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using similar arguments to Corollary 3 or with an analogous proof to that

given in [14], that for 1 <« p< oo, 0 <r< o, and /g = 1~0-+0/p,
(Hé: L%)H.r = L‘?’;,

where I¥ stands for a Lorentz space.
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Sequence space representations for zero-solutions
of convolution equations on ultradifferentiable
functions of Roumien type ’

by

REINHOLD MEISE {(Disseldorf)

Abstract. Let ¢, (R) denote the space of all w-uitradifferentiable functions of Rourmieu
type on R and let T, be a convolution operator on & R) which admits a fundamental solution
in 7. (R). We prove that the space ker T, of all zero-solutions of 7, has an absolute basis of
exponential solutions, hence it is isomorphic to a K&the sequence space A(P(w) if it is infinite-
dimensional. The K&the matrix P(} is computed explicitly in terms of @ and the zeros of the
Fourier-Laplace transform of . This result is a consequence of a sequence space representation
for quotients of certain weighted (LF)-algebras of entire functions medule slowly decreasing
localized ideals.

Classes of non-quasianalytic functions, like the Gevrey classes, were used
by Roumieu [20] to extend the notion of a distribution. Then Chou [7]
studied convolution equations in these classes, using ideas of Ehrenpreis [9]
and Fourier analysis. Recently Braun, Meise and Taylor [5] combined the
approaches of Roumieu [20] and Beurling-Bjorck [2], [4] to introduce
classes aﬁ"{m,(RN) of non-quasianalytic functions which are particularly adapted
to the application of Fourier analysis.

In the present paper we show that for each ped,,(R) which admits a
fundamental solution ker T, the space of zero-solutions of the convolution
operator

Tt &R = £ (B), T2 x> Gty [ (x50,

has an absolute Schauder basis consisting of exponential solutions. More-
over, we show that for dimcker T, = c0 we have a linear topological isomor-
phism between ker T, and the sequence space A(, B) which is defined in the
following way:

Ao, B) = {xeCVim,(x):= i |} J’jekaj <

=1

for each keN and each yeA,},
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Ay =1y eRY | lim y;exp(— B/m) = 0 for each meN),
Jor o
where o = (|Im aj)jen, B = (@ (a));.y for an enumeration (a;);.x of the zeros
of the Fourier-Laplace transform [ of u, counted with multiplicities. Note
that this representation applies in particular to the Gevrey classes oy (R)
= §WNR), 5> 1,

This result s in fact a special case of a theorem on sequence space
representations of quotients of weighted nuclear (LF)-algebras A, ; of entire
functions modulo closed ideals generated by finitely many slowly decreasing
functions. Its proof is based on ideas and results of Berenstein and Taylor
[1], Meise [14], Meise and Taylor [16], and Taylor [23]. To get the
representation of ker 7, stated above, we use a result of Braun, Meise and
Vogt [6] to show that ped,,(R) admits a fundamental solution in 7 (RY
if and only if 4 is slowly decreasing in Az, -

The sequence space representation for ker 7, derived in the present
paper is used in Braun, Meise and Vogt [6] to characterize the surjectivity of
convolution operators . T,: AU (R) — 2 "PY(R) on the Gevrey classes
SNR), 5 > 1.

The author thanks C. Montes for stimulating conversations on the
subject of the present paper and for drawing his attention to Example 1.9(2).
He also thanks R. Braun for some helpful comments.

1. Weight functions, weighted algebras and some sequence spaces. In this
preliminary section we introduce the basic notation and we state some
elementary results which will be needed in the sequel.

L1. DermvaTion. A function p: C —[0, wof is called a weight funcrion if
it has the following properties:

(1) p is continuous and subharmonic.
(2) log(1+21*) =0(p(2) as |z| tends to .
(3) There exists d > 0 such that for all zeC

sup plz+w) < d{1+ inf p(z+w)).
w1 . wig1

A weight function p is called radial if p(z} = p(jz|) for all zeC.

For a nonempty open set Q = C we denote by A(£2) the algebra of all
holomorphic functions on Q.

1.2. DeriniTion. Let # be a radial weight function and let q: R —-[0, o[
be a convex even function which strictly increases on [0, [ and satisfies

limr(t)/q@®) =0, limsupg(t+1)/q(t) < .

icm

Convolution equations on ultradifferentiable functions 213

Then we define
A,, = {f€A(O)|there exists keN such that for each meN
(11l 2 = suplf (2)] exp(—kg{lm z) —r(z)/m) < o0}
zeC
Obvicusly we have

A, =indproj Afk, m), where A(k, m):={f €A(O]Iflm < oo}

k— +m

We endow A,, with this natural (LF)-space topology.

Using standard arguments, one can show the following:

1.3, Provostrion. For r and q as in 1.2, the following holds:

(8) A, is a nuclear (LF)-algebra with continuous multiplication.

(b) A, =ind,_proj., Wk, m), where

Wim = (£ €A(O]1f 2= [[If @)l exp(--kq(Im2)

cf —r@)fm )] diz) < o)

and where 1 denotes the Lebesgue measure on C = R™.

Next we introduce some sequence spaces which we shall use in the
subsequent sections.

1.4. DerniTioN. Let o = (¢);.n and f = (B));cn be sequences of nonnega-
tive real numbers and let E =(E;, || ||});.y be a sequence of Banach spaces.
For keN and meN we put .

Ak, m, E):= Ix =(xj)jeNEHEJ'|

JjeN
[l == 21 ille]je.)(p(k‘xj+ﬁj/m) <o,
I=
Kk, m, E):= {x =(x))jen e‘l—’[ij|
JE
Il = stp il oxp (- k= B/} < a5

and we deline

Ao, §, E)i= pE(Ej i,EE”‘(k-‘ m, B}, Kia,§, E):= 1{151 ngjK(k. m, E).

If E=(C, ||);.n. then we just omit the £ in the notation introduced above.
1.5. ProrosimioN. Let o, § and E be as in 1.4, assume dim E; < o0 Jor all

jeN and put _ _ |
Ag:i=lyeRY|supy,e P < w for each meN}. _
JjeN
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Then we have

Ao By By = [xe[[ Bl m, (0= 3 Ilxjlyye™ <o
j=1

JeN
for all keN, yed,}
and {m, |k eN, yed,} is a fundamental system of seminorms for Aa, f, E).

Proof. We define E' :=(Ej, || [|j);ey and we fix keN. Then we put
Fyi= {z &[] E)| lim ||zlljexp(— ko, — f/m) = O for each meN}

JeN Joo
and endow F, with the Fréchet space topology induced by the norm-system
(” ”m)mENa Where

Iz}l = = sup lizjlljexp (— koy— B;/m).
Jje

Then it follows easily as in Bierstedt, Meise and Summers [3], Thm. 3.4, that
F}, is a quasi-normable Fréchet space. This implies that (F); is bornological.
Identifying E} with E;, this gives '

(F), = ind A (k, m, E)

with the canonical bilinear form <x,z)> = Yo, <X, z;);.
On the other hand, we find as in Bierstedt, Meise and Summers [3],
Thm. 2.7, that with the same bilinear form we have

Fo, = {er—"[ij|nk,y(x) <o for each yed,}.
Jei

Hence the result follows from well-known properties of projective limits,

1.6. Prorosition. For o, f and E as in 1.4 assume lim;..,, f; = o0 and
dimE; < oo for all jeN. Then:

(1) A(ex, B, E) is a complete Schwartz space.

(D A(x, B, E), can be identified with K(a, f, E) under the canonical
bilinear form (x,y>:=Y % {x;, ¥;);, where E' = (Ej I en-

(3) A subset M of K{x, fi, E) is equicontinuous with respect to the
identification in (2) iff there exists k €N such that for each meN

supsupl|lyljexp{—ka;—f/m) < co.
yeM jeN .

Proof. (1) It is easy to check that the present hypotheses imply. that for
each keN the space ind,.A(k, m, E) is a (DFS)-space. This implies that
ind,, . A(k, m, E) is a complete Schwartz space. Hence A(x, S, E) has this
property, too.

Convolution equations on ultradifferentiable funcrions 215

(2) Fix keN and let M be an arbitrary bounded subset of
proj ., K (k,.m, E'). Then we have for each meN

supsup |yll;exp(—ka;— B;/m) < co.
yeM jeN

This implies that
o= (SUP Iyl exp(~ k“j})jefv
yeM

is in 4;. Hence we get for each yeM and each x€i(x, §, E)
[-4] oo
[T < ol < X Il
=1 j=1

ac
ket —ka;
= 2 lxllie lyllze ™7 < m. (x).
=1

By Proposition 1.5, this implies that for each y<K(x, #, E)’ the functional
B(y): x =Y 1oy x5 ¥y is in A« B, EY. Moreover, it follows that &:
K(a, 8, E) = A(x, B, E); is continnous.

To show that & is also surjective, let Ted(x, B, EY be given. By
Proposition 1.5 there exist k€N, zeAd, and C >0 such that

4} |T(x)| < Cmy,(x) for all xel(e, B, E).

Now note that E; can be identified canonmically with a linear subspace of
Ao, B, E). If y; denotes the restriction of T to this subspace, then (4) implies

5) iyl < Czye™

From this estimate it is immediate that y 1= (¥~ 15 in K{z, 8, E). More-
over, it follows easily that @(y) = T. Hence @ is a continuous linear bijection.
Now observe that K(a, 8, E) is an (LF)-space and that A(x, B, E), is
ultrabornological by (1) and Schwartz {223, p. 43. Hence @ is a linear
topological isomorphism by the open mapping theorem,

(3) f M <= A{x, B, EY is equicontinuous, then the estimate (4) holds for
all TeM, where k, z and C only depend on M. Then (5) implies (3).

for each jeN.

1.7. Lemma. Let o, B and E be as in 14 and assume 1 < n;:=dim E;
< oo for all jeE. Then the estimate

(*)  There is |eN such that for each meN:

sup i exp (—lu;— Byfm) < o0
jeN

implies that

Ao, ﬁ$ E) = l(% d), K(OC, )82 E) = K'(')’a d),
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where the sequence y (resp. 0) is obtained from a (resp. f) by repeating u; (resp.

B;) ny times.
Proof. Obviously we can identify A(y, §) with

w M
&= ((fj‘v)tsvsnj)jeﬂ D) ifj,vfyjekaj <w for all keN, yed,}.

j=lv=1

Next we choose for each j €N an Auerbach basis le; |1 < v g n;t of E; with
coefficient functionals [f,,|1 < v < n;} (see e.g. Jarchow [10], p. 291). Using

the identification mentioned above, we define

A: 2y, 8) =A@, B, B by A= (ZJ Eiveinlien-
v=1

For each k €N, each yeA, and each £eA(y, §) we have

J=1 w=

0 i s w .
> | Zl Eivep| ve sJZI Yoy,
=1 ym|

which proves that 4 is a continuous linear map.

To show that 4 is a topological isomorphism, fix x €A (x, 8, E) and look
at .'the sequence (({f;,, x,-)l,)lgvs,v)je,v. From (x) we see that z ;= (nje"l“f),e,v
15 in A;. Now let keN and ye, be given. Then it is easy to check that
(z;¥)jen 18 in Ag, too. Hence the estimate

@ P

ko ; = o
2 Z [ {fyr X2 €77 < Z n’j”xj!ijyjek 4

J=1v=1 F=1
=]

— Nop. o i, A+ka = .
Z ey = 3 gy e
i=1

shows that the map

B; 2’(“5 Bv E) “”I(Ts 5)s B(X)Z= ((<j:i,vv xj>j)1$v£nj)JEN=

is linear and continuous. It is easy to check that BoA = idyy.5 and AoB

= idyep.5- Hence we have proved A(x, 8, E) ~ Aly, 8). By similar arguments
one can show K (x, §, E) ~ K (y, ).

1.8. Remark. Let o and & be sequences of nonnegative real numbers.
They are called equivalent if there exists 4 > 1 with
4y <A(l+d) and &< A{l+a) for all jeN.

If o and & and also # and ff are equivalent then it follows easily that for each
sequence E =(E;, || {|,) of Banach spaces we have

Aw, B, By=4@ p.B), K. B, B=KG@,F, E).

icm
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1.9. Exampres. (1) For o and f§ as in 1.4 assume lim;_ ,a;/8; = 0. Then it
is easily checked that

Ao, f) = {xeC¥|there exists meN: 3. |xjexp(f;/m) < o],
j=1
Kix, f) = {yeC¥[for all meN: suplyjexp(—fy/m < oo}
jeN

Hence A(«, f) is a (DF)-space, while K (¢, p) is a Fréchet space.
{2) For ¢ and f as in 1.4 assume liminf;_a;/f; > 0. Then it is easily
checked that

Ao, B) = {xeC¥|for cach keN: 3, |xjexp(ka) <o},
=1

K (x, B) = |y eCV|there exists keN: sup|y; exp(—koy) < oo},
JjeN
Hence A(o, f) is a Fréchet space, while K (z, f) is a (DF)-space.

1.10. Remark. In general, 2(x, f) is neither a (DF)- nor an (F)-space. In
fact, there are examples of nuclear spaces A(a, f) which are neither barrelled
nor bornological and for which A(x, f), = K(x, f) is not sequentially com-
plete. Such examples can be obtained as follows: Choose increasing se-
quences y and & of positive numbers with lim;.,(logj)/y; =0 and
sup;.n(logj)/d; < co, and put

A (D= lx sC"’||!x|]k:= 2 Ixjlexp(—7/k) < oo for each keN},
j=1

J

A (0) i= {xeC™||Ixll, 1= Y. |x]exp(kd)) < o for each keN}.
i=1

Then A, (y) and A_,(8) are nuclear Fréchet spaces. It is easy to check that
L, (A1 (%), Ay (9) = A, (p), ®y Ao (8) = A, f) for suitable sequences o and §.
Hence it follows from Krone and Vogt [13], 2.1, by Vogt [24], 4.2, that
Mo, fy and K(x, f) have the properties mentioned above.

For a detailed discussion of the question when A{x, ) is barrelled, we
refer to Vogt [25] and [26].

2. Sequence space representations of certain quotients of A ,. In this
section we fix ¢ and r as in 1.2 and we derive a sequence space representa-
tion of 4,, modulo certain closed ideals which are generated by slowly
decreasing functions in A,,.

2.1, DerniTioN. F = (Fy, ..., Fy) in (4,,)" is called slowly decreasiﬁg if
there exist a weight function s with s = o(#) and positive numbers L, M, e, C
and D such that with p: z+g(Imz)+s(z) the following holds:
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(1) sup,.c|F;(z)exp(—Lp(@) < M for 1<j< N,
(2) For cach component § of the set

N
S,(F. 2 0= 2eCl[F(2):=(T [F;(2))" <se~cr®)
i=1
we have
szl;gp(z) <Dt +11;£p(z)}, sugr D(1 +1nfr(z))

Remark. Definition 2.1 can be regarded as an extension of the slowly
decreasing definition of Berenstein and Taylor [1], p. 130, and of the one
which was used implicitly in Meise and Taylor [16]. It looks somewhat
artificial and as if it were invented just to make the preoofs of this section
work. However, in Proposition 3.5 we show that for convolution operators
on certain spaces. of ultradifferentiable functions, this condition has an
interesting characterization.

22. Dernamion. Let F=(Fy, ..., Fy) e(4,,)" be given.

(2) By I(F) we denote the ideal in 4,, which is algebraically generated
by F,,..., Fy.
(b By I..(F) we denote the set

Iloc(F):'__ {fEAq,rl[f}a EIQ‘(F) for eaCh aecllq

where [ ], denotes the germ of f at a and where I,(F} denotes the ideal
generated by [F],, ..., [Fyl. in the algebra (, of all holomorphic germs
at a

It is easy to check that I,,,(F) is a closed ideal in A4, with I(F) = I, (F).

2.3. ProrosiTion. If FeA,, is slowly decreasing then I(F)=I(F).
Hence I(F) is closed.

Proof. By the preceding remark it suffices to show I, (F) < I(F). If
g el (F) is given, then g/F is in A(C). To show that g/F is even in A4,,,
choose s, &, C and D according to Definition 2.1. Since g is in 4,, we have

(1} There exists keN such that for each meN there exists C,, W1th
llglle,m < Can-

Since s = o(r) we get for each meN and each zs;éS,,(F', g, C)

EA%)

@ &

£ Cpexp (kq tlm z) +-i; v (z)) -i- exp{Cq (im 2)+ Cs(z))

< G, exp ((k+C)q(Imz)+%r(z)).
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By 21 and the maximum principle it follows from (2) that for each
component S of § »{F, &, C) we have

9@

(13) @)

< Cjexp ((k+ qupp(z)+3 sui:)r (z))

zeS M ze8

- < Crexp ({k+QD(1—i«p(z))—%z*n?(1+r(z)))

- 3D
< Cexp ((IH— 8] Dq(Imz)-i——E r(z)).

Now (3) and (2) imply g/FeA,,. Hence g =(g/F) F belongs to I(F).
24. LEMMa. For keN let [#(Py,) denote the space

(P = {f e B (O[If1%:= [[If @) exp(—kq(Im2z)
(5

' —T(Z)/m)]z dA(z} < oo for all meN!

which is a Fréchet space if we endow it with the lLc. fopology induced by the
norms (| \wen. Then for each bounded subset B of I*(Py) there exists a
bounded set C in 12(P,) such that for each u€B there exists veC with (v =u
in the distributional sense.

Proof. Fix kN and define
= {fel*(PY] Z\fELz (P}

endowed with the system (|| {[.)men Of norms, where

1l 2= 1 I+ s f €T

Then it is zasy to check that ¥, is a Fréchet space and that 0 Y oI Py is
continuous and linear. Moreover, Taylor (23], Thm. 5, implies that the proof
of Meise and Taylor [16], 2.1, also applies in the present-situation. Hence
& Y, = I*(P,) is surjective, so that we have the exact sequence of Fréchet
spaces
0 oker 7 by, SI2(p) =0,

where j denotes the inclusion. The deﬁmtlon of the norms | ||, meN,
implies that the topologies of ¥, and I?{P,) coincide on ker 8, Therefore it
follows from Wloka [271, 1, §4,2., that ker( is a Fréchet-Schwartz space.
This implies that ker ¢ is quasi-normable. Hence the result follows from
Merzon [19], Thm. 2 (see also De Wilde [8]) and the fact that the topology
of Y, is stronger than the ome which is induced by L?(Py).
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2.5. Lemma. Let F=(Fy, ..., Fy)e(4,)" be slowly decreasing and
choose s, L, M, &, C and D according to 2.1. Let Q < A(S,(F, ¢, C)) be given
and assume that for some keN and some sequence (D, )..n 0f positive numbers
we huve

(1) For each feQ, each meN and all z&$,(F, ¢, C)

|f(2) < D, explkg(Imz)+r(z)/m).

Then there exist positive numbers ¢;, C, with 0 <&, <& and C, > C as well
as leN and a sequence (E,), of positive numbers such that for each f€Q
there exist f€ A(C) and o;€ A(S,(F, &,, C,)), 1 €j < N, satisfying (2) and (3):

N
2 fE=F@+Y 0;&F;(z) for ali zeS$,(F, ¢, Cy).
J=1

(3) For each meN and all zeC
|f (2)| < Enexp(lg(lmz)+r(z)/m),

l?roof. Since p: zr-»q(Imz)+s(z) is a weight function, the arguments
used in the proof of Berenstein and Taylor [17, p. 120, imply the existence of

positive numbers &, C;, 4 and B and of a function yeC®(C) with the
following properties;
O0<x<1, Supp(y)=§,(F,s, C),

U4
!a—z(-z)

(4) XIS,'J(F! El’cl)Els

< Aexp(Bp(z)) for all zeC.

Now fix feQ and note that (&&)(xf) =/ dy/@® vanishes on
S, (F, g, Cy). Hence the functions

vt z k> —Fy(2)|F (2)

_, 80f)
2 .
N (2, 1<j<N,

are in C*®(C} and satisfy Supp(v;) < S,(F, &, O)\S,(F, &, C,). Because of (1),
4) énd 2.1, the following estimates hold for 1 < J< N, each meN and all
zeC:

(5) |vj(z)l € MAD, s 2exp((L +2C+B) p{z)+ kg (Imz)+r(z)/m)
< Dy expleg (Im z)+ 2r (z)/m),

‘where ;= k+L+2¢ + B and where D, depends on e, M, A, m, D,,, s and »,
-bu’t’ not on the‘ pamcu]ar 7 €Q. Since r satisfies 1.1(2} there exists a sequence
(Dy)nen of positive numbers depending on D!, ¥ and %, but not on 7 with

(6). l [iv; @)l exp(—xgq (Imz)—r(@)m)]* di(z) < By,

icm
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for each meN. Hence the ellipticity of the d-equation and Lemma 2.4 imply
the existence of a sequence (D)),.y of positive numbers such that for
1 €j< N there exist u;eC®(C) with ouy/0z =1v; and

(7) { [l () exp(—xq(Imz)—r (2)/m)]” dA{z) < Dy
C
for each meN.
If we define
N
F-

then it follows easily that &8z =0, ie. feA(C), Next put
6y =1u|S,(F, e, C;) forl<j< N
and note that

%‘f;; =S, (F, e, C) =0, e

Hence (2) follows from (8). To see that (3) holds, note that because of ez kit
follows from (1) and (7) that there exists a bounded set B in proj.. Wi, m)
with feB for each f €0, which implies (3) by standard arguments.

U'J: cA (SP(F7 Eis Cl))'

26. TreoREM. Let F ={(F,, ..., F) (4, )" be slowly decreasing and
assume that V(F):=zeC|F;(z)=0 for 1 €£j< N} is an infinite set. Then
Ay o/ 1o {F) is linear topologically isomorphic to K (3, ), where the sequences 7y
and § are obtained in the following way: If (@) is an enumeration of the
points in V(F), each point counted with the multiplicity of the common zero of
(Fiy ..., Fy). then

¥= (q (Im aj))jEN! 8 ={ria))en-

Proof Choose s, L, M, g, C and D according to 2.1 and define the
weight function p by p(z) = g(Imz)+s(z). Then label the components S of
S,(F, &, C) with SNV (F) # ¢ in such a way that the sequence

Bi=(supr(@en

zeS;

is increasing and define
o = (sup g (Im 2))jen-
:ESJ
Note that 1.1(2) impliés lim; o, f; = 0.
Next fix jeN and denote by A’ (S, the Banach space of all bounded

holomorphic functions on §; endowed with the supremum norm. Put

Ei= [ CJl(P)

nsSj nV(F)

2 ~ Studia Mathemetica
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and note that the map

A*(S) 2 E;, 09 := () +1, (F))ae.sjnvwn

is a surjective linear map which has a closed kernel. Therefore we can define
[l {; on E; as the quotient norm induced by g;, ie.

o bl = inf el s, 19 €A™, €306) = sl

Now let E denote the sequence (E;, || !|);n of finite-dimensional normed
spaces. To show that for each fe4,, the sequence {o;(f|S;);n belongs to
Kz, B, E), we fix fed,,. Then

(2) There exists keN such that for each meN there exists C, with

Hence the definition of o and § and (1) imply by (2)

(3) There exists kN such that for each meN there exists C,, > 0 such
that for each je N we have

lles (SIS < WISl yongsy < Comexip G+ fifm).
This shows that the linear map
(4) a: Aq,r "‘"K(O!, 18» E)’ Q(f)”:(gf(flsj))jeﬁ':

is. continuous,

To prove that ¢ is surjective, let x = (x;);ey €K (2, B, E) be given. Then
there exists k €N such that for each meN there exists D,, > 0 with

Il[xlll, m = SUP”xj”jeXP(—kaj—ﬁj/m) <D

JeN
By (1) there is for each jeN an f;eA*(S;) with g;(f;) = x; and
Next we define f: S,(F, e, C) —C by
f(z)::{j}(z) %f z €S,
0 if zeS,(F, e, O\ S,

JjeN

Then fis in A(S,(F, ¢, C)) and from (5) and 2.1 we get for each meN, each
JjeN and each zg§;

(6) IF @ =150 < 20150 < 2416l mexp (ke + B/m)
< 2D, exp(kD (1 + p(2))+D (1 +r(z))/m)
< 2D, Lexp(kDg(Im z) + 2Dr (z)/m),

where L depends only on K, D, s and r.
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This shows that f satisfies an estimate of type 2.5(1)." Therefore, 2.5
implies the existence of f €4, satisfying 2.5(2), (3). Obviously, 2.5(2) implies
o{f) = (x;);en. Hence we have shown that the continuous linear map ¢: A,
— K (z, f, E) is surjective. By the open mapping theorem for (LF)-spaces, ¢ 1$
an open map. Since ker ¢ = I, (F), this proves

(7) Aq,r/fluc(F) > K(GC, 183 E)

To obtain the desired sequence space representation from this, note that
by 2.1, F =(F,, .... Fy) is slowly decreasing in Ap in the sense of [14], 3.1,
for P = (kp)y.y. Hence Remark (b) of Cor. 3.8 of [14] implies
(8) There exists |eN with sup(dim E)exp(—!supp(z)) < .

jeN ze8j
Next note that s = o(r) implies that for each meN there exists D,, > 0 such
that for all jeN
sup p(z) < supg(Imz)+sups(z) < o+ By/m~+Dy,.

28 ze8; zel;

- Because of (8) this implies

(9) There exists [eN such that for each meN

sup {dim Ej) exp{—la;— f;/m) < c0.

jeN
By Lemma 1.7, (9) implies K (x, 8, E) =~ K {7, &), where 7 (resp. 8) is obtained
from o (resp. B) by repeating a; {resp. §;) dim E; times. Next note that 2. 1(2)
implies that (for a suitable enumeratlon) 7 and 7 {resp. & and §) are
equivalent in the sense of 1.8, which implies K (7, &) = K(y, ). Hence the
result follows from (7).

2.7. Remark. In Theorem 2.6 we can 1dent1fy K(y, 5} with i(y, &), by
Proposition 1.6(2). If we do this, then a subset G of A(y, 8} is equicontinuous
if and only if there exist keN and a bounded set M In Aky:=
Projom Ak, m) « A,, with G = g(M).

To see this, note that each set G of this form is certainly equicontinuous
in A(y, 8), by 1.6(3). To show the converse, let G < A(y, 8}, be equicontinuous
and identify K (y, 8) with K (2, f, E) as in the proof of 2.6. Then an easy
inspection of the proof of 2.6 shows that the functions f, €4, with g{f,} = x
for xeG are in fact contained in a set M of the required form. .

3. Kernels of convolution operators. In this section we use the results of
the preceding one to derive sequence space representations for the kernels of
convolution ope:rators on ultradifferentiable functions of Rourmeu type.
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3.1. DermvrTioN. Let @ be a radial weight function on € with
w|{zeC]|z| <1} =0 which also satisfies:
(x) There exists K = 1 such that for all zeC
{27 € K(1+w(z).

w(t)

l_szr << 00.

«KQ

® i
Note that by the remark following 1.3 in Meise, Taylor and Vogt [17], we
have lim, ., o)/t = 0.

3.2 Norarion. For w as in 3.1, the function ¢: [0, o[ —[0, o[, (1)
= w(e'), is convex and satisfies lim, ., t/¢ () = 0. Therefore we can define its
Young conjugate ¢*: [0, oo[ =[0, o by

©* () 1= sup {xy —p(x){x > 0}.
From Braun, Meise and Taylor [5] we recall:
33. Dermurion. For o as in 3.1 define p and ¢* as in 3.2,
(a) For an open interval f in R we define

o) = |f eC™(D|for each K < J compact there exists me/N with
1/ 1lx,m : = sup sup | £ (x)] exp(~ @* (mj)/m) < oo}
1.4

xeK jeNp

and. we em?lm‘v &1,y(I) with the lec. topology which is given by taking the
projective limit over K €I of the inductive limit over meN.
(b) For a compact interval [a, b] in R we put

Zwila, b1 := {fe&,,(R)|Supp(f) = [a, b]}
and endow _fﬁ{w,[a, 6] with the induced topology. Then we define
Pw)(R):=ind &, [ —n, n].
[ Ranid
3.4. Convolution operators on “ wi(R). In Braun, Meise and Taylor [5], it

was shown that for each ped,, (R) the map T (R = £, (R, TN
1= ux f, where '

S () =y, [ (x=p)),
1§ continuous and linear. These maps are called convolution operators. It was

also shown in [5] that for ,ue(-‘f”(ﬂ,'}(R)’ and ved,, (R, pxvy €%, (R) can be
defined by

<.u*v:f>:= <v’ ﬂ*f)i
where (1> = (¢, 1> and fi xi f(—x).

f € E?{w}(R)a

icm
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Then (&, (R, *) is a lc. algebra with continuous multiplication. If
gq: R—[0, ool is defined by g(1):=|t|, then the Fourier-Laplace transform
F: {8, (R}, ¥) = 4,,, defined by

ﬁ(#} = ﬁ: 2 H(#x! e~ix:>
is a topological aigebra isomorphism by Braun, Meise and Taylor [5].
Moreover, we have
(1 Ti=F"'oMoF,

where My A4, —4,,, denotes the multiplication operator induced by # (fi).

By Braun, Meise and Taylor [5], &, (R) is a complete nuclear space.
Hence ker T, has this property, too. By Schwartz [22], p. 43, this implies that
(ker T)); is ultrabornological. Since the restriction map R: &, (R}, —(ker T,);,
is continuous, linear and surjective by the Hahn-Banach theorem and since
&) (R), = A, ,, is an (LF)-space by 1.3, the open mapping theorem implies

2) (ker T,), = &, (R)/ker R = &, (R)/(ker T)*

Since &, (R) is semireflexive, (ker T,)* equals the &, (R);<losure of im 7.
Hence (1) and {2} imply .

@ (ker T, = A,/ (F(3),

where the isomorphism is induced by the map @ := R o #~'. Note that the
Hahn-Banach theorem implies

(#) A subset G of (ker T,)' is equicontinuous if and only if there exist ke N
and a bounded set M in proj., Ak, m} = 4,, with G = ®{M).

3.5. ProposiTioN. For w as in 3.1 and €&, (R) the following conditions

are equivalent:

(1) @@ is slowly decreasing in A,,,, where q{t) = [t|.
(2) u admits a fundamental solution E€ ¥, (R), ie. uxE =34.

Proof. By Braun, Meise and Vogt [6], 2.4, x4 admits a fundamental
solution Ee?, (R) if and only if there exist a radial weight function s

satisfying 3.1(a)~(f) and neN with § = o(w) and

sug li(z) exp{—nlImz}—ns(z)) < =0,

such that 7 is slowly decreasing in the algebra A, for p(z) = [Imz{ +5(2),
where A4, is defined as :

A,i= {f€A(C)|there is keN with s:iglf(z)lexp(—kp(z)) <o}

Because of this characterization it is obvicus that (1) implies (2). To show
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that (2) implies (1), one uses property 3.1(x) for w and the diameter estimates
for the components § of S,(F, ¢, C) which have been derived in the proof of
Meise, Taylor and Vogt [17], 2.3.

For pre &, (RY and acC with 4V (a) = 0 for 0 <j <m we define f: R
- C by fi(x):= x'&™, 0 < j <m. By Braun, Meise and Taylor [5], we have
fi €&, (R). Moreover, it follows easily from the definition of T, that f; eker T,
for 0<j <m Linear combinations of such zero-solutions of T, are called
exponential solutions of T,

3.6. THEOREM. For w as in 3.1 and pedy,(R) assume that p admits a
Jundamential solution in @, (RY and dimker T, = co. Then ker T, has an
absolute basis consisting of exponential solunom and ker T, is topelogically
isomorphic to A(x, f) for o = ([Imayl);on and B = (w{(a))jn. where (a)y is an
enumeration of the zeros of [i, counted with multiplicities.

Proof. By Proposition 3.5, ji is slowly decreasing in A4, , for g(t) = |t].
Obviously, this also holds for #(fi): z/fi(—z). This implies I{F())
= I(F (D)) = 1. (# (i) by 2.3. Therefore, Theorem 2.6 and 3.4(3) show

(ker T, =~ A, /I(F () =~ K(a, f) = Ao, B
If we identify (ker T,); with A{e, f); by this isomorphism, then it follows from
34(4) and 2.7 that both spaces have the same equicontinuous sets, Since
they are both semireflexive (because of lim; ., B; = co), this implies ker 7,
2 Ao, B). As in Meise, Schwerdtfeger and Taylor [15], we can write out this

isomorphism more explicitly. Then it follows that the images of the canonical
basis vectors in A(x, f) are in fact exponential solutions.

37. Remark. Under the hypotheses of Theorem 3..6 we also have

ker T, ~ A(x, B),

where o = ([Imaj);.y, B:={w(Rea));n and (a5 is as in 3.6.
To see this, note that there exists C > 0 with @ (#) < |¢/+ C for all t&R.
This implies for each zeC
w(z) < o{Rez|+{Imz}) € w(2max(|Rez|, |Imz[})

< K(1+wRez)+omz) < Ko(Rez)+K |lmz|+ K (1+0C).

Ao, B).

3.8. CoroLLary. For w as in 3.1 and pe &, (RY assume that the convolu-
tion operator T,: &, (R) = &,,,(R) is surjective, that T, admits a continuous

Since w(Rez) € w(z) for all zeC, this implies A(x, f) =

icm
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linear right inverse and that dimker T, = oo. Then ker T, is isomorphic to
Ay (Py,, where

Ay (B = xeC¥ilxln:= Y Ixjexp(—fym) < o for all meN}
=1

and B = (@(ap)jn for (@)~ as in 3.6.

Proof, Note that Theorem 4.4 of Meise and Vogt [18] extends to the
present class &\,,(R). Hence T, admits a fundamental solution in ,, (R). By
Theorem 3.6, this implies ker ~ X(x, B). Now observe that by Meise and
Vogt [18], 4.7 (which also extends to the present class) we have him;.. . o;/f;
= 0. Since A(x, f) is nuclear, this and 1.9(1) imply ker T, = A(x, f) ~ A, (B).

Remark. Define pe&(R) by p:=8,—08_, and fix w as in 3.1. Then u
is in &, (RY and ker T, is the space of all 2n-periodic functions in &, {(R). It
is easy to show that 7, admits fundamental solutions E, and E._
Z{R) = &, (R) with SuppE+ [a, o[ and SuppE_ c]-—oo,b] for
suitable a, b R. Hence the proof of Meise and Vogt [18], 44, (7)=(1),
shows that T, is surjective on &, (R) and that T, admits a continuous linear
right inverse. By Corollary 3.8, this implies

ker T, = A; ({0 (D)o 2l = A1 (0D )sends-

This shows that Corollary 3.8 extends the results of Petzsche [21], Sect. 3, to
the-present class &, (R).

The observation that the results of Petzsche [217], Sect. 3, could be
obtained from Komatsu [12], 1.1, by a modification of the arguments of
Berenstein and Taylor [1], Sect. 3, and Meise [14], 3.7, was in fact the
starting point for the investigations of the present paper.

39. Exampie. It is easy to check that the following functions w: C
-0, oo satisfy all the conditions of 3.1 after a suitable change on a
compact disk with center zero:

() o@E=], 0<a<l,

(2 w(z)=z2*(log( 1+|z|2)) D<a<l, 0B <00,
3 (@) =lz|(log(2+]2)? ) , B>1,

@) o) =(gt+i)f, A>1,

(5 w(z) = exp ((log(1 +12%)), O <e<l.

3.10. ExampLe. Let (M ).y, be 2 sequence in (1, wo[)¥® which satisfies:
M1) M?<M;. M;, foralljeN,
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(M2)  there exist A, H > 1 with M, € AH" min M;M,_; for all neN,

os/<n
(M3) Z M;_/M; <0,
j=1
(M4)  there exists kN with liminf(M,/M%* > 1,
i
and define wy: C —[0, o by
suplog P, EES
e r
W) 1= JE,\.I; gMj o foriE>4,
0 for |2 < 1.

Then it fo]lo'v\{s from Komatsu [117, Sect. 3, and [14], 2.6(2), that ), satisfies
all the conditions in 3.1. Using the notation of Komatsu [117, 2.5, we have
{
S gy B = 6*V(R).

From this it follows that for s > 1 and w, z~z|'¥%, the space &, ,(R)
coincides with the Gevrey class 4")°I(R). o

. 3.11. ExampLe. Let w: R =[O0, ccf be a continuous even function which
satisfies:

@ O=owl<o@s+)<<o@E+o@)
+ @ )

® i lfj%dt <'w,

0 log(1+t]) = o{w (1)

()  @: 1t —w(e') is convex on R.

for all s, ¢ &R,

for |t| —+ o0,

Then it fo!lows -from Bjorck [4], 1.2.8, that after a suitable change on a
compact dlgk with center zero, the function &: z@(Jz|) satisfies all the
conditions in 3.1. By Braun, Meise and Taylor [5] we have

+ o
“&(R) = {f €7 (R)| there exists ¢ > 0: | | S @lexp(ed@)dt <o),

da(R) = {fed"(R)lgfeffk,;}(R) for each ge &z (R)). )

Hence ¢;,(R) defined in 3.3 coincides with 4., .(R : ;
Vogt [18], Sect. 4. fw*(_ } as used in Meise and
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Abstract. An approximation result of the Hedberg type is established in the Orlicz—
Sobolev space W™ L, (R when the N-function A and its conjugate A satisfy the 4, condition
near infinity. Applications to the description of the action of some distributions in W™ mLi{R"
as well as to some strongly nonlinear elliptic boundary value problems are given.

1. Introduction. This paper is motivated by the study of the so-called
“strongly nonlinear” boundary value problems, i.e. boundary value problems
for equaticns of the form

(L1) A@+gx, w)=f.
Here A is a quasilinear elliptic differential operator in divergence form
(1.2) Aw= Y (D)D" A(x, u, Pu, ..., ")

|| <m

whose coefficients 4, satisfy conditions {including growth conditions) which
guarantee the solvability of the problem

(13) Aw) = f.

The function g satisfies a sign condition but has otherwise completely
unrestricted growth with respect to . One is interested in the solvability of
(1.1). ‘

Such problems were first considered by Browder [5] as an application of
the then newly developed theory of non-everywhere defined mappings of
monotone type. For m=1, ie. A of second order, their solvability under
fairly general and natural assumptions was proved by Hess [16]. The
treatment of the case m > 1 is more involved due to the lack of a simple
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