f will be a smooth function on N for each De¥™*(N/H, x_,;) and
f e (N/H, x,). Thus to show that D «f is again in (N/H, ), it suffices to
show that D= fis rapidly decreasing. More precisely, we have

Lemma 3.1, Let Dey™ (N/H, ¥_,} and suppose that for each nonnegative
integer p there exist a constant C, and nonnegative integers p', q' such that

1D S0 < CosllF s

Jor each f e (NfH, y;). Then for each q there exist a constant C,, indepen-
dent of f, and nonnegative integers p”, q"” such that

SHD *f”p,q g Cp Cqs”f”p”,q"'
Proof. We give the proof for s = 2:

D5 fllpa = (S Gllon (D Niipo)),

the sum being over an orthonormal basis for #@9 (). Thus

D Fllpg S(CZY Slhan 12,0,
dllerfllpa = 2llow 0 1100 < €y Cy afl fllyr g
where

Cy = sup IIL LI/ULHILI): Le#' (), Lew® (n)],

Let p be an ideal in n that contains b, and let P=exp(p). Let R:
S (N/H, x;) — 4 (P/H, ;) be the restriction mapping, and denote its adjoint
by R*. The following lemma shows that if D e¥*{(P/H, ¥_,) that convolves
Y'(P/H, y;) into itself, then R*D convolves ' (N/H, y,) into itself.

It is convenient for the proof to work on the group level. In particular,
the exponential mapping carries the Lebesgue measures on n and [y onto
Haar measures on N and H respectively. There exist Haar measures on N/H
and P/H such that for fel'(N) and g L' (N/H),

[figdx= [ [f(xp)dydx, [ glx)dx= | | gly2dzdy.

N/H H NiH P\N PIH

We identify the Lie algebra of P\N with the orthogonal, direct sum
complement of p in 1, and the Lie algebra of P/H with pnm@®t. (Note that
the right and left cosets of H coincide.)

Lemma 3.2. Ler D eY™*(P/H, y_,) and suppose that for each nonnegative
integer p there exist a constant C, and nonnegative integers p'g' such that for
each f &5 (P/H; y,),

s“D *f”p,o = Cps”f”p’.q"
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Then there exist a constant C, and nonnegative integers p”, ¢" such that for
each fe¥ ' (N/H, x,),

9”R*D *f“p.o 'S- Cfns”f“ﬂ”,q”'
Proof. We give the proof for s = 2:

[ IR* D ()12 (1 + fllog (x| dx
N{H

= | [ IR*Dxf (> (1 +|llog(zy)lI?)*" dzdy

PAN PIH .
<C [ | 1D, R{y 1R+ o @I (1 +illog (1) dzdy
P\N PIH .
(for some r =r(p), and C independent of [ and D)
<C | A0 xR DIEo (1 +log(I?) dy

PN

< CC, [ AR, I (1+Iog (A dy

PAN

=CC, | ¥ allec(h MZ,o(1+Ilog WIF) dy

P\N
{the sum is over an orthonormal basis of #“?(p/))

=CC,5 | | lonS @ (1+illog @IV (1+log D) dzdy

P\N F{H
(by Lemma 1.2)
<CCY [ | louf @) (+Ilog =y} dzdy
P\N P{H
=C'Cyall flfg -

LemMa 3.3, Suppose that De*(N/H, y-;) such rhat (P£,D) is a
smooth function on W+4, all of whose derivatives huve polynomial bounds.
Then the function Y =D flexp(X + Y))e¥ (). More specifically, suppose
that for each integer j 2 O there is an integer | and a constant C;(D} such that
Jor neSY (),

18, D (v < CD) Imll (1 + MY, veb™

Then, given a nonnegative integer p, an X en, and an f e (N/H, y;), there is a
constant C,(X} and positive integers L, p', ¢', independent of f, such that

{i) (1+(171127|D » £ {exp(X + V)Y € Cp(X) Cop (D) ol fllpt.gr

(i) Cp(X) < C{L+[| X
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Proof. Let F=(P*;D) and let ge(N) such that P,g =f Then

D+ f(x) = <D, L(Pg) ) = <PD, l.g)=<F, (L) >. If Yetand he s (N)
then (I, ) (&) = 24> (B) (&), Thus, setting

h-1 1
(3.4) 4= 3% 5athy

one has (1 —~ AP Loy B = (L+||Y)[D7 (—_— k) . For positive 1nteger k, define
@ on b'+A4 by @ (E+) = (L+[E+ A% Then, for Xen and Y et

(L+YH7D « f (exp(X + V))
= ( I F(E+2) (1~ 2P (logpx+ G 0Exp) (¢ +D)dé|

—IIL(PE FEH (I~ A FE+ D (logx s § 00xp) (E+1) a6+ D) dé

-H P (1= 4P F) (W) (1 -4 J Lpix +1) § Oexp)(W) dW|

(where 4 = é:l 41 ;83)
=| | (o *(t~ay F) (W) Py{(1 = 8 by 8) (exp (M) dW|

1
”‘Pt (1 A)PF[le([J_+A) “(1 A) I:xp(X+Y) Pag OeprILz("/m

(for k sufficiently large)

< Cop (D)1 — A)* byx+1y Pa § O x|

By Lemma 1.2, é;(f cexp)(Y) =
(3.5)

iy
- ‘ (@ paery-15 /) 0EXP(Y). Thus,
(1 — A)k [exP(X"l"Y) PJ. g((exp(W)) .

d
= i+ (1 — Z sz:(m(W))“lxj)k (P2 ) (exp(W)).

Since Yis in the center of n, the norm of (3 5) is mdependent of Y. However,

the norm does depend on the Jacobian of the ma
ing W —C
has a polynomial bound. orne (% W), which

LemMa 3.6. Let De%™* (N/H, x
33. Then for each f €% (N/H, y,),

D« f(exp()) =

-1) that satisfies the hypothesis of Lemma

I Dy * 1, (exp(X))dy,
|

where for vet¥, y,., is the character on Z = exp(3) given by
T2 {eXP(X + ¥)) = 201+ <aTy)

icm

Jor all eS9(3*

Sehwartz space multipliors 7

for X et and Yehb, f,e/(N/Z, y.+;) such that
(f,0exp) =(f oexp) [L_”_,,)n
e/ *(N/Z, y_,-;) such thar D, = D|H~+\-i~i,'

Proof Lemma 33 shows that for each Xen,
+ Y)ye (). Thus, the usual Fourier inversion gives

D« flexp(X)) = _|‘ j'D s f (exp(X + Y))je* Y dY dv

and D,
Y =D flexp(X

=il D(i+l){cxp(x+nf0¢xp Y (E+ A e T dEdY dv

! lh'L

{writing & = n+ u according to the decomposition Bt = 3t @
[ 1B 1A (g £ 0€XPY -+ 1o AP0~ 5T dudY dndv

gk
= [ [ Dy +v+Wleen, S 0EXP) (+v+Adndv = [ D= Jilexp(X))dv
I 1J“ ¥
Recall that for X en, Ad(exp(X)) is the endomorphism of n given by
Ad(exp(X )) = exp{ad (X)). Ad* denotes the contragredient of Ad acting on
* One can easily check that for each Zeb* and X en, Ad*(exp (XN(h+ A
= h "+

THEOREM 3.7. Let DeY™*(N/Z, x.,) such that (P¥, D) is a smooth
function on 3t+4, all of whase derivatives have polynomial bounds. Assume
Sfurther that (P%, D) is Ad*-invariant, i.e. is constant on the Ad*-orbits in 3+
+A. Then for f e (N/Z, y). D felIN/Z, xi). More pr eciselp, suppose that
for each nonnegative integer j there is an integer | and a constant C; (D) Such
that -

18,(P%, DY (v + A < GOl L+HIVIPY, - vey?
). Then for each integer p = 0 there exis! mzegem s p and q,

and u constant C, such that for each fefF{N/Z xlj

D fllp0 < Vil M

Proof. The proof, with s = «, is by mductxon on the dimension of n. If
dim(n) = 1 or 2, the theorem is trivial. N

Assume that dim(n) > 3, and that dim(3) = [. In this case (P%,D) is
constant on the cosets in h'+ A4 of the anmhl]ator of the centrahzer of the
second center of n, which we denote by p™.

To see this pick X, ¥, Z en so that 3 is the span of Z, [X, Y] Z, and
n= no®l11, where 1, is the span of X, and n, is the centralizer of ¥ Fix a
Eeht+d, with <&, Z>#0, and let r, denote the radical of & If Wer,

C, €D

2 ~ Studis Mathematica 92.2
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Vei?, the second center of n, and X" en, then
[Ad(exp(X)) W, V] = [W+[X', WI+(1/9[ X, [X, W]+ ..., V]
=[W, V] =0Z.

Thus, <¢£,[Q, 9> =a<{&, Z) which implies that o =0. Therefore,
Ad (exp(X)) 1z < ¢(3¥). Hence, p* < {span {Ad(N) 1~¢}‘)"L for all &eht+21 with
(&, Z> # 0. Since this latter subspace is contained in the Ad*-orbits of ¢ (ef.
[CGP], Theorem 4.1), the claim follows by continuity of (P*, D) .

Let p = c(3?). Since (P*, D) is constant on the cosets of p’, one sees,
by partial Fourier transform, that supp(D) < P =exp(p). Then, by Lemma
3.2, it suffices to show that for g (P/Z, y;) and Dey™*(P/Z, y.,)} the
desired estimates hold, which is the case if 3 is the center of p.

Thus suppose that 3 is not the center of p, and pick subspaces p, 3 of
p such that 3, @3 is the center of p, and with p = p, @3 @3 Then for X ep,,
Y3 and positive integer p,

(X2 (L +([Y])37 D * g (exp (X + Y))[z
< C(1+UXN*P* | D*glexp(X+Y))| (by Lemma 3.3)

< C [(1HIXI)P*H D, «g, (exp (X)) dv  (by Lemma 3.6)
i

< CJa+HxP™
i

< C J llDy #(1 =2 gl (1+]V]?) " dv

A
€ C'Cpay | €D )1l — A gyl (LI ~*dv < C C1(D) ]lgll g

11
~The last inequality uses Lemma 2.18 and the fact that C;(D,) < C;(D). The
conclusion then follows from the remarks following Lemma 2.5.

Suppose that dim(3) = 2. Fix Ae3* and let ) = ker(4) and H = exp(h)
Then g, is constant on the H cosets, and so defines a character 7, on Z/H
Similarly, for f €' (N/Z, ;) there is a corresponding f % (N/H)/(Z/H), i,
It casily follows that D« f-= D« f, where D e (N/B)/(Z/H), §;) such tha
> = D| +. Thus, if 3/ is the center of n/b, the estimates follow from the

induction assumption. If the center of 1/l is larger than 3/h, one can again
use Lemma 3.6 as above to complete the proof.

D, *(1—A¥g,{exp (X)) (1 +|V|)"*dv (4 as in (3.4)

(by induction hypothesis)

Tueorem 3.8. Let D e¥*(N) such that D is smooth, Ad*-invariant, and

such that for each integer j > O there exist an integer | and a constant C;(D)
such that '

12, 5| < CONMIL+IMI,  ven,
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for all neSY (1*). Then for each integer p = 0 there exist integers j, p, &', and
a constant C, such that for each f e¥(N),

JID #flIpo < C, CiDY Al
Proof.

LD % f120 = supsup(t + [ X2 (1+{| Y11 2D « f (exp (X + D)

Xew Yei

< sup CCap (D) ollf e § (1 HN XN 2D, x fifexp (X)) dv
Exd

Xem

< CCop(D) 3l fllyrgr [+ IMIP T Gl Dy # (1 =2 fllzp+ 20V

;
< C, CHD) Il N7 o
for some j, p', ¢, C,, and C;(D) that are each independent of I

In light of Theorem 3.8 we consider the space PBF (n*) of all smooth
Ad*N-invariant functions defined on w*, all of whose derivatives have
polynomial bounds. We define seminorms v;; on PBF(n*) by

1oy 82
v, (A} =sup SUp ———— .
w(@ =sup SR VI 1
A sequence '6,! converges to & in PBF (i*) if for each j and all i sufficiently
targe, v, ;(0,—8) —0. Given 6 ePBF ("), we let D, denote the element of
&*(N) such that (D,) == 6. Theorem 3.8 may be rephrased as

THeOREM. 3.8'. The mapping PBF (1t*) x #(N) — #(N) given by (0.f)
— Dy [ is jointly continuous.

Let . 4 (N/H, y;) denote the space of all bi-invariant distributions D in
S*(NJH, x_,) such that Dx f e (N/H, y,) for each f e (N/H, x,), topolo-
gized so that D, =0 in .#%(N/H, ;) if D,xf -0 in & (N/H, x3).

TrEOREM 3.9. The mapping 8 — D, is a homeomorphism of PBF (n*) onto

HS(N).

Remark. The fact that this mapping is also an algebra homomorphism
is proved in Corollary 4.4.

Proef It remains only to show that the Fourier transform of each bi-
invariant Schwartz multiplier is in PBF(n*). We must first show that for
De.#%(N/Z, y), DePBZ(3*+1). For this, note that if De . #¥(N/H, x)
and vet*, there is a D, € .45 (N/Z, x,+;) such that D, x(P, f) = P,(Dxf) for
each f e #(N/H, y,), where P,: ¥(N/H, 1;) > ¥ (N/Z, ¥,+1) is defined by

P.f(x) = ff(x CXp(Y))e"‘ZNKV.Y) ay,
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and y,.; is the character defined on Z = exp(3) = exp(tBW by x4, (exp(Y
+ W)) = 2O AWN - To  see  that - D, is well defined, let
ol © ¥ (N/H, y;) be an approximate identity. Then for f e (N/H, 1.),
%*fz lim, (D =e,) = Thus, if Fe¥#(N/Z, y,s;) and F =P, f = P,g,
then

Dy, (P f) > =PDxf)(e) = lm (D% @)% P, f(¢) = lim (Dx @)% P g (&),

oo n=ron

To see that D, is continuous on ¥ (N/Z, y,..,) it suffices to note that if
F,—F in ¥(N/Z, x,.;), then one can construct a sequence f, — [ in
S(N/H, ;) such that F,=P,f, and F=P,f It follows that ¢D,, F,>
=P,(Dxf)(e) >P,(Dxf)(e) = (D,, Fy. This also shows that D, «F,
—DxF in #(N/Z, ¥,+.).

We now show that if De #¥(N/Z, y;), DePBF(3*-+4). The proof is
by induction on dim(w). If dim(n) €2, the result is trivial. Thus, assume
dim(r) = 3. '

_ Suppose first that dim(z} =1. Pick X, Y, Z, n,, and n;, as in the
beginning of the proof of Theorem 3.7. We denote ‘by (r, W) the grdup
elcmt?nt exp(tX +W), where teR, Wen,. For xeN, denote by f* the
function defined on N by f*(y) = f(x~* yx). Note that /= (;, W) = [ (z, W
‘+stZ). Thus, using a partition of unity in the t-direction, one can show that
if f &4(N) such that £(0, W) =0 for all W eny, then. <D, g5 £ = 0. Hence,
D=Di+Dgy, where D, c.#%¥(N,) (N; =exp(n)) and Dye.#7(N) with
2z Do = 0. However, since Dy + f e (N) for each f e #(N), Dy = 0. If 3 is the
f:enter of ny, the induction hypothesis yields that D, cPBY (3"+4). Thle Ad*-
invariance of D shows that D ePBF (3" + ). Suppose therleforc that 3 is not
the center of n,. Let 3, be a subspace of n, such.that 3 @j; is the center of

m.- 'ljhe.mapping defined on 3 by Y D« f(xexp(Y))e#(3). Thus, by
Fourlcr_lnversion, o '

Daflx)= [ P,(Dxf)(x)dv = [ D,+P, f(x)dv,

31 ' i

i

where D, €. #%(N\/Z, Z, 1,.,). By the induction assumption, B, e PBZ, ((3,
+3*“+v+4) for each ve 3t It follows that D is given by the function de nc;d
on 3'+A by q+v+2 =D, (n+v+2); where ne(3; +3* and vezt.

'Lc‘t lou} = F{N/Z, x;) be an approximate identity. Then,-{{qua,,}- is an
approximate identity in %(N/Z,Z,y,.,) . for each .vegf. Thus,
(Dy %Py @}« P, f =D, %P, fin #(N/ZyZ, y,..,). Since(D, = P, 0,)" % ((3 + 9"
+v+}l)"itA follows that for each ne(3 +3)*, the mapping defined lon-‘ﬁ"
by voDlg+v+ () (1+v+2es (3. Since. v —(f) (g+v+4) E’--‘/‘{a?l-‘)
v = D(y+v+2) ePBF(3%). This implies that DePBP(3-44). ’
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Suppose now that dim (3} = 2. Let 3, denote the kernel of 4 in 3. Then
there is a natural identification of #(N/Z, xy) with F((N/ZJNZ/Zo), o), [
— . where Z, = exp(3,) and ¥, is the expected character on Z/Z,. Thus,
given D e (N/Z, y_,), there is a D e ¥*((N/Z)Z/Zy), 7 -,) such that D= f
= D«J By the induction hypothesis, (D)” €PBg;, ((3/3)"+4). Since (3/30)"
+1 in (n/30)* is identified with 3*+4 in n*, D ePBF (3" +4).

Suppose now that D e .#%(N) and let f €5 (N). Then

Dxf(x)= {Pi(D#f)(x)di= {Dy* Py f(x)dA.
¥ P
By the previous argument, 15* ePBR (3" +A). R'e'peatiﬁng the argument used in
the paragraph second above, one concludes that D €PBg (n*).

For the next corollary- we need the following: n is said to be stratified if
there exist subspaces 1, of n, 1 <i<k such that n=m@®..50Om,
[l e, L<i, j<k and such that n; generates n as a Lie algebra.
Define a family of automorphisms on n, called dilations, and denoted by &,,
t >0, by setting §, X, =1 X, for X;en; and extending lnearly. Define §} on
w* by SFE, XY=, 8,X), and for 8 ePBF(n*), set 6,(5) = (5} £). Note
that 6, e PBF {(n*) for all 1 > 0. .

CoRroOLLARY 3.10. Suppose §<PBZ(n*) with 8(0) = 1. Then for f €% (N), -
f = V'(N)—lim Det *f
f~roo

Proof. Since Dy, f =Dy xf—f, it suffices to show that if #{0) =0,
then 6, — 0 in PBZ(1*). This follows immediately from the observation that
for Xieny, R S ‘

B (8) = " (B B 0B}

4, Representations and bi-invariant Schwartz multipliers. Given & e1t*, a
polarization of ¢ is a subalgebra m of n of maximum dimension - with
[m, m] < ker (). (Note that a polarization will always contain 3 the center
of n) Given such a polarization, a unitary character ¥, is defined. on
M =exp(m) by : :

@1 ¥, (exp (X)) = e~ 2EX, o
If +' is a subalgebra of n that contains 1, and f €%(N), where N =exp(n),
we define Q,(f) on N' by

0:(/)(m) = ] £ exp(X) ¥s(exp (X)X

nr

The following theorem is a generalization of a result proved in [J].
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Tueorem 4.2. Let W be a polarization of & en*, and let D e
~ ' ? " 7 N
that D ePBF (n*). Then for each f €% (N), () such

Qe (D f) = D (&) Q:(f).

Proof. The proof is by induction on dim(n). If n is Abelian, m = i, and
for fes(N), Q:(f)=F(. Thus, Dxf)= @ =D e
o b ) QD) =D )& = BE&F(&)
. Assumg that dim(3) = 1 < dim (). Let n, be a Kirillov subalgebra of 1
Le. there exist elements X,,Y,,Z, €n such that 3 is spanned by Z, which is,
equal to [Xo, Y5], 1y is the centralizer of Y, and n = RX,@®n,. Eet XY be
the element of n* that is dual to X, (with respect to 1,) ’1911e11
Ad* (exp(tYo))(n) = n+1 (n, Zo > X%, Thus, if ¢, Zo)> #0 5(n+tX:‘).= By
for all teR. By continuity of D, this holds for all 17611:". i !

Let nf = (RXy)", nf = RX¥, and ny = RX,. Then, for meM and neN

0,(D+ 1) () |

= (D) [1,-1f (mexp(¥)exp(X))e™ 28@Xr+ & gy X ay

HEL

D(no+n) | ' ,“,,—1 f(mexp(Y)exp(Xo-i—Xl))

ng ny m

il

%
ng "

=

e TG gD+ Xy )+ (YD) dYdX,dX,dy, dy
0 1 o]

i

‘1 D (’?1)!}1 Ho-of (mexp(Y) exp(X,))e 2" X+ & gy a X, dn,

= Q.f(ﬁ*(l'n—l f)—)(m)s

wi-lere D is the e_]egwnt of /*(N,) whose Fourier transform agrees with D on.
i, and (¢ _, f)7 is the restriction of l—1fto Ny. Since D is constant on ¥
cosets, one may assume that enf. Also note that.since M < Nlo
Qe ((tn_1 N )(m) = Q¢ (f)(rm). Thus, by the induction assumption, Qs (D » f1 ),

=D (&) Q; (/).
Suppose now that dim(3 =2 Gi
‘1 p=2 iven fenw*, pick a basi
Xg, X1, ..., Xo} of 1 so that {X,, Xo} =3 and (¢ XE}=0 Let nls
) . 1

=span{X,, ... 1 =
- "1: @1“0 daLet"'§ s g f\X o- and let m; be a subspace of mt so that m
1 . 14g, ..., X§| be the dual basis in w*, with corresponding n}

and n¥. Finally, assume that for fi ¥ )
U e r fixed #,ent, no =Dy, +ny) € (1), For

43) QD+ N)(exp(U, +Uy))

= [ [Dn+n0) [ [ | | flexp(U,+Ug)exp(V + V)

"'i 53 g g Wy g

xexp(T, + %))3*27&(<n1-"1>+<uu-"'o>+<é-"“1>)d% d.Tld.;V dV, dﬁ dn
_ tYotVry anodn
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= [ [ Bln+no) [ | [ FlexpUnexp(H)exp(T)

![1 I[O 1“1
g™ 2LV 1+ oV oyt GTIN 4T, dV, dV; dno dny

R
Ill “0

[ § | Bl flexpUyexp(Vy)exp(T,)

"’i 1ty iy
xevzﬁ(whh)*@.?‘;))dn dVi d?h,
where f €% (N/exp (o)) given by
Flny = { fnexp(T)dTs.
“0 .

Since (&, Xo>=0, £ enf which is identified with (n/ng)*. Also, /g is a
polarization of £. Thus, identifying ny with m/ng (as vector spaces) we have
0:(D+f) = Qe (D+]) = (D) (©)0(1) = DD L:AS;
where D e%*(N,) whose Fourier transform agrees with b on n¥, and Q; is

defined on % (N/exp (15)) by
O:(@)(m = | g(nexp(X))e > dX,
wng

Finally, the assumption that 7o = D {ny +no) €4 (1) was required for the
Fourier inversion used in the third equality in (4.3). For more general D,
approximate D in PBZ (i) by {0,] © PBF{i*) with support of 0, contained
in the slabs {n: |, Xo3 <n). Then, by Theorem 3.8

Q:(D*f)= lijr;Qg(De,,*f) = ﬁiloloﬂn(f) Q:(f) = D(©) 0 ().

Let Zew*, and let m, be the irreducible unitary representation of N
corresponding to the Ad* N-orbit of £ mg can be realized as left translation
on I}(N/M, ¥;), the space of all measurable functions F defined on N with
F(nm) = ¥.(m) F (n) for neN, meM, and having

[ [F(ni*dn <o,
NiM
where nt= log(M) is a polarization of { and ¥, is the character defined in
(4.n.
CoroLLARY 4.3. Lt 0ePBR(n¥) and e (N). For en*,

g (Do * f) = 8{8) 7 (f)

Proof. First note that Q;(¥(N)) is a dense subspace of I2(N/M, V).
Given f, g e#(N), 6 ePBy(*), ' :

7 (Do ) Q¢ (9) = Qs (Do x [ %) = 0(0) Qe (f *9) = (D) (f) Qe (3)-
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Coroviary 4.4. The mapping 0 — Dy is an algebra homomorphism. from
PBi (™) to . H¥(N).

Proof. Given 0,p ePBF(1*), f e (N), and Zen,
ne{Dop x f) = 0D p (&) malf) = O(E) me (D, % f) = mg(Dy s D, f).

Thus, Dy, + f = Dy»D, = f. Since f was arbitrary in %(N), Dy, = E,)GOE%.
Linearity is obvious.

By the Plancherel Theorem for N, there is a measure on w*/Ad*, Q, such
that for f (N}, ‘ ‘
fley= | Tr(m(f))da().
- . : wHALY
It follows that

WA= | Tr (re f) e ()¥)dR(E).
— ) 1 Ad*
Thus, we have

CoroLLary 4.5, If 0ePBE(n*) is bounded, then I1Dg* fl| = MOl 11511 20
ie. Ep, extends to a bounded operator on I?(N).

. 5. Applications, The first -application concerns eigenfunction expansion
for certain left-invarians differential operators on N. For this, we require that
N be stratified, i.e. n has a direct sum decomposition, 1= @ ... @, such
that v, w1 = w4y 1 <4, <k, and such that n; generates n. A one parame-
ter family of dilations {6,),., is defined on n by setting 6, X = /X for
X en;, and extending linearly. Let Q = k (k+ 1}/2. For a function f defined on
N, set

| Mep () =727 exp(6,-, X))
and for a function-f defined on ¥, set 6,(8) = 0(5¥ &), where GFE XD
= <&, 6, X). o : :

A left-invariant differential operator L (we drop the distinction between
L and g;) is said to be a Rockland operator (of degree y) if L(f©8)
=1"Lf0é, and if for every nontrivial irreducible unitary representation = of
N, m(L) is injective on the space of C®-vectors. In virtue of Helffer - and
Nourrigat [HN], a positive Rockland operator L is hypoelliptic, and thus is
essentially selfadjoint on €2(N) in I*(N) by a theorem of Nelson and
Stinespring [NS]. Thus, the closure of — I is the infinitesimal generator of a
convolution semigroup |P,l,.,. Folland and Stein [FS] have shown that
P} LN . .

Let 7 denote the closed subalgebra of I! (N) spanned by {Plso. It
follows from the homogeneity of L that ./ is closed under the maf:ping ‘f
= f;. Consequently, the Gelfind space of o can be identified with R* in

icm
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such & way that given a spectral resolution of L,

o

Lf = [AdEQDf. [eC®(N),
G
and ke.o/, one has
kaf = [kK()AERY S,  [eI*(N),
0

where k is the Gelfand transform of k. Also, if Li§ homogeneous of degree 7,

-~

then (k) (4) = k(" 4). It easily follows that if [k (x)dx = 1, then for f €I7(N),
DP-limk, = f = f.

t—on .

Thus, if ke and [k(xydx =1,

o0
f=1r-lim (KGRAAEQ) f,  felP(N).
t—eo g . .
In [H], Hulanicki gave conditions on a function K defined on R* that are
sufficient to imply that K = £ for some ke.«/. “
Suppose now that N contains a discrete cocompact subgroup I'. Then L
is naturally defined as a differential operator on I'\ N. Since ‘P = L (N)
(L' (N) is sufficient), it follows that the spectrum of L, a(L), is a discrete
subset of R* with. finite multiplicities, One looks for summability kernels K,
defined on R7, so that for FeL"(I'\N), 1 <p < co,
F=D-lim Y K()F,,
’ t=00 Jeg(L) :
where F; is the projection of F onto the eigensubspace corresponding to A
By the Kirillov theory, the irreducible unitary representations of N, N,
can be identified Wwith the Ad*-orbits in.n*. Let 7, denote the representation
corresponding to the orbit of & en*. There is a discrete subspace (F'\N)" = N
such that- . : ‘ : :
PI\N=® Y #
mzeIY)
where right translation on Heisa 'Ijnite multiple of n, (cf. [R]). Thus, (L)
is the union -of &(m: (L)), 7, e(F\N) ; not counting multiplicities. Therefore,
there is a natural identification of o (L) with a subset.of w*x R*, and so one
looks for summability kernels on this set. : o s
Let 6 PB%(1r*) with #{0) = 1. It folléws from Theorem 3.8’ that there is
a function s: R* —R™ such that

lim||D,, , *k k| = 0.
10 _
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Combining this with Corollary 43 gives

Tuporem 5.1. If @ePBF () with 8(0) =1, and if ke NS (N), then
there is an s: R* —R* such that for FelP(T\N), 1 <p <0,

F = I75mY (8% O k(D) F,

t—Q
where the sum is over o(L) in w* xR™.

A second application concerns local solvability. A left-invariant differen-
tial operator L on N is said to be locally solvable if there is an open set
U < N such that CX(U) o L(C®(U)), ie. if for each feC*(U) there is a
weC*(U) such that Lu= f.

Let o(£) denote the Ad*-orbit in w* that contains ¢ and, having lixed a
norm on ¥, set |o(&)] =inf{||&)i: & eo(&)). There is a linear subspace
V < w* and a Zariski open subset ¥, < V¥ such that the elements in V,
parametrize an open dense set of orbits in n*. Representations corresponding
to elements of V, are said to be in general position.

The Plancherel measure @ is supported on V,, and in fact is absolutely
continuous with respect to the Lebesgue measure on V with density given by
a rational function.

TuporEm 5.2. Let L be a left-invariant differential operator on N.

(i) Suppose that for each EeVy, mg(L) has a bounded right inverse Ag,
that & — A is measurable, and that the norm of Ay is bounded by a polynomial
in {0 (S).

(i) Suppose that N contains a discrete cocompact subgroup I', that for
each & eV, for which 1, e{F\N)*, me(L) has a bounded right inverse Ay, and
that the norm of A is bounded by a polynomial in e (&)].

If either (i) or (ii) holds then L is locally solvable.

Remarks. The theorem with condition (i) is (essentially) a theorem due
to Corwin [C], and our proof is an adaptation of his proof. The theorem
with condition (i) was proved by Corwin and Greenleaf [CG] with the
additional assumption that all the representations in general position were
induced from a common normal subgroup.

Proof. (i) Let Z be a bi-invariant differential operator on N such that
n:(Z) = 0 for each representation m; not in general position. Since Z has a
fundamental solution (cf. [R]), it suffices to show that for some U and each
feCZ(U) there is a geC™(U) satisfying Lg = Zf.

Given f, by [DM] there exist g, b eCP(U), i=1,..., k, such that

k
= Z gixhy.
i=1
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Let j be a positive integer sufficiently large so that

Jmﬂﬂm&mm+M@Wﬁ<xu

gnd let ¢ be a smooth function defined on the complex numbers with values
in [0, 1] such that @(z) = 01if |z} < 1/2, and @(z) = 1 if |z| = 1. Define  on V
by

0(8) = ¢ (m(Z) (L +lo @) (1 +lo @) +1.

(Note that since Z is bi-invariant, £ > n,(Z) is an Ad*-invariant polynomial
on 1*) Then 0 and -1/8 have unique extensions to elements of PBF{n*).
There exist elements w; e[2{N) such that for velZ{N),

g, vy = V]' {Ae(Qe(Dyjg* Zhy)), Qevydv(d),
0

where Q; is defined before Theorem 4.2. It follows that Lu; = Zh;. Thus, if we
let
k
u= 73 {Dgxg)su,
i=1
then
3 K

(Dg*g;) * Lu; = Z (DB*CE}*(Due*Zhi) = Z gi* Zh, = Zf.

1 i=1

B

Lu=

I

The proof of (i) is similar. For f e (N) we define tf e1Z(I'\N) by
o (n) =3 fly).

vel’
Define Dj: & (N) —<*(N) by (Dy(D), > = (D, Dgx f> for De5*(N) and
f e (N). Then, for f, g €< (N),

<D;3(1'f), gy = <‘Cf, Dﬂ *g) = ,‘lZf(W)Dg*g(n‘l)dn
N

=Y d,f, Dgrg> (where L f{n) = f(yn) |

yel’

=2 &Dexf), g5 =<xDyxf), g

vel’

Thus,

(3.3) Dy(ef) = t(Dg* f).

It easily follows from (5.2) and (5.3) that for f, g €% (N),
(54) (Do# flxtg = f#1{Dyxg).
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Let P, denote the orthogonal projection from L*(F'\N) to #%. In [J]
we proved that

Dyafy = 3, 0@ Pelrf).
‘ ye( I'\N) ]
In partwular then, P.(Dp(zf)) = 8(&) Pe(zf).

Let Z be a bi-invariant differential operator on N such that n:(Z) =0
for each representation m; not in general position. As noted in [CG] to
prove the theorem, it suffices to show that for some U and each f eCF(U)
there is a g eC®(U) satisfying Lg = Zf.

Let U = U~? be a neighborhood of the identity in N such that U*nrI”
=le!, and let fC®(U). By [DM] there exist g,h eCZ(U), i=1 ..,k
such that

‘ k )
f= Z gi#h
. i=1
Let f be a positive integer "sufficiently large so that
(5.5) > maxiL 41 +Ho@l <o
‘n‘:s(r\N},éeVo

Define @ and & as before, and set

uf=Z

#ge(I'N) e¥ g

A; Pe(Dl ot (ZH)).

By splitting the sum into two parts, one containing the terms for which
e (2)] < (1 +|o(§)|) and using (5.5), one can show that y, gL*(I'\ N). Using
the same argument as the ome used in [CG]J, one can show that Lu
=1(Dy,p* Zh). Thus, if we let

k
i u= ), (Doxgy)*u,

i=1
then, using (5.4) and the fact that Dy« Dy =1,
Lu = Z (Do*gi)» Luy =

=1
Since supp(gl *r(h(})r"\U = supp( *xh)U, Lu=Zf on U.

k
21 Doxgixt(DypxZh) = (Z Q’.’*T(hi))-

i=1
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