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The socle and finite-dimensionality of a semiprime Banach algebra
by

LEON! DALLA, S. GIOTOPOULOS and NELLI KATSELI (Athens)
Abstract. All finite-dimensional semiprime Banach algebras are semisimple.

The purpose of this paper is to give a characterization of the elements of
the socle of a semiprime Banach algebra. If 4 is a semiprime Banach algebra
we prove that socArradA = [0}, and tesoc4 if and only if dim(rAf) <
+ oo (i.e. tAr has finite dimension). This extends a result of Alexander in [1]
concerning semisimple Banach algebras, and is used to prove that the
elements of soc A are algebraic and that A is finite-dimensional if and only if
A =socA (and in this case A is forced to be semisimple). This completes
Tullo’s assertion in Theorem 5 of [8]. We also give a different proof of

ITullo’s result.

An element s of A is called single if whenever asb = 0 for some a, b in A,
at least one of as or sb is zero. We say that an element ¢ of A acts compactly
if the map a —tat (A — A) is compact. If the algebra A has no minimal ideals
we define soc A == 0],

In general, notation and terminology used are as in [3]. All the algebras
and subspaces considered will be over the complex field.

Single elements that act compactly have proved to have a close connec-
tion with the elements of the minimal ideals of the algebra.

' More precisely, with a slight modification (see eg. [5] or [6]) in the
proofs of Theorem 4 and Corollary 5 in [4] one can easily deduce Theorem
1 and Corollary 2 below (see also [7] for an alternative approach).

TucoreM 1. Let s and t be nonzero compactly acting single elements of a
semiprime Banach algebra A, and st ¢rad A. Then:

(i) There exist minimal idempotents ¢ and f such that s =se ond t = It

(ii) The dimension of tAs is at most 1,

From Theorem 1 we find that if s¢rad A and s is a compactly acting
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single element of A4 then As (sA) is a minimal left (right) ideal of A. The
converse is also valid and so we have

CoroLLARY 2. The socle of A consists of all finite sums of compacrly
acting single elements of A that are not in rad A.

Prorosrrion 3. Let A be a semiprime Banach algebra. Then soc Arrad 4
=10
(g

Proof. Suppose on the contrary that there exists a nonzero element ¢ in
soc Arrad A. Then r¢lan(soc A} ([3], p. 162, Lemma 4). This implies that
ty # 0 for some y esoc 4 and so from Corollary 2, rs # 0 for some compactly
acting single element 5 of A which is not in rad A. A4s is then a lelt minimal
ideal of A and since {0} # Ars © As we have As = A1s < soc Anrad A, which
is a contradiction (since rad A does not contain nonzero idempotents).

CorOLLARY 4. Let A be a semiprime Banach algebra. Then:
(1) soc A clan(rad A) = ran(rad A).
{ii) rad A < lan(soc 4} = ran(soc A).

Proof. This follows immediately from Proposition 3 above and Lemma
4, p. 162 of [3].

Lemma 5. Let A be an algebra that has proper left ideals, let X be a
[finite-dimensional subspace of A, and let 1 be a nonzero element of A, If
XL s (0] for every left ideal L of 4 contained in At, then At contains a left
minimal ideal of A.

Proof We distinguish two cases:

Case 1: XnL=XnL for any two left ideals L,I' = A4s. Since
XL # 10} for every left ideal L < A, it is clear that the intersection of all
such L's is nonzero and therefore it is a minimal left ideal of A.

Case 2: There exist two left ideals L,, L, of A contained in At such
that {0} # XL, & XL,. Then from the assumptions we have [0} # XL
for every left ideal L < L, < At

Therefore, either X nL = XL, for all such L, which leads to case 1,
or there exists a left ideal [; < L, such that

10} # XLy & XLy & XLy,
Since X has finite dimension we deduce the existence of a finite sequence

Ly, ..., Ly of left ideals of 4 contained in At such that

0] £ XNLZ ... EXOL $ XL, and  XnlL,=XAL# |0

for every left ideal L & L,. The intersection of such Us is clearly a minimal
left ideal of A.

icn

The socle and finite-dimensionality of Banach algebras 203

LEmMA 6. Let t be a nonzero element of a semiprime Banach elyebra A
such that tAt has finite dimension. Then t €socA.

In particular, there exist a finite sef €1, ..., €, of minimal idempotents
and ty, ..., ty_1 €A such that t =tey +i1éx+ ... -t 8.

Proof. We put X = tAt, and suppose that dim(rdf) = a. Then from

Lemma 5 the left principal ideal A¢ contains a minimal idempotent ¢, = «, I,
for some a, €A. We put t, =t~-re;. Then

1y Aty = (t—te)) A(r —tey) S At —rtey) = tA(t—ta 1) <= tAL,

However, the inclusion tAr (1 —e;) < rAt-is strict because tey = tay t is in (AL,
is nonzero and cannot be of the form rat(1—e;). Hence

dim (1, Aty) < dim(rAr}.

If ¢, # 0, by a similar argument we can find a minimal idempotent ¢, s0
that
dim{r, Ai5) < dim(ty Atfy)
for 1, =, —t, 5. . '
A finite number of repetitions of this process gives an element

tr=te 4+t eyt ... -6, E50CA,

for some k < n, such that (t—r*)A(t—t*) = {0]. Hence t = ¥, since A s
semiprime.

Turorem 7. Let A be a semiprime Banach algebra. Then t esocA if and
only if the dimension of tAt is finite.

Proof. If tesocd, then t =s,+ ... +5, is a finite sum of compactly
acting single elements not in rad4 (Corollary 2) and thcrefor'e
tAt < T =18 As;. Since s As; has dimension at most 1 {Theorem 1) it
follows that dim{tAf) < + o0, .

Conversely, if dim(tAf) < +oo then t&soc A from Lemma 6. In particu-
lar, £ = 0 if and only if tAt = {0}, since 4 is semiprime.

CoroLiaRY 8. Let A be a semiprime Banach algebra. If A has finite
dimension then,

(i) A =s0cA.

(i) A is semisimple.

Proof. If 4 has finite dimension, then rAs has finite dimension for every
ted. Hence A < soc A, Since the reverse inclusion is also valid we have 4
= 50C A.

From Proposition 3 above and Corollary 20, p. 126 of [3] we now have
rad A = rad(soc 4) = soc Arrad 4 = [0}, ie. A is semisimple.
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CoRroLLARY 9. Let A be a semiprime Banach algebra. Then every eli
of soc A is algebraic.

Proof. If resocd, then dim(tdf) = n < + . Hence the elemeni
t*, ..., t"** are linearly dependent and therefore there are Ay, A, ..., 4,4
not all zero with i, 2+, 1%+ ... + A "7 =0,

CoroLLary 10 (Tullo). Let A be a semiprime Banach algebra ar
=socA. Then A is semisimple and finite-dimensional.

Proof. A is semisimple as in the proof of Corollary 8 Also, «
element of A is algebraic (Corollary 9) and therefore A is finite-dimens
(Corollary 1 in [2]).

We summarize the results concersing the finite-dimensionality o
algebra in the following ‘

TueoreM 11. Let A be a semiprime Banach algebra. Then the follc
conditions are equivalent:

(i} A has finite dimension.

(iiy A =soc A,

Moreover, if (i) {and therefore (i) is valid, then A is semisimple.

Remark. If 4 is a semiprime Banach algebra and A = ;552“, then
compact (Lemma 12, p. 177 of [3]) and therefore A has a discrete stru
space (Theorem 18, p. 180 of [3]).
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