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An order-theoretic approach to involutive algebras
by

HERMANN RENDER (Duisburg)

Abstract. Let A be a not necessarily associative’ *-algebra with a locally convex vector
gpace topology. We investigate the order properties of the closed wedge A.nSymA and obtain
a description via positive functionals, Our main result is a new characterization for the
antisymmetry of the wedge with various applications. For example, we prove that the continuity
of the involution is necessary for the automatic continuity of positive functionals on certain
algebras. Furthermore, we deduce that the closed wedge of a semisimple Waelbroeck algebra with
a hermitian involution is a cone and unique in the sense that any other involution induces a
non-antisymmetric closed wedge.

Introduction. Let A be a not necessarily associative complex *-algebra.
By Sym A we denote the real subspace of all selfadjoint elements of A. It is
well known that the set !
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is a wedge which induces a partial order <, ie. a reflexive and transitive
relation, where a< b is defined by b—~aeAd . There is a vast literature
concerning specific order properties of C*-algebras and, sometimes, Banach
*.algebras (see [5], [7], [10] and the references in [197). The aim of this
paper is a systematic study of order properties of complex involutive
algebras,

In the first section we collect some basic facts on order properties of
*.algebras, For example, each sequentially complete spectrally bounded
LMC *-algebra is an order unit space. In the sequel our main tool is a
separation theorem for a closed wedge and a point outside, so we consider
not necessarily associative *-algebras endowed with a locally convex vector
space topology. As a matter of fact, *-algebras are often pathological from
the .order-theoretic point of view, since in general the closed wedge A, is not
a cone.

In the second section we give new characterizations of *-algebras having
a closed cone A, , which rest on the simple observation that Sym AniSym A
= {0l. As a consequence we show that these algebras not only possess
enough positive functionals but also a maximal quantity of positive func-
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tionals. Furthermore, this characterization yields an interesting result about the
automatic continuity of positive functionals on a not necessarily associative
*_algebra A endowed with a Fréchet vector space topology: If A, NSym 4 is
antisymmetric then the continuity of the involution is necessary for the
automatic continuity.

In the third section we consider a special class of commutative algebras,
namely the Waelbroeck algebras. We obtain a surprisingly elegant descrip-
tion of the order wedge A, the closure of the image of A, under the
Gelfand map. Then we show that the closed wedge of a semisimple Wael-
broeck algebra with a hermitian involution is antisymmetric and unique in
the sense that any other involution induces a closed wedge which is not
antisymmetric. Finally, we determine all involutions on the disk algebra.

1. Preliminary results. We say that the wedge 4, generates A if the
complex linear span of A, is the entire algebra A, ie. LingA,. = A. The
polarization formula

4bg = (a+b*¥)* (a+b*¥)—(a—b*)* (a—D¥)
+i{a+ib¥)* (a+ib*)—i(a—ib*)* (a—ib*)

shows that this is equivalent to the condition A%:=Linglab|a, bed} = 4,
which does not depend on the involution; of course the wedgse A . of a unital
not necessarily associative *-algebra is always generating. Since the wedge
A, is contained in SymA one may view SymA as a reallinear ordered
vector space with the order induced by A..

A linear operator T: 4 — B is called positive iff T(A.,) < B, or equiva-
lently, T(a*a)eB, for all aeA. If the wedge A, generates A4 it is easy to see
that a positive operator maps selfadjoint elements to selfadjoint ones, and
that T{(a*) = (Tw)*. In particular, a positive functional, which can be consid-
ered as a positive operator with the *-algebra C as range space, is always real
on SymA in the case that A* = A. So there is a natural affine bijection
between the set of all complex-linear positive operators on the entire algebra
A and the set of all real-linear positive operators on Sym A4, defined by
restriction to Sym A resp. for a real-linear positive operator L: SymA
—»SymA by the formula Tp(u-+iv):= Lu+iLv with uwveSymA. If the al-
gebra A is endowed with a vector space topology we define the dual cone

"= f|f: A—C positive and continuous].

For a real locally convex vector space it is well known that one can
separate a closed wedge and a point outside of it by a continuous functional
f: Sym 4 —R (see eg. [16, p. 58]). Since the wedge is positive-homogeneous
and contains zero the functional f or. —f is positive relative to the closed
wedge. Now the wedge A, nSym A is a closed wedge in Sym A endowed with
the relative topology. So we can separate each selfadjoint element outside of
A,nSymA by a real-linear continuous positive functional, which can be
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extended to a complex-linear positive functional on the entire algebra. If the
continuity of the involution is assumed it is obvious that this extension is
also continuous on 4. But in some cases the continuity of the involution is
not necessary to obtain the continuity of the extension. For example, every
positive functional on a Banach *-algebra is automatically continuous. We
circumvent this difficulty by dealing with the larger set A of all positive
functionals on 4 whose restrictions to Sym 4 are continuous. Qur arguments
prove the nontrivial part of the following separation theorem.

1.1. ProposiTioN. Let A be a not necessarily associative complex *-
algebra with a locally convex vector space topology. Then an element u A4 is
contained in A,.SymA if and only if a =a* and f{a) =0 for all fed’,.

Note that 4, == A4,NSymA if the involution is continuous. If A is
unitat we define B, := {fed.;f()=1}and P, := {fed.;f(1)=1]. The
Cauchy-Schwarz inequality shows that a positive functional f with (1) =0
is the zero functional. It follows that P, is a base of A\, We denote the set
of all extreme points of B, by extP,.

1.2. CororLArY. Let A be u not necessarily associative unital *-algebra
with a locally convex vector space topology. If P, is the weak star closure of
the convex hull of its extreme points then a €A is contained in A, ~Sym A iff a
& g% and f(a) 2 0 for all feextP,.

We call an element e €A of a not necessarily associative *-algebra 4 an
order unit if the complex linear span of the order interval [0, €]:= lae4d;
0 <a< el is the entire algebra, ie. Ling[0, ¢] = A. If A is a unital associa-
tive *-algebra we denote the spectral radius by | |,. Assume that A is
spectrally bounded, ie. every element has a bounded spectrum, and let a4
be such that we can define for all ¢ > 0 a selfadjoint square root

*
b= 1————~«—~—aa .
|a* al,+ &

Then we have a*ae[0,(a*a|,+& 1], since a*a=(la*al,+8 (1—5?
< (ja*a),+#)1. As A4 is unital each element can be decomposed into a
linear combination of positive elements and we obtain Lin [0, 1] = 4, if there
are enough selfadjoint square roots. In the case of a unital sequentially
complete LMC algebra with a continuous involution there exist such square
roots for elements with bounded spectrum (cf. [9, p. 15]). An algebra with a
locally convex vector space topology is called a LMC algebra iff there exists
a family (Py)ee; of submultiplicative seminorms p, generating the topology of
A. Such a family is called a defining family (cf. [9, p. 3]) _

In the case of a Banach *-algebra the lemma of Ford is available (see
eg. [1]). So we have proved the following.



180 H. Render

1.3. ProposimioN. Let A be a unital sequentially complete spectrally
bounded LMC algebra with a continuous involution or a unital Banach
*.glgebra. Then the unit element is an order unit and 0< a*a <|a*al,+&
for each ¢ > 0.

Of course, there are algebras having the unit element as order unit
without being complete.

Proposition 1.1 characterizes the closed wedge A,.nSym A, The proof is
essentially based on methods of convex analysis. Now we want Lo give a
characterization for the property that the unit element is an order unit for
A, NSym A.

First we need the following definition. Let § be a set of linear func-
tionals on A. Then § induces a “seminorm™ |- | with values in [0, co] defined
by |als 1= sup [f(a)}; feS!. Clearly, the function |-|s is real-valued iff § is
w¥*-bounded. Note that |a/p, and |a|s, are defined for all ae A,

1.4. ProrosiTion. Let A be a not necessarily associative unital *-algebra
with a locally convex vector space topology. Then the unit element is an order
unit for the wedge A, ~SymA iff the set P, is w*-bounded. In that case

—{ulp, < u < |uls, relative to A, ~SymA for all ueSymA.

Proof. For every u [0, 1] we obtain 0 <f (1) <f (1) =1 for all fe P,.
If 1 is an order unit, each element is a linear combination of such elements,
which shows jalp, < w0, ie. P, is w*-bounded.

Let u be selfadjoint and assume that P, is w*-bounded, i.e. s, < co.
From the delinition of |ulz, —u we see thatf(iulPA—-u) = 0 for every fEPA
and by Proposition 1.1 the positivity of |tlp, —u is evident. Replacing u by
—u we obtain the desired inequality —|uI5A€u€|'u|ﬁA. Thus the unit
element is an order unit. )

The radical rad A of an associative algebra can be defined as the
intersection of all maximal modular left ideals of 4. The algebra is called
semisimple if the radical is trivial. It is well known that aeA is in the radical
iff |abl, = 0 for all beA (cf. [1, pp. 124-126]).

_1.5. PropositioN. Let A be a unital involutive LMC algebra. Then each
J €P4 vanishes on the radical of A. We have P, = P, for all commutative
algebras with continuous spectral radius and for all Banach *-algebras.

Proof. Let (p,),.s be a defining family of submultiplicative seminorms
and let f P,. As f is continuous on Sym A there exist a constant ¢ > 0 and
o€l with |f ()| < cp,(u) for all ueSymA. Since f is positive and unital, the
Cauchy-Schwarz inequality shows that |f(@)>""' <f ((a*@)*") for all neN
and therefore

IS @)? < lim ¢2" lim (p, ((a* @)*"

n—wmw n-ro

N < la* .
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For the last inequality see [1, p, 48). If 2 is in the radical we have la*al, =0,
and this proves the first statement. The second statement is an easy conse-
quence of |a*a|, < |a)? and the continuity of the spectral radius and, in the
case of a Banach *-algebra, of the automatic continuity of positive functio-
nals (see e.g. [1, p. 198]).

2. When is the closed wedge a cone? A partial order < is called
antisymmetric iff 0 < a < 0 implies a = 0, or equivalently, iff the set A, of all
positive elements is a cone, i.e. 2 wedge with the relation A, n— A4, = {0}. In
the sequel we will discuss criteria for the antisymmetry of the wedge
A.nSymA. Qur main result is

21. Tueorem, Let A be & not necessarily associative *-algebra with A2
= A endowed with a locally convex vector space topology. Then the following
statements are equivalent:

{a) A.~SymA is antisymmetric.

() f(a} = 0 for all feA’, implies acA,.nSymA.

(©) f(a)eR for all f €A, implies aeSymA.

(d) For all aeA\ {0} there exists f e A’y with f(a) # O.

Proof We show the implication (a)=>(b Let aeA and suppose f(a)
>0 for all fed’.. By Proposition 1.1 it is sufficient to show the selfadjoint-
ness of a. But for @ = u+iv with u,v eSym A4 we have f'(v) = 0 for all f e A, ,
since each positive functional is real on SymA and f(a) = 0. Hence we
conclude by Proposition 1.1 that ved, -4, NSym 4 = {0},

Now let us assume (b). We consider v:= a*~a and have to show v = 0
if f(a)eR for all feA’, . But since fwy=f(a*—a) _f(a) —f (a) = 0, assump-
tion (b) shows that v and iv are contained in Sym A, which gives v = 0.

For the 1mphcat10n (c)==(d) let @ = u-+iv with u,v ¢Sym A. Assume that
S{@) =0 for all fed.. Since f(u), f(v) are real we have J@) =f(v) =
Assumption {¢) shows that v, iv are sclfadjoint and thus u =» = (. The lasl
implication is trivial.

The theorem shows that A,~SymA is antisymmetric iff there are
enough positive continuous (relative to Sym A) functionals to separate the
points of A, But we will also show that the antisymmetry furnishes even a
maximal quantity of positive functionals,

In [8, p. 68] an involution is called essential iff for all a4\ {0} there
exists a positive functional f with f(a*a) # 0. Let us consider the condition

(¢) For all acA\{0} there exists fed’. with f(a*a)+ 0.
If A is unital the Cauchy-Schwarz inequality shows that (d) implies (e).

In particular, the antisymmetry implies that the involution is proper, ie.
a*a # 0 for all aed\ {0} (cf. [4, p. 420]). On the other hand, (¢) implies (d) if
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the multiplication is associative and separately continuous: if f(a) = 0 for all
f €A’ consider the positive functional ¢ (a):=f ((A—}-b)a(zl»%b*)) with a,h €A
and A eC. Then it is easy to see that f(a*a) = 0 for all fed'. (see eg [11,
pp. -261-2623).

If A is a unital Banach *-algebra then every positive functional is
automatically continuous. The Gelfand-Naimark pseudonorm my, defined by
my(a):= /la*alp,, is a C*seminorm. The * radical can be defined as the
kernel of m, (cf [14, Theorems 4.2 and 4.4]). Thus the closed wedge is
antisymmetric iff A is *-semisimple, i.e. the *-radical is trivial.

2.2. CorOLLARY. Let A be a not necessarily associative *-algebra with A?
= A and a Fréchet space. Assume that A, ~Sym A is antisymmetric. Then the
continuity of the involution is a necessary condition for the automatic continuily
of positive functionals.

A locally convex vector space is called a Frécher space if its topology is
induced by a complete translation invariant metric. Note that there is no
assumption of continuity of the multiplication in our theorem.

For more general *-algebras (than Banach *-algebras) the continuvity of
the involution has been required to prove the continuity of positive func-
tionals (cf. the survey [6]). Our theorem justifies this assumption. In the case of
a Banach *-algebra A one has first to show that the involution is continuous
on A/rad A in order to prove the automatic continuity of positive functionals.

As a consequence of Corollary 2.2 we infer for a Banach *-algebra A
that 4, NSym A is antisymmetric iff 4, is antisymmetric, since every positive
functional is automatically continuous, Now let us prove the corollary.

Proof. The automatic continuity implies A', = A%, ¥ 4, "SymA4 is

antisymmetric Theorem 2.1(c) tells. us that
SymA= () f~'(R).

. ) Jed'y
Thus the property 4’, = A", implies that Sym 4 is closed in 4. Since A is a
Fréchet space we can apply the closed graph theorem to prove the continuity
of the involution (see eg. [16, p. 507). Let (a,)..x be a sequence in 4 such
that (a,),ey converges to @ €4 and (a¥),.x converges to hed, We have to
show that a* =b, Clearly a,+a¥ —a+b and i(a,—a}¥) —i(a—»). Since
Sym 4 is closed we can conclude that a+b and i(a—b) are selfadjoint, thus
atb=a*+b* and a—b = b*—a*, which yields a* = b.

Let A be a not necessarily associative *-algebra with a locally convex
vector space topology and let x be another involution, We denote the set of
all functionals which are positive relative to x and continuous on the
selfadjoint part of A by A (x). Now we consider the set
(1 #:= {4, (x)| x is an involution on 4!
and define an ordering on % by set inclusion.

Involutive algebras 183

2.3. CoroLLArY. Let A be a not necessarily associative *-algebra with
A? = A endowed with a locally convex vector space topology. If the closed wedge
A, nSym A is antisymmetric then A’y () is a maximal element in P,

Proof Let x be another involution with A", (x) = 4, (x). For a = a™
we have f(a)eR for all fed, (x), in particular for each fed, (». By
Theorem 2.1 we conclude a=a* But now it is easy to see that the
involutions * and x coincide,

24. Remark. By Corollary 1.2 it is easy to see that one may replace
A, by the set of all extreme points of P, in Theorem 2.1, Corollary 2.3 and
(1) if P, is the w*-closed convex hull of its extreme points.

An involution of an associative algebra is called hermitian if the spec-
trum of every selfadjoint element is real. Now let 4 be a Banach algebra with
a hermitian involution. Then the radical and the *-radical coincide (see [14,
Theorem 6.6]). Thus, if 4 is semisimple, the wedge A, is antisymmetric. We
generalize this result to complete LMC algebras with a continuous involu-
tion.

2.5. TuroreM. Let A be a complete semisimple LMC algebra with «
continuous hermitian involution. Then the closed wedge A, is antisymmetric.

Proof. Without loss. of generality we can assume that A possesses a
unit. Let (p,),e; be a defining family of submultiplicative seminorms. The
completion of the normed space 4/p; ! {0 is denoted by A, and the image of .
aed in A, is denoted by a,. It is well known that A is isomorphic to the
projective limit of the Banach *-algebras A, (cf. [9, p. 12]). In particular, the
invelution of every A, is hermitian. By P, we denote the set of all unital
positive functionals which are continuous relative to the seminorm Ps
Clearly then P, = (), P,. It is easy to see that P, and P, are affinely

‘isomorphic (cf. [2]). Let aed,~n—A,, ie. f(a) =0 for all feP,, This

unplies'g(a,) = 0 for all g eP,,. But then a, is in the radical of A,, since A, is
a Banach *-algebra. So q, eradA for all o €I, which yvields a erad 4. Since A is
semisimple we obtain a =0, whlch completes the proof.

There exist Banach *-algebras with a closed cone A, but without a
hermitian involution, eg. the disk algebra. But if we require additional
structures on the Banach *-algebra these notions coincide. The equivalence
of statements (a) and (b} of the following theorem is due to Civin and
Yood [4].

2.6. TueoreM. Let A be a commutative regular semisimple Banach
*-algebra. Then the following statements are equivalent:

(a) » is a hermitian involution,

(b) The involution = is proper, i.e. a*a# 0 for acA\ {0}

(c) AL is antisymmetric.

(d) A, is antisymmetric.
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Proof. Theorem 2.5 gives (a)=-(d), and (d)=-(c) is trivial. We now prove
(c)=(b). Let @ =u+iv (u, » €Sym A). The condition a*a = w*+v? = 0 implies
that the positive element u? is also negative and the antisymmetry of 4
gives #* = 0. Since A is semisimple we can conclude u = 0 and similarly ¢
= 0. For the implication (b)=>(a) we refer to [4].

3. Involutions on Waelbroeck algebras. A Waelbroeck algebra is a com-
plex commutative locally convex continuous inverse algebra. The importance
of Waelbroeck algebras stems from the fact that the so-called Gelfand theory
carries over to this larger class of topological algebras. By a result of P,
Turpin [20] the Waelbroeck algebras are exactly the commutative LMC Q-
algebras. The set of all nontrivial multiplicative functionals coincides with the
set of all nontrivial multiplicative continuous functionals denoted by 4,. The
Gelfand transformation G, maps acA to the continuous function deC(4,)
defined by d(h):=h(a) (hed,). The spectral radius is a~continuous submul-
tiplicative seminorm and by Proposition 1.5 we obtain P, = P,. An involu-
tion * on a Waelbroeck algebra 4 induces an mvolution on A (the image of
the Gelfand map) via 4% := (a*) .

We will give a description of the | |,~closed wedge AJr The set P; of all
positive continuous (relative to the spectral radius) unital functionals on A
can be identified with P,, since the map g »g oG, is affinely bijective (for
the surjectivity cf. Proposition 1.5}. 4 is a *-algebra with the norm | |, so we
conclude by a result of R. S. Bucy and G. Maltese in [3] that

L]

extP;=Pindz;, P; =COHCXtP,;w

So we can identify ext P; and P,nd4,. An application of Corollary 12 and
Theorem 2.1 gives the following result.
3.1. CoroLLary. Let 4 be a unital involutive Waelbroeck algebra. Then

Ged, < a*=dand d(s)>0 for all s€P,nd,.

If in addition the closed wedge /i is antisymmetric then
56;1‘4_ <> d(s) =20 for all seP,4d,.

It is well known (see eg. [4]) that an involution on a Waelbroeck
algebra can be described by a homeomorphism ¢ of the structure space 4,
which has period two, ie. pop =id,,. This homeomorphlsm is character-
ized by the relation ¢(h) = ho+ with hed,, Then & = do¢ for each ae4,
and using the relation ext P4, = P,nd,, one obtains an easy proof that the

extreme points of P, are exactly the fixed points of ¢. If the structure space

4, is homeomorphic to a compact convex subset of a locally convex vector
space an application of a fixed point theorem (cf. [14, p. 120]) proves the
existence of a positive continuous functional.

For a Waelbroeck algebra we have o(a) = 4(4 ) and @ = dog. Then it
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is easy to see that the involution = is hermitian if and only if ¢ is the
identity. This shows that the involution is hermitian iff ext P, = 4 4» Since the
extreme points are exactly the fixed points of ¢. In particular, there is at
most -one hermitian involution for a semisimple Waelbroeck algebra. In the
noncommutative case Civin and Yood have shown in [4] that on a Banach
*-algebra there are denumerably infinitely many distinct hermitian involu-
tions if there exists at least one such involution.

Now we are able to give an interesting application of Corollary 2.3; Let
A be a unital semisimple Waelbroeck algebra with a hermitian involution s,
Let x be another involution and assume that the closed wedge A4.. relative
to x is antisymmetric. Corollary 2.3 and Remark 2.4 show that ext P,( x) is
a maximal set and thus the relation extP,(x)=P,(x)Nd, <4,
=ext P, () yields ext P ( x}=4,. Since A, (x) is antisymmetric and the
algebra is semisimple, this implies x = x. We have proved the following
result;

3.2. CoroLLARY. Let A be a unital semisimple Waelbroeck algebra with a
hermitian involution. Then the closed wedge of no other involution is anti-
Symmetric.

ExampLes. (a) We determine all involutions on the disk algebra. We
identify its structure space with the unit disk D in the complex plane. The
involution induces 2 homeomorphism @: D —D of period two with a* (z)
= aO(p(z} (z €D). Thus @ is an element of the disk algebra since the identity
function is in A. Simple arguments show that ¢ is an automorphism of D,
hence has the general form

az+b . ab
_— t e
| Trra with (b &)ESLZ(Q,
and that ¢ 0@ =idp iff b is purely imaginary. So we have
az —ip
v =

with aeC, feR and |a*~#* = 1. The fixed points of ¢, ie. the extreme
points of P,(p), are the solutions in D of the equation ifzz + az —az +iff = 0,
which for f = O describes a straight line through zero and for st 0 a circle
with center a/(if) and radius 1/|8] which intersects the unit disk. One may
view ¢ as an antiholomorphic reflection of the orthogonal citcle consisting of
the fixed points of ¢. In particular, each involution on A has an antisym-
metric wedge A, .

(b) We give an example of a Banach *-algebra 4 where 4 + I8 a cone
different from 4. . Let A be the set of all functions of the disk algebra whose
derivatives may be extended to continuous functions on the closed unit disk.
A is a Banach algebra with the norm {Jall = [laf » +{lc|l , where @' denotes
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the derivative of @, and with the involution a* (z) == @(%). The extreme points
of P, can be identified with [—1,1], the set of all fixed points of z =Z. By
Corollary 3.1 the function a defined by a(z}:= 1—z is contained in the cone
A.,butitisnotin 4,: Let az) = 1—z _Zi“l a¥ (2)a; (z) be a combination
of positive elements. Differentiating both sides and using the continuity of o
on D we obtain & (1) = —1 =0, a contradiction.
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On the integrability and ['-convergence of sine series*
by
. FERENC MORICZ (Szeged)

Abstract. We study sine series (¢) Y%, 4, sinkx with coefficients belonging to one or
two af the classes €, B, and ¥, introduced in this paper. Among other things, we prove that if
ta,) eCBY, then (¥ is the Fourier series of some function feL!(0, m). Furthermore, if
{a,} e€nBY, or la) eV, and f €Ll (0, n), then the condition (%) a,logn —0 is necessary and
sufficient for the L'(0, n)-convergence of the partial sums s,(x) of series (*). Criterion (*+) has
been known so far only in the case of cosine series. Qur results generalize those obtained by
Telyakovskii [9] for sine series, while our new classes are the counterparts ol those introduced
by Garrett and Stanojevi¢ [5] as well as by Bojanic and Stanojevi¢ [2] for cosine series,

L. Introduction. We will study the sine series
(1.1 > asinkx
k=1

where {a,} is a sequence of real numbers in the class BV defined as follows.

Dermvition 1. A null sequence {g,} belongs to BV if

o
1.3 > kldb| < oo

k=1

where
bei=agk, dbyi=bo—bys; (k=1,2,..).
We do not require any monotonicity of the sequences {a,} and {b,}.

Following an idea of Kano [6], we represent the partial sums s,(x) of
series (1.1} in the form

n n
= Y @sinkx =~ b,(coskx)

k=1 ke
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