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Weighted rearrangements and higher integrability results
by
MICHELANGELQO FRANCIOSI (Napoli)

Abstract. In this paper we study relations between reverse integral inequalities and higher
integrability in some cases. We use reduction to the one-dimensional case via decreasing
rearrangement of functions.

1. Introduction. Let 2 be a bounded domain in R" and f a nonnegative

-measurable function on 2, We say that f satisfies a reverse Hélder inequality

if for some constants p > ¢

(L.1) ( frdx)"" < K({ f1dx)"
Q Q

for any cube 0 = Q, where |Qf is the Lebesgue measure of Q and {, fdx
=1QI™ fof dx.

1t is well known that from (1.1) we can deduce higher integrability for f.
The most famous result of this kind is Gehring’s theorem:

Tueorem 1.1 (Gehring [10]). Let g > 1, f €18,.(2) ard supposé that

loc

(§1r12dx)"" < K {1f]dx
Q Q

for every cube Q@ = Q. Then there exists p = p(n, q, K) such that p > q and
f eI}, (£2). Moreover,

(F170 e < C(§1 1™,
¢ 2

where C = C(n, g, K).
It is interesting to comsider weighted versions of (1.1). In particular, in
[19] a weighted Gehring theorem if the weight w is doubling is proved.
In [16], [9], [4] another reverse integral inequality is comnsidered,
intimately comnected with the Fefferman-Stein sharp function {8]. For
nonnegative feLl () it is assumed that

(1.2) {|f~4f dx{dx < K{f
g Q Q

for 0 <K <2 From (1.2) the higher integrability for f is deduced, by
different methods. \
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The aim of the present paper is to consider weighted versions of (1.2)
and deduce from them some higher integrability results.

The method used is, in principle, the reduction to the one-dimensional
case using the decreasing rearrangement. In fact we note that if f satisfies a
reverse integral inequality, its decreasing rearrangement f* satisfics essentially
the same inequality. The key results in our proofs are a weighted version
[19] of Herz's important theorem [15], a weighted version . of the Feifer-
man-Stein ivequality and the Besicovitch-De Giorgi covering lemma [6].

In Section 2 we list some properties of decreasing rearrangements with
respect to a weight w and state the useful weighted Herz theorem.

In Section 3 we prove the higher integrability theorem 3.2, which is
proved in the unweighted case in {9] (see also [14] and [16]).

In Section 4 we prove a weighted version of the Fefferman-Stein
inequality with the Il”ldJOl‘lZdllOl’l constant depending hinearly (and notl expo-
nentially} on the constant p We use this result to generalize a higher
integrability result of Iwaniec [16]. We obtain this result stdltmg from a
condition like (1.2):

(1.3) w(eQ)! 't' | f~w{eQ)! _{ Jw dx| wdx < Kw(Q)™* j'fw dx,

where w(Q) = \Q wix)dx, 0 < o € 1, and ¢Q is the cube with the same center
as Q and ¢ times its size. For conditions of this kind see [12], [16] and. [4].

Finally, we note that reverse integral inequalities occur in many different
fields of analysis, e.g. in the theory of embedding for weighted Sobolev spaces
and in partial differential equations [7], [20].

2. Some notation and useful results. Let ¢ = R" be a cube which is a
translate of [0, 51", 0 <5 <. co. We fix a cube @, and consider subcubes @ of
Qo. We denote by |Q| the Lebesgue measure of Q. Let wel'(Qq) be a
nonnegative weight function and set for' any E <=0, ~

w(E) = [w(x)dx.
E

For any measurable nonnegative function f defined on.Q,, we set

Ar(yI=w(ixeQq: f(x) >

and we define the nonincreasing rearr angement of f with respect (o the
measure wdx by

2.1y £*(@) =inf [y > 0; J.f(y <t rejo,w(Qu)[.
The fellowing results hold [5], [19] [20]
. wi@o) ’
22 - ' j fEEPds == ff”wdx, pzl;
Qo
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(2.3) lf *(s)ds = ESUP [fwdx, t€]0, w(@o)l,
. w(E)SOIE
(24) f*= SUP inff, €10, w (Qoll.
w(E) r
We suppose that w satisfies the following condltlon
(2.3) w(Q) < A(QV/IE)" w(E)

for every cube Q < @, and E = @, where 4, pe]t, + oof are independent of
Q@ and E. The property (2.5) follows easily from the 4% condition of
Muckenhoupt [18]. It is also easy to deduce from (2.5) the doubling property
for w:

w(2Q) <dw(Q), Q<10

with d > 0 independent of @, where 3Q denotes the cube. with the same
center as @ but J times its size.
We also write

26 e =126 ds,
0
27 Mf,, (x} = supw(Q)~* [f(Mwdy,
Q
(2.8) £ (x) =supw(Q)~* [l F)—w(@) cjsz, dy| wdy, -
’ g

where the suprema'are taken over all cubes containing x.-
We nced the following result concerning the relation between f**(t) and
(Mf,)*(t). The result is a weighted version of an 1mportant theorem of Herz

[15].
Tueorem 2.1 [19]. Let f €L {(Qq, wdx), f = 0. Then for any t €10, w(Qo)[
Cr (MY (1) S F**(0) < C2(MA)* (@),
where C, and C, depend only on w and n.
Now we state the following Besicovitch-De Giorgi covering lemma..

LemMA 2.2 [6]. Let A be a bounded domain in R and for each xc A let
Q, be a cube centered at x. Then there exists a sequence (Qpn contained in
(Q,)sca SHch that

29 A=UQ, xeR",
J

Z XQj(x) “{'- 6!
i

where 0 depends only' on the dimension n.

4 — Studia Mathematica 92.2
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3. A first weighted higher integrability result. The following covering
lemma, a weighted version of a covering lemma of Bennett-De Vore—Sharpley
[2], will be used.

LeMMA 3.1. Let B < 272 42 and ler G be a relatively open subset of Q,
such that w(G) <B 'w(Qq). Then there exists a sequence of cubes (Q)n
with pairwise disjoint interiors such that

§) w(Q) < A2 W(G'NQ),
GH @ 5w(@) < Bw(@),
(3) GeUQ =0

Proof. It is sufficient to use Lemma 3.1 of [1] and then apply the
property (2.5) of w.

Set A =34220"DP(42241)(1 4 643" and
(3.2) K <1/4,

where 4, p are from (25) and & is from (29). lLet f=0 belong to
I (Qy, wdx) and suppose that

(3.3) w(Q)” Hf (x)—w(@)™* jfwdx|wdx Kw(Q)™! [fwdx

for every Q = Q,. Then we have

Tueorem 3.2. If (3.2) and {(3.3) hold then f belongs to LF(Qq,wdx) for
every pe[l, 1/(KA)[.
Remark. The constant A depends only on # and w.

Proof. Taking the sapremum over all cubes containing x in (3.3) we

obtain f,*(x) < KMf, (x) and then, from the known properties of decreasing
rearrangements [3],

(34) (S0 < K (MF)*(@).
We now need the following estimate: for any t€]0, (3B) ™! w(Qq)[
(3.5) PO —f*() < 3BLA2P+ 1) (£, 1% (r).

To see this, fix 0 <t <(3B)"'w(Q,) and set
E={xeQ: f()>/*®} F={xc0o ht( > (LI O).

We have w(EUF) < 2t. Fix a relatively open. subset G of Qg such that
w(G) € 3t, EUF € G < Qq and in particular w(G) < B™* w(QO) Let (Q)); be
a covering of G satisfying (3.1). By (2.3} we have
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(B8 L/ O-r*m) = I(f K =re@wdx=% | (FOI-f*@)wdx

Jj EnQ;
<Y [If@—w(@p ' [ f(x)wdx{wdx

iQ; Q;

+YWENY W@ | Fwdx—f*(1).
J 2;
Summing only over those j for which

fre<w@)™ l"fwdx
9

we obtain

2w(ENQ)(w(Q)~* éf Jwdx—f*()
5

i)

T WG w(@)™t [ fwdx—f*(1),
i - Q;

and then by (1) of (3.1),
(EN)] Z’w(EmQj)(w(Qj)’l. _ffwdxwf"‘(t))
i Q
<427y | (w(QJ)“léflfwdx—f*(t))wdx

J Gongy

<42} | lf(x)_W(Q;)_l i dex|.wdx.
ig o5

From (3.6) and (3.7) we deduce
(38) (/O *0) S @P+DT, [[FD-w(@)™" | fwdxjwadx.
ia;

2j
But for every j, F*n@; # @; let x; belong to F*n@;. We have (£,5)* () = £.* (x)
and then

S f-wi@)! lfwdx|wdx
J Q,

“ZW(Q,)W(Q; Hf(X) w(@)™!

ST w7 (x) QZW(QJ) W ).
i i

Then by (2) of (3.1) and (3.8)
t(f** () —F*©) < (A27+ DB (L ) w(G)

which is (3.5).
From (3.4) and (3.5) we obtain

(39) F** () —f* (1) < 3KB(AZ+ 1) (Mf)* (1)-

[ fwdx|wdx
Q;

< 3B(AZ+ )t (£,5)* 1),
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We note at this point that in Theorem 2.1 we can take
: C, = 1/(1+843™). |

Then from (3.9) we deduce

) FRE(—*(1) < 3KB(A2°+ 1) (1 +8A43"7) f** (1),
and by (3.2) '

1

(3.10) SO < 1——3KB(A2"+1)(I+5A3"”)f* ().

We now use the following lemma of Muckenhoupt [197].

LEmMa 3.3. Ler h(1) be positive and nonincreasing on 10, a[ and assume
that there exists D > 1 such that

£ t[h(s)ds < Dh(t), t€10, a/2[.
Q
f

Then for re[1, DKD—1)[ we have

rD 5 v
e —— (g™ {h{s5)ds) .
o=@ JrOs)
Applying Lemma 3.3 starting from (3.10) we conclude the proof of the
theorem, since the average of a nonincreasing function is still nonincreasing.
An unweighted version of (3.5) is in [2] and [9], while Theorem 3.1
without weight can be found in [9], [14], [4], [16].

aljh (S)’ds <
0 .

4. A weighted Fefferman-Stein inequality and another higher integrability
result. Using the covering lemma 2.2 we prove the following

Tueorem 4.1. Let f 2 0, f Ll (R", wdx). For any t&]0, + o[, we have
(M () << CULR* (20 +(MF)* (20),
where C > 0 is a constant depending only on w and n.

Proof. Let G be 2 relatively open subset of QO such that w(G) < 5t and
0 =G, where

= 1x€Qo: 7 () > (AH* 20} L ixeQy: Mfw(x ) > (MA)* (20)].

We can find (see [1], Lemma 3.2) a covering {(@)); of G such that the Q, are
nonoverlapping and

(1 Zw@) <

@ [2nQ;# @, 10] <]01=1Ql < 21@nGT.
Let Q be a cube of the cover, y > (Mf,)* (2) and set E = [xeQ: Mf, (x) >

Cw(G),
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For each xeE we find Q(x) such that xeQ(x) and

w(@e) [ foIwdy >
Q(x)
Obviously, ¢(x) = G and then, by (2), |Q(x)| <|Q|, whence Q(x) = 3Q.
Then 30nG° # @ and
w3Q) ™ [ fxwdx <

3@

(Mf)* (2n).
Consequently,

=M eO)wEm) < [ (FOI-

]
Using Lemma 2.2 we can extract from (Q (x))..z @ sequence (Q (x;)); such that

@.1) w(B) < L w(Q(y),

3Q 1 ‘fwdx)wdy

where & depends only on n. But UJ-Q'(xJ.) < 3@, and then
w(E)(y—(Mf)*(20) <6 [ [f(—w(BO)™* 3{2 fwdx|wdy
£l

< SwBQAN* (21) < 483 w(Q) (1) (20).

Let
y =&t AS3P(f.0Y* (20 +(MLY* (20)
with & < 1/(5C), where C is from (1). Then we have
w(E) = w(lxeQ: Mf,(x) >y}) <sw(Q)
and by (1) '

w{ix: Mf,(x) > 7})

The proof is complete.

sSLC;Cw(G)<z.

From Theorem 4.1 we deduce

CoroLLARY 4.2. For nonnegative f €Ll (R", wdx) we have

“2 | (M@ <C j (fu Y (s)ds/s+ tim (M7.)* ()

and, if Tim, o {Mf)*(r) =0,

“3) (] 1MA, (P w117 < Cp( [ 1£* (Ol w (x)dx),
R e _
where C is a constant independent of p.
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‘We note that (4.3) is a weighted Fefferman-Stein inequality in which the
constant on the right depends linearly and not exponentially on p. For
similar results see [22], {4], [1].

With slight modifications we obtain the following local version of (4.3).

CoroLLary 4.3. For nonnegative f €Il (QO, wdx) we have
Qol
(44) (ME*(O) < C( § (AD* 9 ds/s+w(Qo)™! [ f(x)wdx).
1 Qo
Starting from Corollary 4.3 we can prove the following higher integrabi-
lity result which generalizes some Gurov—Reshetnyak [14] and Iwaniec [1]
results, as in the paper [4] of Bojarski.
For  a bounded domain in R® we have

TrHeEOREM 4.4. Let f e L], (£2, wdx) and nonnegative, 0 <o < 1,0 <K <2,
and

w(eQ)™! [ [f—wie@) ™! | f(x)wdx|wdx < Kw(Q)™ [f(x)wadx
oQ eQ Q

Jor each cube Q = Q. Then there exists a constant C, depending only on w and

r, such that fel (Q, wdx) for r < C/K. Moreover,

wEO)™ | frdy)" < bw(@)? egfary

/20
with b= 0 depending only on o, n, r.

Proof. The proof is similar to that of Lemma 2 of [16] with the only
essential modification of using Corollary 4.3 instead of Lemma 4 from [16].

Finally, we note that in Theorems 3.2 and 4.4 the order of the optimal
integrability exponent is exact.
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