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Singulay integrals on C}

by
ROBERT SHARPLEY* and YONG-SUN SHIM* {Columbia, 5.C.)

Abstraet, Singular integrals are estimated in terms of maximal operators which reflect the
smoothness of a function. These inequalities generalize the classical Privalov result of Lipschitz
estimates for Lhe conjugale operalor and provide regularity inequalities for Polssor’s equation in
the selting of 7%, spaces,

The classical result of Privalov states that the conjugate operator is
bounded on Lipa for 0 <« < 1 (see, e.g., [8], Theorem (13.29)). C} spaces
form a natural extension of the Lipschitz and Sobolev spaces for fractional a.
The norm of C% is defined in terms of local approximation properties and is
equivalent to the Lipe norm when p = oo or to a Sobolev norm if o is an
integer, Otherwise, €% is known {0 be neither a Bessel potential space nor a
Besov space and thereby provides an attractive fractional substitute for the
Sobolev spaces when approximation propetties of a function appear to be an
imporiant consideration.

The purpose of this note is to establish the boundedness of singular
integral operators on these spaces and as a consequence obtain a regularity
estimate for Poisson's equation in terms of the corresponding norms. Similar
estimates have appeared in the work of Calderén and Zygmund [3], [4]
where a program was developed for local 17 regularity of systems of elliptic
operators. In those references estimates for singular integrals are provided in
terms of norms incorporating both local regularity via maximal operators and
global 7 growth, Our estimales involve only the appropriate maximal
operators f,* described below. Additional requirements in [3], [4] are that
the singular integrals have (' kernels away from the origin and that 1 <p
<. We establish results for kernels satisfying the standard properties (3)-
{5) below and for the range 1 € p € 0.

Boundedness of singular integral operators has been established for
other generalizations of the Lip« spaces. In particular, Taibleson [7] has
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obtained results for generalized Lipschitz spaces (based on moduli of
smoothness) which are commonly referred to as Besov spaces in the litera-
ture.

The space C;(R") is defined in terms of the maximal operaior
M Jia(x):=sup [ inf [QI7*"(1Q" 17— P,
: Q

Qx  Pe Pry}

The infimum (for each fixed cube Q <= R" is taken over all pelynomials of
degree no larger than o, and the supremum is then (aken over all #-
dimensional cubes @ which contain x. If g =1, we denote this maximal
function by simply f,*. The space €% is defined as the Banach space of
functions for which the norm '

Il = I f 1+ DE e
is finite. Likewise the seminoim for the homogeneous space C% is defined by
low == LA

For the properties of these spaces and maximal functions, we refer to [5] In
particular, by Theorem 4.3 of [5] there exists ¢ = &(p, o, n) > 0 such that an
equivalent norm for Cj, results if f,* is replaced by £ and ¢ is chosen to
satisly 0 < ¢ < p+e.

We consider principal-value convolution operators

e Kf (x):=pv. [ f(x=y) k() dy,

where the kernel k satisfies the following properties (see Ch. II of [el:

1< p=<oo,

3} ki< eyl y#0,
(4) IPEO) < oyt ps0,
(5) [ kdy=0 #0<r<R<w,

r<ly <R

It is well known that these singular integral operators are bounded on 7 (R")
if 1 <p<co,but only satisfy weak type conditions at the endpoints p =1
(see {6}, §2 of Ch. II) and p=co (see [2]). In particular, if f belongs to
L' (R"), then K[ exists almost everywhere and belongs to weak-I'. These

kernels are patterned after the Riesz transforms R, f whose kernels are given
by

r .

‘". A ITE [yl lsj<n,
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where ¥ = {¥y. ..o ¥o). I g is a C* funelion with compact support, it follows
(see p. 59 of {61) from the Fourier transforms that

D = — R*(dg)
il = 20 DR e (@A) (Y Q) R = RYLURY and 4 denotes the Lap-
lacian. This last identity indicales the importance of singular integrals in
studying the differentiability properties of functions, ‘
In order to facilitale cerlain estimates we also consider a related
maximal operalor (see [37) _ o
‘ . I RSP . .y 1
NECA )i dnf fsup[e-® s [ f (= P(nitdy) ]},
PPy #0 o xl &p

where () 18 Lhe largest integer less than o By Theorem 3.3 of [3] {(when o is

- ponintegral) there are positive constants ¢y, ¢y such that

(6) ey Sl (6} € NE(S, 2) < ey fih ()

holds for all x and all focally If functions f.

The first lemma may be considered as a “reverse Hardy inequality” anid
is implicit in the caleulations carried owt in [47].

. t] +

Limma L. Suppose r is nonnegative on (0, co) and ¥{t) = Jo (syds. If
there exist positive constais A, v such that
(7 i< A
holds for all 1> 0, then it follows [hat

t

(8) [PAGE By & odr?=#
0

if B<wv.

" ‘ g (s)s™ By < eyt

!

if 7.

The constant ¢ in these inequalities may be taken as (7+18/1y — Bl.

Proof. We establish inequality (8). The proof of inequality (9) is g;imilar.
Inequality (&) is trivial if i € 0 so we may ussume that > 0. In this case,
using integration by paris and the estimate (7) we obtain

t t .
.‘|' Wis)s P m §s P AP () PO W7 ds

f 0 a

i ) yei
& [ 1=t TATF, m
( =0
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Define L'+ L™ to be the set of all / = g+b such that gel' and bel*,
For each such f, define

Rf(x):= lim [Tk, (x—~y)—k; (=11 (1) dy,

E—0+

where

ke (¥)i= k(P gy en

then Kf is well defined (see Section 5.6 of [17 for details of the necessary
techniques). Note that when f belongs to L7 (p finite), Kf and Kf dlffcr only
by a constant.

LemMma 2. Suppose k satisfies the kernel conditions (3)-(5) and ler O <o
<1. If K is the associated singular integral operator and 1 < g < w, then

there exists a constant ¢, depending only on « and g, such that for each [

belonging (0 L'+ L™,

(10) (Kf )ty (%) < efifo (),

Consequently, if f belongs to IF (1 € p < w), then
(KS Jarq () < fag ().

Proof Fix x = x, and let 4 denote £,% (x,). We may assume that 4 is
finite. Let r > 0, then by Hoider's inequality and the relation (6), if

(11) b (v) := LS (o +9)—f (o)) Ky <o
we have from the definition of f,% (x,) the estimate
(12) Nadi e < eV IR, < cdrtn,
Now by property (5) of k we may write for lz] < r,
Kf (xo+2)—Kf (xq) = Khy, (2)
+ [ L o+ =f (xa)] Lk (2~ p) — k (=~ p)] dy

vl 2r

=pv. [ [f(xg+y)=f(xg)1k(~y)dy

¥l 2r
But by properties (4) and (3), we then obiain

(13)  |Kf (xo+2) = Kf (xg}f < [Khy, (2)
+CIZI| i'[z L (%o +3) =f Cxol 917" dy
iz 2

te 1 oty =S (o)l I~ dy.

|vl = 2r
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But K is bounded on L#(R") and so inequality (12) implies

(14) {( |Khzr|q)1/‘1 S cllhgll, edr*™ ¥ >0,
BEXS

In addition, by inequality (9) of Lemma ! we obtain

(15) { W Got b=/ (o)l 177 My < edr
[y| 2 2r '

by changing to polar coordinales and setting fi = n+1, y =a+n, and ¥ (1)
=t Vo o [f (x0 -+ tew)—F (x) deo. That the condition (7) of the lemma is
satisfied follows from inequatity (12). Similarly, inequality (8) implies
{16) P o+ ) =S (xo)l [yl ™" dy < cdr®

ly[=2r .
by letting fi=n. If we apply an I norm to inequality (13) over the ball
|z £ r, then the inequalities (14)~(16) imply that
(17) (7§ RS (o +2) = RS (xo)ftdz) " < cAr®

HELS

since ({5« 24 a!z)”q < ¢r' ™4, Dividing by r* and taking supremum over all
r >0 gives the desired estimate (10). m

In order to cstablish estimates for p = 1, consider the following maximal
operator:

(18) Mog(9:=sup(Q|™* [lg I )",

b Q
where the supremum ranges over all cubes Q which contain x. It is clear that
(M,g)” = M{(lg|°), where M is the Hardy-Littlewood maximal operator (see

p. 4 of [6]). Smce M is a bounded operator on I? 1f 1 < ¢ < o0, it follows
immediately that , .

(19) IMagll,, <cilgll,,, O<o<p<oo

where ¢ depends only on p and o. Let K be the singular integral defined on
11+ L™ whose kernel satisfies the conditions (3-(5). Then K satisfies the
fo]lowmg estimate.

TIIE()RFM 1. Suppose 0 <o < 1. Then there exist constants ¢ >0 and
0 «<a <1, which depend only on o and n, such that for all f belonging to
FEES ' :

(20) RO (9 < eM (L (0,
where M, is the Hardy—Littlewood operator given in (18).

Proof. By Hdlder’s inequality and Theorem 4.3 of [5] the maximal
functions g, and g} may be compared by the inequalities :

(21) < gy < oM, (g)
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if l/o = 1/g+a/n. Pick 1 < q <0 for e so that 0 < o < 1. Applying inequali-
ty (21) to inegquality {10), we obtain the estimate

(Kf ) < (KN, € offy < eM(f )

as desired. w

Corovrary 1. Suppose o > 0 is nonintegral and 1 < p < x. The singular
integral operator K sarisfies the estimate

(22 - Kl < el

Proof 1f 0 <z < 1, the estimate (22) foilows directly from (20) and the
mapping property (19) of M,. If « > 1 is nonintegral, then let j = [a]. Note

that even though K is not translation-invariant, we still have for |y = j
4. D*Kf(xo) = D" 4, Kf (x)) = 4, R [D“f](xo)

since D, and the difference operator A, commute. The second equation
follows by using the decomposition in the equation following inequality (12)
in Lemma 2. The proof is completed by an application of the appropriate
“reduction theorem” (see Theorem 6.7 of [57]). u

Corollary 1 does not hold if  is #n integer and p is infinite (see p. 121
of [8]). On the other hand, if 1 <p < o0 and « =fis an integer, then the
statement of Corollary 1 is weli known for the Sobolev spaces W/, This
classical result can also be included in the framework of Corollary 1 il in the
definition (1) of f,% one adjusts the degree of the polynomials in the infimum
to be j—I'instead of j. The resulting maximal function is called Jaq and the
corresponding spaces based on this maximal function are denoted by %% (see
[5] for details). The spaces C, and %9 differ when « is an integer but coincide
otherwise. In the case that « is an integer, J say, 7 is the Sobolev space W/
for 1 < p < oo (see, eg., Theorem 6.2 of [5]). Together with the fact that K is

bounded on If (1 < p < o), this discussion verifies that for all x> O and ¢t
<p <o,

(23) . K H,ﬂi <elif Il,,,;~

For the special elliptic operator 4 we have the analogous version of the
regularity results (on R") of Calderén [3) and Calderén-Zygmund [4].

CoroLLarY 2. Suppose o > U is nonintegral and 1 < p < o, If f belongs
to C%, then there exists F in.C% % such rhat .

(25) ‘ IF;C:"'Z “<* c ”f“C;
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Proof. First assume 0 <a <1 and let f belong to C%. As mentioned
before, the expression l[j;fflliL,,ﬂ»HfH”, is equivalent to the norm of fin Csif ¢
is chosen to satisfy
(26) l<g<p+tes.

We begin by establishing the existence of F so that AF = f, Let ¢ be a
nonnegative C§ function which is one on [x| < 1 and vanishes for |x| = 2.
For j==1,2 3,..., we set

(27) Ji(x) = [ (x)ep (/).
Then f; has compact support and satisfies
(28) SL;P”J‘}”C:-

Since f; belongs to I, the proof of Lemma & of t3] shows that there exists a
locally I# function F; such thal AF;= f; and ‘
(29) DUFj= —RMAF) = —R*(f}  (ul =2).
Now if we apply the “reduction”™ inequality for gth powers (established in a-
similar manner 1o that for inequality {6.13) of [5] but for g replacing 1),
equation (29), and Lemma 2 in that order, we obtain the inequalities

(FJ):{I- 2.4 & C Z (D" Fj)ofq = C Z (R#f})ofq < C(fp) .:fq-

=2 ful =2

But as we have noticed ( j}-);‘fq < e(fi%+1f]) holds, so estimation of the last
term on the right of the preceding inequality gives

(30) (Fl g Sc(fg 1S

This shows that F, has Peano derivatives of at least second order. Suppose
now that x, is selected so that £7(x,) < co. If PP denotes the Taylor
pelynomial of F; of order i about x, (with the appropriate Peano derivatives,
guaranteed above, as coefficients), then we define

Fy(x) 1= F(x)~ PP (x)
and note that |
an AF (%) = f(x) = (xo).

Let B(r) denote the ball of radius r about x,. Then by the definition of F;
and the maximal operator, we have for each r = 1,

(32) Hﬁjﬂmw(m < o T ETM(ENE S 4 (Xa).

So by inequality (30), F, is bounded in [f on bounded sets. This collection is
weakly sequentially precompact, so a Cantor diagonalization argument may
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be used te produce a subsequence ﬁjm which converges weakly in [ on all
balls B{(r) to some function G, Put

(33) Fx):= G(x)-+—£%—ol|xiz.

Then F is locally in I7 and by taking weak limits in I7, we obtain from (31)
AF = AG+{(xg) = lim 4F; +f(xo} = f.

m=®
Next, we show that F satisfies the estimate (25). Since G;n(x) F,m( )
+(f (x0)/(2m)|x]* converges to F weakly in [? on bounded sets, the selfad-
joint projections (see p. 8 of [5]) Py, (G,) converge to Py, (F). Hence
(34) (F)a#+2,q < 111’I1 ll'lf( }a+1 a4 ]Imlnf(Fj )a +2, q fu, J.f|)1
m o [ ad ~ 4]
where the last inequality uses (30) and the fact that (F s 2.4 = (Fj)ds 2, The
desired result for 0 <« <1 follows by taking I/ norms,
Finally, we consider the case of general o, In this case f belongs to €%~
and the first part of the proof may be applied to provide F such that (24)
holds. Moreover, as in the case 0 <« < 1, we have

IFICa+z IlmlanFJ IcoH-Z ¢liminf Z iR jJ'm

mee |u=
< llflis

where two applications of Corollary 1 have been made, =

< climinf|f} |
"= r

Remarks. (a) In Corollaries 1 and 2, the proofs can be considerably
simplified in each of the cases p =1 and 1 <p < .

{(b) By using the extension theorem (Theorem 114 of [5]) for C7 spaces,
the results of Corollary 2 can be established with R” replaced by any domain
Q (bounded or unbounded) which has a minimally smooth boundary.

(¢) As in the extensive work developed in [4] it is also possible, using
Riesz transforms, to provide similar estimates for the operator A :=

iy R;(gf]&x;) which plays a central role in the analysis of elliptic partial
differential operators. This- will be the subject of a future paper,

(d) In many situations the boundedness of operators can be-established
by verifying boundedness on certain endpoint spaces and using mterpo]al]on
Although the C} spaces do have some interpolation properties, they are not
stable under mterpola’uon if pis fixed and « is varied. In this case Theorem
8.6 of [5] gives that the resulting interpolation spaces are instead Besov
spaces. Hence a corollary of our results is Taibleson’s theorem [7] concern-
ing the boundedness of the singular integral K on the Besov spaces B“,S'“, for
1<p, g o, o>0
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